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We study by direct numerical simulations the effects of Schmidt nurf®@ron passive scalars
mixed by forced isotropic and homogeneous turbulence. The scalar field is maintained statistically
stationary by a uniform mean gradient. We consider the scaling of spectra, structure functions, local
isotropy and intermittency. For moderately diffusive scalars \&itl+1/8 and 1, the Taylor-scale
Reynolds number of the flow is either 140 or 240. A modest inertial-convective range is obtained in
the spectrum, with a one-dimensional Obukhov—Corrsin constant of about 0.4, consistent with
experimental data. However, the presence of a spectral bump makes a firm assessment somewhat
difficult. The viscous-diffusive range is universal when scaled by Obukhov—Corrsin variables. In a
second set of simulations we keep the Taylor-microscale Reynolds number fixed at 38 but vary
Scfrom 1/4 to 64(a range of over two decadesoughly by factors of 2. We observe a gradual
evolution of a —1 roll-off in the viscous-convective region &c increases, consistent with
Batchelor’s predictions. In the viscous-diffusive range the spectra follow Kraichnan's form well,
with a coefficient that depends weakly &t The breakdown of local isotropy manifests itself
through differences between structure functions with separation distances in directions parallel and
perpendicular to the mean scalar gradient, as well as via finite values of odd-order moments of scalar
gradient fluctuations and of mixed velocity-scalar gradient correlations. However, all these
indicators show, to varying degrees, an increasing tendency to isotropy with increasing

The moments of scalar gradients and the scalar dissipation rate pSak=dt The intermittency
exponent for the scale-range between the Kolmogorov and Batchelor scales is found to decrease
with Sg suggesting qualitative consistency with previous dye experiments in water
[Sc=0(1000)]. © 2002 American Institute of Physic§DOI: 10.1063/1.1517298

I. INTRODUCTION Regarding spectra, a well-known result ®c~1 is that
based on classical extensions of Kolmogorov's argunients

The properties of small-scale turbulence are of interespy Obukhov and Corrsirf A k=2 roll-off rate (wherek is

for a number of reasonee, e.g., Refs. 133For passive  the wavenumbgrin the so-called inertial-convective range at

scalars, the small-scale structure is influenced, besides t@@ﬁicienﬂy high Reynolds numbers, and a viscous-diffusive

Reynolds number, by the Schmidt numd8c=0/D, where  range that is similar to the dissipative region for the velocity

v is the kinematic viscosity of the fluid aridlis the molecu- ;¢ parameterized bc (see Ref. L For scalars withSc

lar diffusivity of the scalar. BecausBc can vary widely in 5.1 tne spectral forms proposed by both BatcHeland

applications(from order 102 in liquid metals to order unity Kraichnaf# include an in-betweerk~! range. In experi-

in gaseous flames to thousands and higher in organic Mixyents, the—5/3 region(with possible intermittency correc-

tures and biological fluigs an understanding of its influence tions has been observed quite often; for recent summaries,

is important. This understanding is currently limited. Thisr%.ee Sreenivasdmnd Mydlarski and Warhaff On the other

paper attempts to remedy the situation to some degree, wi and, available evidence on tke! range is mixed: Gibson

emphasis orSc of order unity and higher. The background and Schwar? and Prasad and Sreenivaifavor its exis-
turbulence is stationary, homogeneous, and isotropic, and tqgnce but Miller and Dimotaki€ and Williams et al* do

scalar is maintained by a uniform mean gradient. We use . . .
) . . . . not. Numerical experimen Holzer and Si hough
direct numerical simulationg§DNS) and consider spectra, ot. Numerical experiments by Holzer and Sigifalthoug

: ) . : based on two-dimensional synthetic velocity fields, do ap-
structure functions, local isotropy and intermittency. .
pear to support Batchelor scaling of the scalar spectrum.
Structure functions of different orders have been studied
dTelephone: 1-404-894-9341; fax: 1-404-894-2760. Electronic mail:by a number of investigatorssee for example Antonia
yeung@peach.ae.gatech.edu tal1® M t 2.l Moi 't 118 Skrb k, t a].19
bTelephone: 1-301-405-4878; fax: 1-301-314-9363. Electronic mail:€t @l eneveauet al, oISy etal, roeketal,

sreeni@ipst.umd.edu each of which emphasizes different aspects related to this
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TABLE I. Major parameters of the numerical simulations.

