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Schmidt number effects on turbulent transport
with uniform mean scalar gradient
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We study by direct numerical simulations the effects of Schmidt number~Sc! on passive scalars
mixed by forced isotropic and homogeneous turbulence. The scalar field is maintained statistically
stationary by a uniform mean gradient. We consider the scaling of spectra, structure functions, local
isotropy and intermittency. For moderately diffusive scalars withSc51/8 and 1, the Taylor-scale
Reynolds number of the flow is either 140 or 240. A modest inertial-convective range is obtained in
the spectrum, with a one-dimensional Obukhov–Corrsin constant of about 0.4, consistent with
experimental data. However, the presence of a spectral bump makes a firm assessment somewhat
difficult. The viscous-diffusive range is universal when scaled by Obukhov–Corrsin variables. In a
second set of simulations we keep the Taylor-microscale Reynolds number fixed at 38 but vary
Sc from 1/4 to 64~a range of over two decades!, roughly by factors of 2. We observe a gradual
evolution of a 21 roll-off in the viscous-convective region asSc increases, consistent with
Batchelor’s predictions. In the viscous-diffusive range the spectra follow Kraichnan’s form well,
with a coefficient that depends weakly onSc. The breakdown of local isotropy manifests itself
through differences between structure functions with separation distances in directions parallel and
perpendicular to the mean scalar gradient, as well as via finite values of odd-order moments of scalar
gradient fluctuations and of mixed velocity-scalar gradient correlations. However, all these
indicators show, to varying degrees, an increasing tendency to isotropy with increasingSc.
The moments of scalar gradients and the scalar dissipation rate peak atSc'4. The intermittency
exponent for the scale-range between the Kolmogorov and Batchelor scales is found to decrease
with Sc, suggesting qualitative consistency with previous dye experiments in water
@Sc5O(1000)#. © 2002 American Institute of Physics.@DOI: 10.1063/1.1517298#
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I. INTRODUCTION

The properties of small-scale turbulence are of inter
for a number of reasons~see, e.g., Refs. 1–3!. For passive
scalars, the small-scale structure is influenced, besides
Reynolds number, by the Schmidt number,Sc[v/D, where
v is the kinematic viscosity of the fluid andD is the molecu-
lar diffusivity of the scalar. BecauseSc can vary widely in
applications~from order 1023 in liquid metals to order unity
in gaseous flames to thousands and higher in organic m
tures and biological fluids!, an understanding of its influenc
is important. This understanding is currently limited. Th
paper attempts to remedy the situation to some degree,
emphasis onSc of order unity and higher. The backgroun
turbulence is stationary, homogeneous, and isotropic, and
scalar is maintained by a uniform mean gradient. We
direct numerical simulations~DNS! and consider spectra
structure functions, local isotropy and intermittency.

a!Telephone: 1-404-894-9341; fax: 1-404-894-2760. Electronic m
yeung@peach.ae.gatech.edu

b!Telephone: 1-301-405-4878; fax: 1-301-314-9363. Electronic m
sreeni@ipst.umd.edu
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Regarding spectra, a well-known result forSc'1 is that
based on classical extensions of Kolmogorov’s argume4

by Obukhov5 and Corrsin:6 A k25/3 roll-off rate ~wherek is
the wavenumber! in the so-called inertial-convective range
sufficiently high Reynolds numbers, and a viscous-diffus
range that is similar to the dissipative region for the veloc
but parameterized bySc ~see Ref. 1!. For scalars withSc
@1, the spectral forms proposed by both Batchelor7 and
Kraichnan8 include an in-betweenk21 range. In experi-
ments, the25/3 region~with possible intermittency correc
tions! has been observed quite often; for recent summar
see Sreenivasan9 and Mydlarski and Warhaft.10 On the other
hand, available evidence on thek21 range is mixed: Gibson
and Schwarz11 and Prasad and Sreenivasan12 favor its exis-
tence but Miller and Dimotakis13 and Williams et al.14 do
not. Numerical experiments by Holzer and Siggia,15 although
based on two-dimensional synthetic velocity fields, do a
pear to support Batchelor scaling of the scalar spectrum

Structure functions of different orders have been stud
by a number of investigators~see, for example, Antonia
et al.,16 Meneveauet al.,17 Moisy et al.,18 Skrbek et al.,19

each of which emphasizes different aspects related to

l:

l:
8 © 2002 American Institute of Physics
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TABLE I. Major parameters of the numerical simulations.

N 64 64 256 256 256 512 512 512 256 256 512 512
Rl 38 38 38 38 38 38 38 38 140 140 240 240
Sc 1/4 1 4 8 16 16 32 64 1/8 1 1/8 1
kmaxh 1.44 1.44 5.94 5.94 5.94 11.81 11.81 11.81 1.42 1.42 1.39 1
kmaxhB 2.88 1.44 2.97 2.10 1.48 2.95 2.09 1.48 4.00 1.42 3.93 1
ruf 20.64 20.56 20.48 20.45 20.42 20.45 20.42 20.40 20.59 20.53 20.59 20.56
r f 2.65 1.78 1.26 1.09 0.95 0.98 0.87 0.77 3.06 2.36 2.71 2
^f2& 1.29 2.13 3.11 3.61 4.13 3.99 4.51 5.04 1.71 2.26 3.17 3
^x& 2.46 2.74 2.76 2.77 2.76 2.71 2.70 2.70 1.97 2.00 3.22 3
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same issue!, but there is a lack of data on Schmidt numb
dependence. In particular, the velocity-scalar mixed struc
function of third-order, for which an exact asymptotic res
at intermediate scales is known from Yaglom,20 has not been
studied in detail.

The concept of local isotropy for small-scale turbulen
is well known. Recent reviews~e.g., Sreenivasan,21

Warhaft22! have emphasized that passive scalars show fi
order deviations from it when a mean gradient is prese
However, most of the data that form the basis of the conc
sion are forSc5O(1). It is reasonable to speculate tha
when Sc@1, the separation between the Kolmogorov sc
~h! and the Batchelor scale (hB ,[hSc21/2) plays an impor-
tant role, and that the scalar fluctuations may be more ne
isotropic at higherSc.