N 64 64 256 256 256 512 512 512 256 256 512 512

Ry 38 38 38 38 38 38 38 38 140 140 240 240

Sc 1/4 1 4 8 16 16 32 64 1/8 1 1/8 1

Kmax 7 1.44 1.44 5.94 5.94 5.94 11.81 11.81 11.81 1.42 1.42 1.39 1.39
Kmax 78 2.88 1.44 2.97 2.10 1.48 2.95 2.09 1.48 4.00 1.42 3.93 1.39
Pus —0.64 —0.56 —0.48 —0.45 —0.42 —0.45 —0.42 —0.40 —0.59 —0.53 —0.59 —0.56

Iy 2.65 1.78 1.26 1.09 0.95 0.98 0.87 0.77 3.06 2.36 2.71 2.33
(%) 1.29 2.13 3.11 3.61 4.13 3.99 4.51 5.04 1.71 2.26 3.17 3.68
(X 2.46 2.74 2.76 2.77 2.76 2.71 2.70 2.70 1.97 2.00 3.22 3.22

same issue but there is a lack of data on Schmidt numberconsider the characterization of intermittency. Conclusions
dependence. In particular, the velocity-scalar mixed structurare summarized in Sec. VI.

function of third-order, for which an exact asymptotic result

at in_termediate.scales is known from Yagléfhas not been Il. NUMERICAL SIMULATION PARAMETERS

studied in detail.

The concept of local isotropy for small-scale turbulence ~ Our numerical simulations were performed using a ver-
is well known. Recent reviews(e.g., Sreenivasat,  sion of the Fourier pseudo-spectral algorithm of Rogzafilo,
Warhaff?) have emphasized that passive scalars show firswhich has been adapted for use on massively parallel com-
order deviations from it when a mean gradient is presentputers. We focus on the behavior of passive scalar fluctua-
However, most of the data that form the basis of the conclutions, ¢, evolving in forced isotropic turbulence in the pres-
sion are forSc=0(1). It is reasonable to speculate that, ence of a uniform mean scalar gradievith. The governing
when Sc>1, the separation between the Kolmogorov scaleequation is
(7) and the Batchelor scaleyg, = 7Sc 9 plays an impor- 9 i I P P
tant role, and that the scalar fluctuations may be more nearly —+uj—=-u—+ .
isotropic at higheiSc o X X IXi9Xi

An important property of high-Reynolds-number turbu- The presence of the mean gradient, which is taken to be
lence is intermittency, in the form of short-lived or localized V& =(G,0,0) in a Cartesian coordinate system, means that
bursts of intense fluctuations often associated with the smadit least some of the statistics of the scalar field may be an-
scales. Numerous studies based on both experimental amgbtropic. The velocity and scalar fields are statistically sta-
numerical work(e.g., Refs. 3, 21-234have shown that the tionary in time, although substantial temporal variations of
passive scalar is more intermittent than the velocity. An im-space-averaged statistics such as turbulence kinetic energy,
portant issue is the nature of this behavior &&>1. Some K, can occur(e.g., Overholt and Popd. Stationarity allows
experimental datée.g., Sreenivasan and Pra%adhave sug- data taken at different times to be used as multiple realiza-
gested a lack of intermittency in the Batchelor range betweetions for the purpose of ensemble averaging. Data sets for
nand g . post-processing analysis are usually saved at intervals on the