An important property of high-Reynolds-number turb
lence is intermittency, in the form of short-lived or localize
bursts of intense fluctuations often associated with the sm
scales. Numerous studies based on both experimental
numerical work~e.g., Refs. 3, 21–24! have shown that the
passive scalar is more intermittent than the velocity. An i
portant issue is the nature of this behavior forSc@1. Some
experimental data~e.g., Sreenivasan and Prasad25! have sug-
gested a lack of intermittency in the Batchelor range betw
h andhB .

The challenge in studying these problems forSc@1 is
the need to resolve scalar fluctuations at the smallest sc
In order to compute them without losing accuracy, progr
sively finer grids must be employed and the Reynolds nu
ber has to be held at moderately low values. This may se
discouraging. However, Batchelor scaling relies essenti
on the scale separation betweenh and hB and does not in-
volve the large scales. Limitations on the Reynolds num
are thus less crucial. While DNS has been used in the pa
study mixing forSc.1, with the exception of some new da
at Sc5144 by Brethouweret al.,26 it is mostly limited27,28 to
Sc,10. Further, these previous studies have not provi
the data that we shall report here.

We use data from a series of direct numerical simu
tions with a uniform mean scalar gradient, with the Schm
number varied systematically from 1/4 to 64. This range
thought to be wide enough to detect trends withSc. The
simulation conditions are summarized in Sec. II. Results
the scalar spectrum and structure functions are presente
Sec. III. In Sec. IV we examine the issue of local isotrop
mainly in terms of derivative statistics in directions paral
or perpendicular to the mean scalar gradient. In Sec. V
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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consider the characterization of intermittency. Conclusio
are summarized in Sec. VI.

II. NUMERICAL SIMULATION PARAMETERS

Our numerical simulations were performed using a v
sion of the Fourier pseudo-spectral algorithm of Rogallo29

which has been adapted for use on massively parallel c
puters. We focus on the behavior of passive scalar fluc
tions,f, evolving in forced isotropic turbulence in the pre
ence of a uniform mean scalar gradient,¹F. The governing
equation is

]f

]t
1ui

]f

]xi
52ui

]F

]xi
1D

]2f

]xi]xi
. ~1!

The presence of the mean gradient, which is taken to
¹F5(G,0,0) in a Cartesian coordinate system, means
at least some of the statistics of the scalar field may be
isotropic. The velocity and scalar fields are statistically s
tionary in time, although substantial temporal variations
space-averaged statistics such as turbulence kinetic en
K, can occur~e.g., Overholt and Pope23!. Stationarity allows
data taken at different times to be used as multiple real
tions for the purpose of ensemble averaging. Data sets
post-processing analysis are usually saved at intervals on
order of one eddy-turnover time (Te , the ratio of longitudi-
nal integral length scale to r.m.s. velocity!.

Several major simulation parameters are summarize
Table I. The simulations are in two groups. In the first
these, the Schmidt number is varied from 1/4 to 64 while
Taylor-scale Reynolds number (Rl) is kept constant at 38
The resolution criterion applicable forSc.1 is that the pa-
rameterkmaxhB ~wherekmax5&N/3 is the highest wavenum
ber resolved on anN3 grid! should be at least 1.5. Thi
criterion is met by a 2563 run with three scalars atSc54, 8,
16, and a 5123 run with Sc516, 32, 64. Comparisons be
tweenSc516 data simulated on 2563 and 5123 grids serve
as a check on the effects of finite numerical resolution. In
second set of simulations we address Reynolds numbe
fects for Sc<1. The highest two Reynolds numbers (Rl

'140 and 240! are sufficient to yield a well-defined, thoug
limited, inertial range in the energy spectrum~Yeung and
Zhou30!. To help ensure adequate sampling we have ta
data from DNS spanning a time period on the order 10 ed
turnover times.

In Table I it can be seen that, for fixed velocity param
eters, asSc increases the variancêf2& of the scalar in-
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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creases steadily, while its dissipation rate,^x&, remains nearly
constant.~The behavior of^x& is discussed in detail in a
separate paper.31! When the scalar field is statistically sta
tionary, balance between the production of scalar varia
due to the mean gradient and dissipation by molecular ac
requires that

2rufu8f8G5^x&, ~2!

where the primes denote root-mean-square fluctuations,
ruf is the velocity-scalar correlation coefficient. The val
of ruf is of order 20.5 for Sc5O(1), and itsmagnitude
decreases asSc increases. Table I also gives the ratio of t
mechanical time scale to the scalar time scale,r f

5(K/^e&)/(^f2&/^x&), where ^e& is the energy dissipation
rate. The ratior f is an important parameter in many studi
of turbulent mixing ~e.g., Warhaft and Lumley,32 Eswaran
and Pope33!. In simplified mixing modelsr f is often ~see
Pope34! set to be 2.0. However, as reported separa
elsewhere,35 Table I shows thatr f decreases with both Rey
nolds number and Schmidt number, becoming systematic
below 1.0 for higherSc; thus, in general~e.g., Fox36!, the
Schmidt number dependence ofr f must be incorporated in
modeling.

The Schmidt number dependence seen in Table I is
contrast to the observation in studies of differential diffusi
of scalars of different molecular diffusivities~e.g., Yeung and
Pope37! where the large scales are found to be almost in
pendent of Schmidt number. However, at a finite Reyno
number the small scales do have non-negligible contributi
to quantities likeruf andr f . In particular, as Schmidt num
ber increases, the scalar variance increases slightly s
weaker diffusivity allows scalar fluctuations to become
cally more intense; yet scalar dissipation is almost const
This effect softens at higher Reynolds number, when
large scales make more dominant contributions to sc
variance, and when blobs of high scalar concentration
more readily broken up by the effects of turbulent advecti

III. SPECTRUM AND STRUCTURE FUNCTIONS

A. Moderately diffusive scalars

For scalars withSc<1, effects of molecular diffusion
are dominant for scales smaller than the Obukhov–Cor
~OC! scale, hOC5hSc23/4. The usual high-Reynolds
number arguments yield an inertial-convective range
wavenumbers 1/L!k!1/hOC<1/h ~whereL is an integral
length scale of the flow! in which the spectrum has the form

Ef~k!5Cf* ^x&^e&21/3k25/3. ~3!

HereCf* is the Obukhov–Corrsin constant. To compare o
data with Eq.~3!, we plot in Fig. 1 the ‘‘compensated’’ three
dimensional spectrum corresponding to the suggested
ing, for scalars withSc51/8 and 1, at three different Rey
nolds numbers. At higherRl a narrow flat region is seen t
develop, extending towards the lower wavenumbers~for Rl

'240, centered aroundkh'0.03). ForSc51 we also ob-
serve a spectral ‘‘bump’’ which is most pronounced at arou
kh'0.2, independent of the Reynolds number. Reyno
number similarity for high wavenumbers is also reflected
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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the ‘‘collapse’’ at high wavenumbers for differentRl but
fixed Sc. On the other hand, a similar collapse occurs at l
wavenumbers for differentScbut fixedRl . The latter feature
is consistent with other results showing that the effects
differential diffusion are primarily found in small scales.37–39

Although it is straightforward to compute in DNS th
spectrum in Eq.~3! as a function of wavenumber magnitud
in three-dimensional space, experiments usually mea
only the one-dimensional versionE1f(k). In particular, if
isotropy were valid, we have1

Ef~k!52k
dE1f~k!

dk
. ~4!

This relation implies that the Obukhov–Corrsin constantCf*
in the three-dimensional spectrum should be 5/3 ofCf , the
latter being the one-dimensional constant. It follows that
experimental value9 of Cf'0.4 corresponds toCf*
50.4(5/3)50.67. A test of isotropy for the spectra can b
made by taking the ratio of both sides in Eq.~4!; this ratio is
very close to unity except in the two lowest wavenumb
shells, which correspond to the largest scales for which o
a limited number of samples exist in the computational d
main.

Figure 2 shows the one-dimensional compensated s
trum, for scalars withSc51/8 and 1 atRl'240. We have
taken an average over three coordinate directions. To i
Cf accurately we have used a linear scale for the ordin
and included a dashed line corresponding to the experime
value in Ref. 9. Although the range is narrow, there is so
evidence for scaling with the right value of the Obukhov
Corrsin constant. The spectral bump~for Sc51) is quite
conspicuous. The bump occurs within about the same ra

FIG. 1. Compensated spectrum according to Obukhov–Corrsin varia
@Eq. ~3!# for passive scalars at different Schmidt numbers~open symbols for
1/8, closed symbols for 1.0!. Triangles, circles and squares denote ensemb
averaged Taylor-scale Reynolds numbers of 90, 140, and 240, respect
Dashed line at 0.67 is for comparison with experiments.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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4181Phys. Fluids, Vol. 14, No. 12, December 2002 Schmidt number effects on turbulent transport
of normalized wavenumbers as observed in the high
Reynolds-number grid experiments of Mydlarski a
Warhaft10 for temperature fluctuations in air withSc50.7.
Experimental data from Fig. 12 of Ref. 10 are included
comparison in Fig. 2; the authors considered the appa
Obukhov–Corrsin constant in their data to be in broad ag
ment with the estimates by Sreenivasan.9 A distinct bump is
also seen in the one-dimensional longitudinal energy sp
trum obtained from DNS.

As we shall see~Fig. 6, Sec. III B!, this bump is a pre-
cursor to the21 part of the spectral density that becom
more and more pronounced asSc increases. Even a nasce
presence of this feature atSc51 affects the25/3 scaling
range: Without the bump it is likely that one would see
more extensive stretch of the25/3 scaling. This effect is
particularly striking in the second-order structure functio
which is the spatial equivalent of the one-dimensional sp
trum. The classical result for spatial separations in the ra
h<hOC!r !L is given by

Dff~r ![^~D rf!2&5C2^x&^e&21/3r 2/3, ~5!

where, as shown in Ref. 1,C254.02Cf . In our flow con-
figuration we may distinguish between two-point differenc
in directions parallel and perpendicular to the mean gradi
as D if(r ) and D'f(r ). However, because isotropy at th
intermediate scales is implied in Eq.~5!, it is appropriate to
make comparisons using DNS data averaged overr taken in
three different coordinate directions.

Figure 3 shows the component-averaged structure fu
tion ^(D rf)2& normalized by the Obukhov–Corrsin var
ables as suggested in Eq.~5!. It can be seen that, as th
Reynolds number increases, results forSc51 show a ten-

FIG. 2. Compensated one-dimensional spectrum for scalars ofSc51/8 ~tri-
angles! andSc51 ~circles! at Rl'240. Dashed line at 0.4 is for compariso
with experiments~see Ref. 9!. Also shown for comparison are: Squares f
one-dimensional longitudinal energy spectrum in DNS, and unmarked s
line for data on scalar spectrum from Ref. 10 atRl 582 and Prandtl–
Schmidt number 0.71.
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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dency towards a flat scaling region~although, of course, a
similar observation from data at yet higher Reynolds nu
bers not currently available would be even more convincin!.
The apparent scaling constant suggested by the data is h
than 1.61~corresponding toCf'0.4 in Ref. 9! for Sc51,
but lower for Sc51/8. In other words, in contrast to th
behavior observed in the spectrum, the apparent scaling
stant in structure functions shows a significant depende
on Schmidt number. We think that this is an artifact of t
spectral bump which succeeds in masking the limited sca
region in the Fourier-transformed version. In support of t
inference, we note that this apparent dependence on
Schmidt number weakens with increasing Reynolds num

The limiting behaviors in Fig. 3 for small and large sca
separation are both amenable to analysis, and can be us
checks on the quality of the data. In the limit of smallr ~i.e.,
r !hOC), Taylor series arguments imply that̂(D rf)2&
grows like r 2, so that the normalized structure functio
shown in the figure behaves as

^~D rf!2&

^x&^e&21/3r 2/35
1

6 S r

hOC
D 4/3

. ~6!