The challenge in studying these problems &1 is  order of one eddy-turnover timel{, the ratio of longitudi-
the need to resolve scalar fluctuations at the smallest scalasal integral length scale to r.m.s. velogity
In order to compute them without losing accuracy, progres-  Several major simulation parameters are summarized in
sively finer grids must be employed and the Reynolds numTable |I. The simulations are in two groups. In the first of
ber has to be held at moderately low values. This may seerthese, the Schmidt number is varied from 1/4 to 64 while the
discouraging. However, Batchelor scaling relies essentiallyfaylor-scale Reynolds numbeR() is kept constant at 38.
on the scale separation betwegrand g and does not in- The resolution criterion applicable f&c>1 is that the pa-
volve the large scales. Limitations on the Reynolds numberameterk,,., 7 (Wherek,.,=v2N/3 is the highest wavenum-
are thus less crucial. While DNS has been used in the past teer resolved on amN® grid) should be at least 1.5. This
study mixing forSc>1, with the exception of some new data criterion is met by a 256run with three scalars &c=4, 8,
at Sc= 144 by Brethouweet al,?® it is mostly limited”?®to 16, and a 512 run with Sc=16, 32, 64. Comparisons be-
Sc<10. Further, these previous studies have not providetiweenSc=16 data simulated on 28@nd 513 grids serve
the data that we shall report here. as a check on the effects of finite numerical resolution. In the

We use data from a series of direct numerical simulasecond set of simulations we address Reynolds number ef-
tions with a uniform mean scalar gradient, with the Schmidtfects for Sc<1. The highest two Reynolds numberR,(
number varied systematically from 1/4 to 64. This range is~140 and 24Dare sufficient to yield a well-defined, though
thought to be wide enough to detect trends w&h The limited, inertial range in the energy spectrufvieung and
simulation conditions are summarized in Sec. II. Results orzhou®®). To help ensure adequate sampling we have taken
the scalar spectrum and structure functions are presented data from DNS spanning a time period on the order 10 eddy-
Sec. lll. In Sec. IV we examine the issue of local isotropy,turnover times.
mainly in terms of derivative statistics in directions parallel In Table | it can be seen that, for fixed velocity param-
or perpendicular to the mean scalar gradient. In Sec. V weters, asSc increases the varianogp?) of the scalar in-

@
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creases steadily, while its dissipation rap@, remains nearly 10" g —— e s
constant.(The behavior of(y) is discussed in detail in a i 3
separate papéf) When the scalar field is statistically sta- 10° L

tionary, balance between the production of scalar variance ;
due to the mean gradient and dissipation by molecular action  ;5-1[
requires that 2

o £

! ! “:22 = I

~puglt’ ¢'G=(x), @ &0
where the primes denote root-mean-square fluctuations, an(;/‘“\ ]

-3
pue is the velocity-scalar correlation coefficient. The value LQ 10
of p,4 is of order —0.5 for Sc=0(1), and itsmagnitude =
decreases aScincreases. Table | also gives the ratio of the < '°
mechanical time scale to the scalar time scatg, & N
=(KI{ )/ $?)I{x)), where(e) is the energy dissipation 107
rate. The ratia , is an important parameter in many studies i
of turbulent mixing (e.g., Warhaft and Lumle}f Eswaran 10'6;

and Pop#). In simplified mixing models, is often (see i
Popé* set to be 2.0. However, as reported separately 107 e "1‘('30
elsewheré® Table | shows that » decreases with both Rey- 10 10
nolds number and Schmidt number, becoming systematically kn

; i 6
below 1.0 for hlgherSc thus, in genera[e.g., FO)% ), the FIG. 1. Compensated spectrum according to Obukhov—Corrsin variables

Schmidt number dependence rgf must be incorporated in  [gq. (3)] for passive scalars at different Schmidt numkieggen symbols for
modeling. 1/8, closed symbols for 1)0Triangles, circles and squares denote ensemble-

The Schmidt number dependence seen in Table | is iﬁveraged_ Taylor—scal_e Reynolds n_umber_s of 90, _140, and 240, respectively.
R . . . . . _Dashed line at 0.67 is for comparison with experiments.