This is indicated by a dotted line. Its perfect agreement w
the data~at small r! indicates that the small scales are a
equately resolved. For larger, as values off at two points
far apart in space become statistically independent,^(D rf)2&
is expected to approach a constant value equal to 2^f2&.
Asymptotic constancy of the structure function at largerr is
illustrated in the inset, which shows that the rat
^(D rf)2&/^f2& reaches a value close to 2. The correspo

id

FIG. 3. Obukhov–Corrsin scaling of component-averaged second-o
structure function of passive scalars at different Schmidt numbers~open
symbols for 1/8, closed symbols for 1.0!. Triangles, circles and square
denote data atRl'90, 140, and 240, respectively. The dotted line shows
small r asymptote@Eq. ~6!#. Dashed line at 1.608 is for comparison wit
experiments. The inset shows second-order structure function normalize
the scalar variance~which is not dependent onr!, with dashed line at the
value 2.0.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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ing result for the normalized form in the main body of th
figure is that it should decrease asr 22/3. Indeed by using the

time scale ratio (K/^e&)/th'( 3
2A15)Rl we can show that

the large-separation asymptote is

^~D rf!2&

^x&^e&21/3r 2/3'
3RlSc1/2

A15r f
S r

hOC
D 22/3

, ~7!

where r f is the mechanical-to-scalar time scale ratio~see
Table I, and end of Sec. II!. Use of periodic boundary con
ditions on the computational domain implies that it is mea
ingful to compute structure functions only forr up to half of
the lengthL0 of each side of the domain. However, becau
of finite domain size~with L0 only about six times of the
integral length scale of the scalar field—which is 40% long
in the direction of the mean scalar gradient!, the rate of ap-
proach to the large-r asymptote is somewhat distorted.

The mixed third-order structure function, defined
DLff(r )[^D ru(D rf)2& whereD ru is a longitudinal veloc-
ity increment in space, has a more fundamental role in si
larity scaling. In particular, an exact result for intermediatr
in the inertial-convective range was given by Yaglom,20 as

^D ru~D rf!2&52 2
3^x&r . ~8!

~Note that this relation was originally given by Yaglom wi
half the present scalar dissipation rate, and so the coeffic
was 4/3 instead of the present 2/3.! In the limit of small r it
is reasonable to use Taylor’s series to write the approxi
tion

^D ru~D rf!2&'SufK S ]u

]xD 2L 1/2K S ]f

]x D 2L r 3, ~9!

whereSuf is the mixed gradient skewness defined by~see
also Kerr40!

Suf[ K S ]u

]xD S ]f

]x D 2L Y K S ]u

]xD 2L 1/2K S ]f

]x D 2L . ~10!

Local isotropy relations for both the velocity and scalar fie
further lead to

^D ru~D rf!2&'SufS ^e&
15v D 1/2^x&

6D
r 3 ~11!

and, finally, in normalized form41

^D ru~D rf!2&

^x&r
'

Suf

6A15
S r

hB
D 2

. ~12!

Figure 4 shows DNS results for the mixed structu
function, in normalized forms suggested by Eqs.~8! and
~12!. As for the second-order structure function, we ha
taken an average over three coordinate components.
Suf taken to be of order20.5 ~see Table II!, the behavior at
smallr indeed follows Eq.~12! for all Reynolds and Schmid
numbers in the data. Because of moderate Reynolds num
in DNS, Eq.~8! is not attained exactly but nevertheless the
is a sustained trend towards a plateau of height 2/3~centered
aroundr /hB'30 atRl'240 andSc51). For larger values
of r the curves also become more widely spaced as the ra
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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of scales becomes wider with increasingRl andSc. A rapid
drop in the curves occurs in the limit of larger /hB as
^D ru(D rf)2& itself approaches zero.

Some additional comments on the conditions of valid
for Yaglom’s relation@Eq. ~8!# are appropriate. If the scala
field is stationary and isotropic, this relationship can be
rived from the structure function equation

DLff~r !22D
dDff~r !

dr
52

2

3
^x&r , ~13!

provided that the diffusive term on the left-hand side~LHS!
can be neglected in the inertial-convective range. Rece
Orlandi and Antonia42 studied the balance of terms in th
structure function equation for decaying scalar fields.
agreement with their results, we find that the diffusive te
is indeed small at intermediate scale ranges. Since the s
fields studied by Orlandi and Antonia were decaying in tim
they had to take account of nonstationarity in the balance
terms explicitly. However, in our simulations nonstationa
contributions vanish when averaged over a sufficiently lo
period of time. One is then led to conclude that deviatio
from Eqs.~8! and~13! must be mainly caused by departur
from local isotropy in the relevant scale range. Significa
anisotropy is indeed seen in Fig. 5, which shows a comp
son between normalized structure functions taken in differ
directions, for the case ofRl'240 withSc51. In particular,
the structure function is systematically larger whenr is taken
parallel to the mean gradient direction. Since structure fu
tions in experiments are usually measured in only one dir
tion, this result suggests a need for caution in inferences
Yaglom’s relation.

FIG. 4. Scaling of mixed third-order velocity-scalar structure function, co
pared with Yaglom’s relation@Eq. ~8!#. Symbols are same as in Fig. 3
Dashed line at 2/3 is for comparison with Yaglom’s exact result.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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TABLE II. Mixed gradient skewness and flatness.

N 64 64 256 256 256 512 512 512 256 256 512 512

Rl 38 38 38 38 38 38 38 38 140 140 240 240
Sc 1/4 1 4 8 16 16 32 64 1/8 1 1/8 1
Suf 20.66 20.62 20.61 20.58 20.55 20.57 20.54 20.51 20.57 20.57 20.60 20.57
Svf 20.38 20.42 20.46 20.47 20.46 20.46 20.47 20.46 20.40 20.44 20.44 20.45
Swf 20.31 20.39 20.46 20.47 20.46 20.45 20.45 20.44 20.41 20.45 20.45 20.47
Fuf 2.25 2.06 1.96 1.91 1.85 1.90 1.85 1.78 2.03 1.98 2.25 2.
Fvf 1.68 1.68 1.75 1.76 1.74 1.75 1.74 1.71 1.74 1.75 1.97 1.
Fwf 1.60 1.63 1.71 1.71 1.68 1.68 1.68 1.65 1.79 1.79 1.99 1.
n
on

tra

th

ed
B. Weakly diffusive scalars

For Sc@1 Batchelor’s result7 for the scalar spectrum is

Ef~k!5q^x&~v/^e&!1/2k21 exp~2q~khB!2!, ~14!

where the nondimensional coefficientq was presumed to be
universal. Batchelor’s theory was based on the assumptio
persistent straining of the scalar field by small scale moti
of characteristic timeth5(v/^e&)1/2. Later Kraichnan8 pro-
posed a treatment that accounted for fluctuations of the s
rate and arrived at the form

Ef~k!5q^x&~v/^e&!1/2k21~11~6q!1/2khB!

3exp~2~6q!1/2~khB!!. ~15!

The main difference between the two expressions is in
viscous-diffusive range,khB.1. In the viscous-convective
range 1/h!k!1/hB both expressions give

FIG. 5. Normalized third-order velocity-scalar structure function forSc
51 at Rl'240, with separation distancer taken in different coordinate
directions~triangles, circles, squares forx, y, z, respectively!.
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FIG. 6. ~a! Three-dimensional spectra in un-normalized form atRl'38 for
scalars of Schmidt numbers 1/4, 1, 4, 8, 16, 32, 64~lines A–G, respec-
tively!. The dashed line drawn has a slope of21 on logarithmic scales.~b!
Same data as in~a!, but normalized in the same way as in Fig. 1. The dash
line drawn has a slope of 2/3 on logarithmic scales.
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Ef~k!5q^x&~v/^e&!1/2k21, ~16!

which is commonly referred to ask21 scaling. A substantia
scale separation betweenh andhB is required to observe thi
feature, but not necessarily a high Reynolds number.
value ofq is generally estimated by either measurements
closure theories, but without universal agreement. For
ample, Batchelor7 took q52, whereas Qian43 suggestedq
52A5, which was used for comparisons with DNS b
Bogucki et al.27

FIG. 7. Three-dimensional scalar spectrum atRl'38 andSc51, 4, 8, 16,
32, 64~lines A–F, respectively! scaled by Batchelor variables. Classicalk21

scaling in the viscous-convective range would be illustrated by a plat
Dotted curve for Batchelor’s expression@Eq. ~14!#, dashed curve for
Kraichnan’s@Eq. ~15!#. Inset shows the same data but in log-linear scale

FIG. 8. One-dimensional spectrum version of Fig. 7.
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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Figures 6~a! and 6~b! show both un-normalized and no
malized versions of the spectrum of different scalars at fix
Rl'38, with Sc varying between 1/4 and 64. The norma
ization used is the same as that in Fig. 1. Straight lines
appropriate slope are drawn to make comparisons withk21

asymptotic scaling. It appears that the21 region becomes
increasingly well-defined with increasingSc, and that the
spectrum is progressively spreading out towards waven

u.

FIG. 9. Scaling of second-order structure function~similar to Fig. 3! for
scalars of Schmidt numbers 1, 4, 8, 16, 32, 64~lines A–F, respectively! at
Rl'38.

FIG. 10. Scaling of mixed third-order velocity-scalar structure functi
~similar to Fig. 4! for scalars of Schmidt numbers 1, 4, 8, 16, 32, 64~lines
A–F, respectively! at Rl'38.
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FIG. 11. Moments of scalar gradients in different coordinate components as a function of Schmidt number, atRl'38. From top:~a! Var(¹if)/Var(¹'f), ~b!
skewness of¹if, ~c! flatness of¹if ~triangles! and¹'f ~squares!.
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bers higher than 1/h. As in Fig. 1, the spectra at low wave
numbers are nearly independent ofSc.

Figure 7 shows the spectrum normalized by Batche
variables~as a function ofkhB) and compared with the ex
pressions of Batchelor and Kraichnan. The data sugges
presence ofk21 scaling forkhB,0.1. Kraichnan’s form is
more accurate in the viscous-diffusive range, for which go
agreement is found even forSc51. To infer the value ofq
needed for the best fit, we have also plotted the quan
kEf(k)(^e&/v)1/2/^x& versuskhB ~shown in the inset!, such
thatq would be the height of a plateau atkhB!1. It appears
that the value ofq required for an optimum fit increases wit
Sc somewhat, being about 3.5 forSc51 but 5.5 for Sc
564.

As in the study of the Obukhov–Corrsin scaling~Sec.
III A !, to facilitate comparison with experiment we also p
the one-dimensional form of the spectrum scaled by Ba
elor variables. This is shown in Fig. 8, with an inset usi
log-linear axes. One-dimensional versions of Batchelor’s
Kraichnan’s spectral forms are obtained by applying
spectral relationship

E1f~k!52E
k

` Ef~k!

k
dk ~17!

to Eqs.~14! and ~15!. The use of a linear axis for the no
malized spectrum gives a more stringent test fork21 scaling.
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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Subject to some statistical deviation from isotropy in t
lowest two wavenumber shells, the data support ak21 scal-
ing range, with a value ofq that increases with Schmid
number~as already mentioned!.

The effects of Schmidt number on the scaling of seco
order structure functions forSc.1 are shown in Fig. 9. For
small r the Taylor-series result@Eq. ~6!# in terms of
Obukhov–Corrsin variables is seen to continue to hold, e
for Sc@1. Whereas an increase of Reynolds number
been seen~in Fig. 3! to promote the tendency for a plateau
the normalized structure function, an increase of Schm
number apparently has no such effect. In the limit of larger
the data conform to Eq.~7! which is valid for all Schmidt
numbers. Since the scaling used in Fig. 9 is chosen to
duce a universal ‘‘collapse’’ at small scales, the ‘‘fannin
out’’ of curves with increasingScalso reflects the existenc
of a wider range of scales in the scalar field at higherSc.