contrast to the observation in studies of differential diffusion
of scalars of different molecular diffusiviti€s.g., Yeung and
Popé’) where the large scales are found to be almost inde-
pendent of Schmidt number. However, at a finite Reynoldghe “collapse” at high wavenumbers for differefR, but
number the small scales do have non-negligible contributionfixed Sc On the other hand, a similar collapse occurs at low
to quantities likep, 4 andr . In particular, as Schmidt num- wavenumbers for differercbut fixedR, . The latter feature
ber increases, the scalar variance increases slightly sindg consistent with other results showing that the effects of
weaker diffusivity allows scalar fluctuations to become lo-differential diffusion are primarily found in small scal&s>°
cally more intense; yet scalar dissipation is almost constant.  Although it is straightforward to compute in DNS the
This effect softens at higher Reynolds number, when thepectrum in Eq(3) as a function of wavenumber magnitude
large scales make more dominant contributions to scalan three-dimensional space, experiments usually measure
variance, and when blobs of high scalar concentration arenly the one-dimensional versiog, ,(k). In particular, if
more readily broken up by the effects of turbulent advectionisotropy were valid, we have

dE14(k)
lIl. SPECTRUM AND STRUCTURE FUNCTIONS Eg4(k)= —kd—i. (4

A. Moderately diffusive scalars

This relation implies that the Obukhov—Corrsin consﬁgt
For scalars withSc<1, effects of molecular diffusion in the three-dimensional spectrum should be 5/&gf the
are dominant for scales smaller than the Obukhov—Corrsitatter being the one-dimensional constant. It follows that the
(OC) scale, 7oc=7Sc ¥ The usual high-Reynolds- experimental value of C,~0.4 corresponds toCjy
number arguments yield an inertial-convective range of=0.4(5/3)=0.67. A test of isotropy for the spectra can be
wavenumbers L/<k<1l/noc<1/n (wherel is an integral made by taking the ratio of both sides in E4); this ratio is
length scale of the flopin which the spectrum has the form very close to unity except in the two lowest wavenumber
o 13,53 shells, which correspond to the largest scales for which only
E¢(k)_c¢<x><6> Ko ©) a limited number of samples exist in the computational do-
Here C’; is the Obukhov—Corrsin constant. To compare ourmain.
data with Eq(3), we plot in Fig. 1 the “compensated” three- Figure 2 shows the one-dimensional compensated spec-
dimensional spectrum corresponding to the suggested scdtum, for scalars withSc=1/8 and 1 atR,~240. We have
ing, for scalars withSc=1/8 and 1, at three different Rey- taken an average over three coordinate directions. To infer
nolds numbers. At higheR, a narrow flat region is seen to C, accurately we have used a linear scale for the ordinate
develop, extending towards the lower wavenumligss R,  and included a dashed line corresponding to the experimental
~ 240, centered arounkly~0.03). ForSc=1 we also ob- value in Ref. 9. Although the range is narrow, there is some
serve a spectral “bump” which is most pronounced at arouncevidence for scaling with the right value of the Obukhov—
kn=~0.2, independent of the Reynolds number. Reynold<orrsin constant. The spectral bunffor Sc=1) is quite
number similarity for high wavenumbers is also reflected byconspicuous. The bump occurs within about the same range
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FIG. 2. Compensated one-dimensional spectrum for scalé8s-ofl/8 (tri- FIG. 3. Obukhov—Corrsin scaling of component-averaged second-order

angleg andSc=1 (circles atR,~240. Dashed line at 0.4 is for comparison structure function of passive scalars at different Schmidt numtmyen
with experimentgsee Ref. 8 Also shown for comparison are: Squares for symbols for 1/8, closed symbols for 1.OTriangles, circles and squares
one-dimensional longitudinal energy spectrum in DNS, and unmarked solidienote data &R, ~ 90, 140, and 240, respectively. The dotted line shows the

line for data on scalar spectrum from Ref. 10Rt 582 and Prandtl—  small r asymptote[Eq. (6)]. Dashed line at 1.608 is for comparison with

Schmidt number 0.71. experiments. The inset shows second-order structure function normalized by
the scalar variancéwhich is not dependent on), with dashed line at the
value 2.0.

of normalized wavenumbers as observed in the higher-

Reynolds-number grid experiments of Mydlarski and

Warhaft® for temperature fluctuations in air witBc=0.7. ~ dency towards a flat scaling regidgalthough, of course, a
Experimental data from Fig. 12 of Ref. 10 are included forSimilar observation from data at yet higher Reynolds num-
comparison in Fig. 2; the authors considered the apparerﬂers not currently available would be even more convincing
Obukhov—Corrsin constant in their data to be in broad agreel he apparent scaling constant suggested by the data is higher
ment with the estimates by SreenivaSahdistinct bump is  than 1.61(corresponding taC,~0.4 in Ref. 9 for Sc=1,

also seen in the one-dimensional longitudinal energy spedut lower for Sc=1/8. In other words, in contrast to the
trum obtained from DNS. behavior observed in the spectrum, the apparent scaling con-

As we shall sedFig. 6, Sec. Il B, this bump is a pre- Stant in structure functions shows a significant dependence
cursor to the—1 part of the spectral density that becomes©n Schmidt number. We think that this is an artifact of the
more and more pronounced Ssincreases. Even a nascent SPectral bump which succeeds in masking the limited scaling
presence of this feature &c=1 affects the—5/3 scaling region in the Fourier-transformed version. In support of this
range: Without the bump it is likely that one would see ainference, we note that this apparent dependence on the
more extensive stretch of the5/3 scaling. This effect is Schmidt number weakens with increasing Reynolds number.
particularly striking in the second-order structure function,  The limiting behaviors in Fig. 3 for small and large scale
which is the spatial equivalent of the one-dimensional specSeparation are both amenable to analysis, and can be used as
trum. The classical result for spatial separations in the rangghecks on the quality of the data. In the limit of small.e.,

7= noc<r<L is given by r<mnod), Taylor series arguments imply that(A,$)?)
5 11003 grows like r2, so that the normalized structure function
Dgu(r)=((A;¢)5)=Co(x)(€) T, () shown in the figure behaves as
where, as shown in Ref. ,=4.02C,. In our flow con- (A, $)?) 1/ r |43
figuration we may distinguish between two-point differences  ————1323= = —) . (6)
(x)(e) 6\ 70c

in directions parallel and perpendicular to the mean gradient,
asA;o(r) and A, ¢(r). However, because isotropy at the This is indicated by a dotted line. Its perfect agreement with
intermediate scales is implied in E), it is appropriate to  the data(at smallr) indicates that the small scales are ad-
make comparisons using DNS data averaged ovaken in  equately resolved. For large as values ofp at two points
three different coordinate directions. far apart in space become statistically independgnt, ¢)2)
Figure 3 shows the component-averaged structure funds expected to approach a constant value equal(i®2
tion ((A,¢)?) normalized by the Obukhov—Corrsin vari- Asymptotic constancy of the structure function at largés
ables as suggested in E¢p). It can be seen that, as the illustrated in the inset, which shows that the ratio
Reynolds number increases, results 8r=1 show a ten- ((A,#)%)/($?) reaches a value close to 2. The correspond-
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ing result for the normalized form in the main body of this 10° T
figure is that it should decreasems?>. Indeed by using the L
time scale ratio K/(e))/r,ﬁ(%\/l_S)Rk we can show that
the large-separation asymptote is

—2/3

(@)

107"k

(A2 3Rx301/2< r
<X><6>—1/3r2/3~ \/E'_ﬂ'¢

wherer, is the mechanical-to-scalar time scale ratsee
Table I, and end of Sec.)llUse of periodic boundary con-
ditions on the computational domain implies that it is mean-
ingful to compute structure functions only foup to half of
the lengthL, of each side of the domain. However, because
of finite domain size(with L, only about six times of the
integral length scale of the scalar field—which is 40% longer
in the direction of the mean scalar gradienhe rate of ap-
proach to the large-asymptote is somewhat distorted.