Corresponding results for the mixed third-order structu
function are shown in Fig. 10. It is interesting to note th
although Yaglom’s relation@Eq. ~8!# is traditionally associ-
ated with the inertial-convective range forSc<1 at high
Reynolds number, the arguments leading to it are also
creasingly valid at highSc. Indeed it can be seen that ou
results at highSc appear to approach the limit of Yaglom
relation for r in the intermediate range.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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IV. LOCAL ISOTROPY: SCHMIDT NUMBER EFFECTS

Many indicators of varying degrees of sensitivity can
used as tests of local isotropy. For example, in Sec. III,
have discussed isotropy relations between spectra in one
three dimensions, and noted that structure functions s
some differences depending on the direction of the spa
separation. Here, we focus mainly on statistics of scalar
dients in directions parallel (¹if) and perpendicular (¹'f)
to the mean gradient, including their relationships with v
locity gradient fluctuations.

Because of reflectional symmetry in the plane perp
dicular to the mean gradient, all odd-order moments of¹'f
are expected to be zero. Furthermore, local isotropy requ
odd-order moments of¹if to vanish, and even-order mo
ments of¹if and¹'f to be equal. Figure 11 presents se
ond, third and fourth order moments of¹if and ¹'f, for
Schmidt numbers 1/4 to 64 atRl'38. The ratio of variances
is close to unity, but this is not a sensitive indicator of loc
isotropy. More interesting is the behavior of the skewness
¹if, which is nearly constant betweenSc51/4 and about 4
but decreases steadily~perhaps as a power law! for higher
Sc. A weaker trend of decrease at high Peclet number m
also be present in results by Holzer and Siggia~Ref. 15; their
Table III! based on two-dimensional synthetic velocity field
The apparent trend of decreasing skewness at high Sch
number is, however, just one facet of the deeper questio
whether local isotropy would be recovered in the limit
infinite Schmidt number. In any case, the trend of decreas
skewness at high Schmidt number suggests that local
ropy becomes a better approximation. The positive skewn
itself is usually15,22,44thought to be due to the occurrence
ramp-cliff structures of preferred orientation induced by t
mean gradient. If so, a reduction of skewness may be
result of the orientation of these structures in space becom
more randomized. The effects of high Schmidt number
these structures have yet to be investigated in detail thou
beginning has been made.45

We wish to emphasize that the observed values of
skewness of¹if do not decrease with increasing Reynol
number. On the other hand, the flatness factors show incr
ing closeness between¹if and¹'f at the highest Schmid
numbers. For a more complete picture we also study hig
order moments. Normalized third, fifth, and seventh m
ments (m3 ,m5 ,m7) of ¹if, shown in Fig. 12, seem to de
crease withScfor largeSc. ~The situation for moments of ye
higher orders is unclear because they are subject to l
uncertainties in statistical sampling.! The rates of decreas
depend on the order of the moment. It is clear that, if
seventh order moment is to ultimately reach the isotro
value of zero, the Schmidt number would have to be
tremely high.

A positive skewness for¹if as seen in Figs. 11 and 1
~and Table II! means that large positive fluctuations are mo
likely than negative ones. The probability density functi
~PDF! of ¹if in normalized form is shown in Fig. 13. Th
PDF becomes more nearly symmetric at higherSc, which is
consistent with the reduction in skewness noted abo
Schmidt number effects appear to be primarily felt via
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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creased probabilities for large negative fluctuations. The
creasing ‘‘width’’ of the PDF at high Schmidt number als
indicates increased non-Gaussianity and intermittency.
form of the PDF is apparently close to exponential in t
range between 5 and 15 standard deviations. However,
cause of sampling limitations, the situation at the extre
tails is uncertain.

Statistical relationships between fluctuations of veloc
and scalar gradients, expressed as ‘‘mixed’’ derivative m

FIG. 12. Normalized third, fifth, and seventh-order moments~triangles,
circles, squares, respectively! of ¹if as a function of Schmidt number, a
Rl'38.

FIG. 13. Standardized PDF~shown as base-10 logarithm! of ¹if for scalars
of Schmidt numbers 1, 4, 8, 16, 32, 64~lines A–F, respectively! at Rl

'38. Dashed curve shows a Gaussian distribution for comparison.
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ments, are also relevant tests of isotropy. Similar to
mixed gradient skewnessSuf @Eq. ~10!#, the mixed gradient
flatness is defined by

Fuf[ K S ]u

]xD 2S ]f

]x D 2L Y K S ]u

]xD 2L K S ]f

]x D 2L . ~18!

Similar quantitiesSvf , Swf and Fvf , Fwf defined in the
other~y andz! coordinate directions are also calculated. N
merical values listed in Table II show that the mixed ske
ness and flatness are generally larger in the direction of
mean scalar gradient. The contrast among different coo
nate directions is strongest for low Schmidt number, but
comes less so at higher Reynolds number and/or Sch
number. If gradients of velocity and scalar were statistica
independent, the mixed skewness would be zero, and
mixed flatness would be unity. However, our data do
show a clear trend towards these asymptotic states.