The mixed third-order structure function, defined as 107 sl
Diyg(r)=(Au(A, )2 whereA,u is a longitudinal veloc- 10 10 10 10 10
ity increment in space, has a more fundamental role in simi- r/np
larity scaling. In particular, an exact result for intermediate
in the inertial-convective range was given by Yaglthas

<Aru(Ar¢)2>:_%<X>r' 8

(Note that this relation was originally given by Yaglom with
half the present scalar dissipation rate, and so the coefficient

was 4/3 instead of the present 2/B1 the limit of smallr it ¢ les b id ith i R dsc A rapid
is reasonable to use Taylor’s series to write the approximag scales becomes wider with increasiRg and Sc A rapl

Toc

—{8su(Ar8)?)/ (()r)

10721

FIG. 4. Scaling of mixed third-order velocity-scalar structure function, com-
pared with Yaglom's relatiodEq. (8)]. Symbols are same as in Fig. 3.
Dashed line at 2/3 is for comparison with Yaglom’s exact result.

tion drop in the curves occurs in the limit of largdng as
(A u(A, ¢)?) itself approaches zero.
AUCA. )2~ Jau 2\ 12 9P 2 3 9 Some additional comments on the conditions of validity
(Aru(Ar9)9)~Syy X X r ©) for Yaglom’s relation[Eq. (8)] are appropriate. If the scalar

field is stationary and isotropic, this relationship can be de-

where S“fo)is the mixed gradient skewness defined (8ge i\ ed from the structure function equation

T

([

Local isotropy relations for both the velocity and scalar fieldsprovided that the diffusive term on the left-hand sitiélS)

i dDyg(r) 2
>. (10) DL¢¢(|’)—2D+?(:_§<X>“ (13

further lead to can be neglected in the inertial-convective range. Recently
(&) ¥2(x) Orlandi and Antonié? stuQied the balance of term; in the
<ArU(Ar¢)2>“5u¢<E) 6_Dr3 (12) structure funpnon gqua‘uon for qecaymg scalar fl_elds. In
agreement with their results, we find that the diffusive term
and, finally, in normalized forfit is indeed small at intermediate scale ranges. Since the scalar

fields studied by Orlandi and Antonia were decaying in time,

(A U(A,9)?) Sy (1 2 they had to take account of nonstationarity in the balance of
OOr = 6415 ,7_8 (12 terms explicitly. However, in our simulations nonstationary

contributions vanish when averaged over a sufficiently long

Figure 4 shows DNS results for the mixed structureperiod of time. One is then led to conclude that deviations
function, in normalized forms suggested by E¢8) and from Egs.(8) and(13) must be mainly caused by departures
(12). As for the second-order structure function, we havefrom local isotropy in the relevant scale range. Significant
taken an average over three coordinate components. Witlinisotropy is indeed seen in Fig. 5, which shows a compari-
S, taken to be of order-0.5 (see Table I, the behavior at  son between normalized structure functions taken in different
smallr indeed follows Eq(12) for all Reynolds and Schmidt directions, for the case @&, ~240 withSc=1. In particular,
numbers in the data. Because of moderate Reynolds numb#re structure function is systematically larger whea taken
in DNS, Eq.(8) is not attained exactly but nevertheless thereparallel to the mean gradient direction. Since structure func-
is a sustained trend towards a plateau of height@®8tered tions in experiments are usually measured in only one direc-
aroundr/7g~30 atR,~240 andSc=1). For larger values tion, this result suggests a need for caution in inferences on
of r the curves also become more widely spaced as the rangéglom’s relation.
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TABLE Il. Mixed gradient skewness and flatness.