FIG. 14. The skewness structure function ofD if(r ) @Eq. ~19!# as a function
of separation on Batchelor scales, for scalars of Schmidt numbers 1/4
1, 4, 8, 16, 32, 64~lines A–H, respectively! at Rl'38. Dashed line shows
Gaussian value of 0.
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In addition to single-point statistics presented above, i
useful to consider the degree of local isotropy as a funct
of scale size. In Fig. 14 we do this by showing the skewn
structure function

m3~r ![
^@D if~r !#3&

^@D if~r !#2&3/2, ~19!

which is the skewness of the incrementD if(r ). Similar to
measurements in grid turbulence with transverse tempera
gradient,10 this function is found to be non-negative for a
scale sizesr. Furthermore, contrary to local isotropy, th
skewness becomes larger asr becomes smaller. Forr of or-
derhB or less, different curves are seen to approach plate
of different heights, corresponding to the skewness of¹if
~see Table III!. All curves approach zero for larger, because
D if(r ) would then become a difference between two ind
pendent random variables. For highSc ~e.g., curve H for
Sc564), there is a hint of an intermediate scaling ran
around 40hB , where the skewness becomes nearly indep
dent of r. This observation suggests the emergence of
inertial-convective range where a small deviation from lo
isotropy exists at the level of the third-order moment.

V. INTERMITTENCY: EFFECTS FOR HIGH SCHMIDT
NUMBERS

The small-scale intermittency of the passive scalar fi
is usually expressed in terms of the statistical properties
spatial structure of scalar gradients and the dissipation r
Our prime concern here is how these characteristics dep
on the Schmidt number, with observations of Reynolds nu
ber dependence also providing a useful contrast.

Table III also presents several moments of the sca
dissipation rate, and of its logarithm.46 Becausex is a non-
negative random variable, both its skewness and flatness
tor are indicators of the occurrence of intense fluctuatio
that are large compared to the mean. In addition, the r
sx /^x& ~wheresx is the standard deviation! as well as the
variance of lnx provide information on intermittency
characteristics.1,2 From Table III it is clear that, for a fixed
Schmidt number, intermittency increases with Reyno
number.

/2,
.05

.63

.2

.4

.5

.60

.85
TABLE III. Statistical moments of scalar gradients and the scalar dissipation.

N 64 64 256 256 256 512 512 512 256 256 512 512
Rl 38 38 38 38 38 38 38 38 140 140 240 240
Sc 1/4 1 4 8 16 16 32 64 1/8 1 1/8 1

Var~¹if!

Var~¹'f!

1.05 1.11 1.10 1.08 1.07 1.00 0.99 0.98 1.04 1.05 1.08 1

m3(¹if) 1.54 1.53 1.49 1.27 0.98 1.01 0.78 0.54 1.72 1.46 2.14 1
m4(¹if) 8.47 9.97 12.9 13.3 12.6 13.7 13.5 13.0 11.6 14.7 18.6 21
m3(¹'f) 0.10 0.09 20.05 20.03 20.02 20.03 20.02 20.00 20.09 20.05 20.01 0.02
m4(¹'f) 7.06 8.74 10.7 11.3 11.1 12.1 12.3 11.8 10.1 13.0 15.1 18
m3(x) 5.53 5.88 7.04 7.22 6.82 8.13 8.08 7.47 6.66 7.63 10.0 10
m4(x) 54.4 60.0 91.4 94.5 81.4 121 120 101 77.7 103 192 204
Var(ln x) 1.86 2.45 3.39 3.67 3.52 3.89 4.07 3.75 2.59 3.30 3.18 3
m3(ln x) 20.15 20.12 20.17 20.21 20.18 20.28 20.30 20.22 20.06 20.05 20.00 0.03
m4(ln x) 3.22 2.97 2.84 2.86 2.84 2.90 2.91 2.82 2.89 2.81 2.87 2
 license or copyright; see http://pof.aip.org/pof/copyright.jsp



at
tl

so
t

bl
ly
e
e

-
n-
al

a
he

d
F
se

th
i-
si

o
s

ti

ds
of

n
-

ular
in-

ially
rs

t
tio
fit

ws

4188 Phys. Fluids, Vol. 14, No. 12, December 2002 Yeung, Xu, and Sreenivasan
To interpret Schmidt number effects we note first th
for Sc516, all measures of intermittency are consisten
stronger in the 5123 simulations compared to 2563, suggest-
ing that intermittency may be underestimated if the grid re
lution is not sufficiently refined. That is, it is not unlikely tha
the intermittency atSc564 ~as well as atSc51 for Rl

'140 and 240! is somewhat stronger than suggested in Ta
III. The flatness of the scalar dissipation, which is high
intermittent, is also subject to substantial statistical unc
tainty. However, it is worth noting that, although th
ensemble-averaged moments individually depend onSc, a
scatter plot of the flatness versus skewness~with one data
point for each realization! is essentially universal indepen
dent ofSc~see Fig. 15!. In other words, despite the substa
tial variability expected for higher-order moments, all re
izations obey a systematic trend, which forRl'38 in Fig. 15
is represented as a power-law variation with exponent
proximately 2.4.~This exponent appears to be about t
same at higherRl .)

Some general conclusions on the Schmidt number
pendence can be drawn. It has been seen in Table III and
11~c! that the flatness factor of scalar gradients increa
with Sc for low values ofSc, but varies little at higherSc.
Overall, it can be said that, consistent with other works in
literature,24,47 all measures of intermittency for scalar diss
pation atSc51 are more pronounced than for energy dis
pation. In addition, it seems clear that the flatness of¹if
stops increasing atSc'4, followed by ¹'f beyond Sc
'16. This saturation of the flatness data suggests that s
asymptotic state is reached asSc→`. Data on the skewnes
of ln x indicates thatx becomes closer to lognormal asSc
increases. Although departures from lognormality may s
be present in higher-order moments of lnx ~e.g., the normal-

FIG. 15. Plot of flatness versus skewness for the scalar dissipation, aRl

'38 for Sc54, 8, 16, 32, 64. Each data point represents one realiza
taken from 2563 and 5123 simulations. The dashed line is a least-square
of slope 2.47.
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ized fifth-order moment is of the order22.0!, it appears that
an approach to lognormality is plausible.~On the other hand,
theories48 based on rapidly varying Gaussian velocity fiel
suggest thatx has a stretched-exponential PDF in the limit
very high Schmidt number.!

Next, it is useful to consider intermittency as a functio
of scale size. Figures 16~a! and 16~b! show the flatness struc
ture functions for the quantitiesD if(r ) and D'f(r ) with
separation distance taken in the parallel and perpendic
directions, respectively. It can be seen that although the
creasing trend ceases to hold for small scales whenSc.4, it
does persist for intermediate scale sizes. This is espec
true in the parallel direction. At lower Schmidt numbe

n
,

FIG. 16. ~a! Flatness structure function ofD if(r ) ~in the direction of the
mean scalar gradient!, with symbols same as in Fig. 14. Dashed line sho
Gaussian value of 3.~b! Same as~a!, but for D'f(r ) ~in the direction
perpendicular to the mean scalar gradient!.
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D if(r ) is more intermittent thanD'f(r ), but this difference
~which is an indication of anisotropy at scale sizer! appears
to vanish in theSc@1 limit.

A central feature of intermittency is the manner in whi
appropriate statistical properties depend on the avera
scale size. This effect is partly apparent in the previous fig
but a more direct, and conventional, test is to measure
so-called intermittency exponentmx in

^x~x!x~x1r !&;r 2mx, ~20!

where, with local isotropy as at least a first approximati
dependence on the separation vectorr is assumed to be
through its magnituder only. A brief summary of similar
quantities for the energy dissipation rate was given
Sreenivasan and Kailasnath.49 For scalars at high Schmid
number we are interested in this equation for scale sizr
varying nominally betweenhB and h. In previous
measurements12 where the Batchelor scale was resolved in
low Reynolds number jet,mx was found to be very close t
zero. The Schmidt number for the dye used in the jet exp
ment was of the order 103. Here in the DNS data we ca
extractmx at different Schmidt numbers and determine t
Sc dependence. Figure 17 shows a log–log plot
^x(x)x(x1r )& as a function ofr and normalized by the
mean-square of dissipation fluctuations,^x2&. To understand
the general shape of the curve shown, we note that the
point correlator ^x(x)x(x1r )& approaches its maximum
value of ^x2& at smallr, and its minimum value of̂x2& at
larger. As expected, the scaling expressed in Eq.~20! is not
readily apparent for smallSc, but if we insist on power laws
the estimated values ofmx as a function ofScare as shown
in the inset. The trend for this intermittency exponent~in the

FIG. 17. Normalized two-point, second-order moment of scalar dissipa
as a function of spatial separation@Eq. ~20!# at Rl'38,Sc516. The dashed
line has a slope of20.56. Inset shows the intermittency exponentmx as a
function of Schmidt number. The value ofr that equalshB is marked by an
arrow on ther /h axis.
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viscous-diffusive range! to decrease withScseems clear and
its eventual decrease to zero asSc→` seems plausible. In-
deed most of the variation occurs forSc,4, which is con-
sistent with the discussion above.

VI. CONCLUSIONS

We have studied the dynamics of turbulent scalar tra
port in direct numerical simulations by solving th
advection-diffusion equation@Eq. ~1!# in the presence of a
uniform mean scalar gradient. The background turbulenc
statistically stationary, homogeneous and isotropic. T
Schmidt number varies between 1/4 and 64 for a fixed va
of the Taylor microscale Reynolds number atRl'38. The
restriction to lowRl is necessary to ensure adequate reso
tion of the scalar field. To provide further checks, some c
culations are repeated for grid resolutions of 2563 and 5123.
In addition, results forSc<1 are obtained from simulation
at Rl'140 and 240. Together we have obtained a data b
that allows us to learn about trends with respect toSc—this
being the main purpose of the paper. We have paid partic
attention toSc effects on the scalar spectra, structure fun
tions, plus various quantities that characterize local isotro
and intermittency.

For moderateSc, the spectra at the highest Reynol
numbers show a modest scaling in the inertial-convec
region. The Obukhov–Corrsin constant is about 0.4 in o
dimensional spectra and 0.67 in three dimensions.
former is comparable to that in experiments.9 The behaviors
of scalar structure functions and mixed velocity-scalar str
ture functions are consistent with the existing theoreti
framework provided that averages are taken over all th
coordinate directions. There are conspicuous differences
tween statistics in directions parallel and perpendicular to
mean scalar gradient. There is no clear tendency for th
differences to diminish with the Reynolds number, within t
range considered here.

The Sc dependence in the weakly diffusive case (Sc
@1) is studied by using high grid resolution while holdin
the Reynolds number fixed. The spectra develop a21 slope
in the viscous-convective region consistent with Batchelo
theory. In the viscous-diffusive region, the spectral sha
agrees better with the Kraichnan’s form, which takes in
account the intermittency of strain-rate fluctuations. Ho
ever, there is one free parameter~q! in the spectral form. Bes
fits to the data show that this parameter depends weakly
Sc, but it is not clear if this dependence would persist
much higher Schmidt numbers. It is interesting that, even
Sc@1, second-order structure functions obey the Obukho
Corrsin scaling meant forScof the order unity. Furthermore
perhaps surprisingly, the form of Yaglom’s equation for t
mixed structure functions appears to be valid in the conv
tive region even forSc@1.

An issue that has received considerable attention is
small-scale anisotropy of the scalar. A conclusion of t
present work is that the usual measures of anisotropy dim
ish with increasingSc. This suggests that a proper limit fo
local isotropy to work isRl→` and Sc@1. A numerical
value ofSc54 seems to be large enough to begin to see

n
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decline of anisotropy in several parameters. This is true a
for most measures of intermittency based on scalar grad
and dissipation fluctuations. However, this particular value
Sc will most likely depend on the Reynolds number of t
flow, and thus should not be assumed to be universal.
intermittency exponent for the scalar dissipation in t
viscous-diffusive range appears to decrease~in magnitude!
with Sc, and tends towards zero for very largeSccharacter-
istic of dyes mixed by liquid turbulence.

It would be desirable to repeat these calculations
higher Rl covering either the same range ofSc or larger.
Although this range can be improved a bit by pushing
limit of modern computing power, it is unlikely that such a
extension would be very substantial at this time. The incre
ing power of computers will make the problem worth r
visiting in a few years’ time. Useful information may als
come from highly-resolved laboratory measurements.50
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