Schmidt number effects on turbulent transport 4183

N 64 64 256 256 256 512 512 512 256 256 512 512
Ry 38 38 38 38 38 38 38 38 140 140 240 240
Sc 1/4 1 4 8 16 16 32 64 1/8 1 1/8 1
Sus -0.66 -0.62 -0.61 -0.58 -0.55 -0.57 -0.54 -0.51 -0.57 -0.57 -0.60 -0.57
Svs -0.38 —-0.42 —0.46 —-0.47 —0.46 —-0.46 —-0.47 —0.46 —0.40 —0.44 —-0.44 —-0.45
Sws -0.31 -0.39 -0.46 -0.47 -0.46 -0.45 -0.45 —0.44 -0.41 -0.45 -0.45 -0.47
Fug 2.25 2.06 1.96 1.91 1.85 1.90 1.85 1.78 2.03 1.98 2.25 2.16
Foo 1.68 1.68 1.75 1.76 1.74 1.75 1.74 1.71 1.74 1.75 1.97 1.95
Fuo 1.60 1.63 1.71 1.71 1.68 1.68 1.68 1.65 1.79 1.79 1.99 1.96
B. Weakly diffusive scalars 10° g A T Y
107 § A E
For Sc>1 Batchelor’s resuftfor the scalar spectrum is 107 g N L
" oy AN
_ 12,-1 2 107§ & QY E
Ey(k)=a00) (/{4 tex—a(kne)d), (14 o | AN
107° ;[ \ O & é
where the nondimensional coefficieqpvas presumed to be 107k y N\ 1
universal. Batchelor’s theory was based on the assumption of 189 £ \ 1
. L . . E : 2
persistent straining of the scalar field by small scale motions & -} - ® 1
of characteristic timer, = (v/(e€))"2 Later Kraichnaf pro- $ 0k ¥ \ 1
posed a treatment that accounted for fluctuations of the strain }g_,a! \ :
. E E
rate and arrived at the form 0 L i
107 1
— 1/2,-1 1/2 hail 1
E4(K)=a{x)(v/{€))" k™ ~(1+(60)"Knp) ]§-w§ \ :
E > 3
1/2 -18 €
X exp(— (60) A(k7g)). (15 oE \ !
i - . . 107} i
The main difference between the two expressions is in the o E E
viscous-diffusive rangekng>1. In the viscous-convective 1077 E : S : 2,
. . 10° 70’ 10 10
range 1h<k<1/7ng both expressions give @
a k
10! ——rrrrr———rrr L
10° i ST 3
T 00 L o € & ]
g _—— A T~ \\ E
T o | ™~ ¢ \\\ ]
J < \ & O(\ \J ?
N\
= | g 107k >4 \ o 3
= 1o . & 10t \ 2 b v :
= ] IORT R i \ :
= ] T \ \ ]
< I
a ] < 107k K \
j’* & 1070 | \ @ -
~ 107% / 4 5 E + E
bk / 5 107
r ] 10-10 F \ ey} ,:
, ] ot > \ E
T 10“25 L sl T SR . l\\ | 3
/ 107 107" 10° 10’
10‘3 WA il | sl el T I
107 10° 10’ 10? 10° ®) kn
7‘/773 FIG. 6. (a) Three-dimensional spectra in un-normalized fornRgt= 38 for

FIG. 5. Normalized third-order velocity-scalar structure function &g

scalars of Schmidt numbers 1/4, 1, 4, 8, 16, 32,(kdes A—G, respec-
tively). The dashed line drawn has a slope-df on logarithmic scalegb)

=1 at R,~240, with separation distanaetaken in different coordinate = Same data as i), but normalized in the same way as in Fig. 1. The dashed

directions(triangles, circles, squares far y, z respectively.

line drawn has a slope of 2/3 on logarithmic scales.
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FIG. 7. Three-dimensional scalar spectrunRat=38 andSc=1, 4, 8, 16, FIG. 9. Scaling of second-order structure functi@milar to Fig. 3 for
32, 64(lines A—F, respectivelyscaled by Batchelor variables. Classikal scalars of Schmidt numbers 1, 4, 8, 16, 32,(bdes A—F, respectivelyat
scaling in the viscous-convective range would be illustrated by a plateauR, ~38.

Dotted curve for Batchelor's expressidieq. (14)], dashed curve for

Kraichnan's[Eq. (15)]. Inset shows the same data but in log-linear scales.

Figures &a) and &b) show both un-normalized and nor-
E4(k)=a(x)(v/{e) k1, (16)  malized versions of the spectrum of different scalars at fixed
R, ~38, with Scvarying between 1/4 and 64. The normal-

which is commonly referred to ds ! scaling. A substantial | ; o . .
ization used is the same as that in Fig. 1. Straight lines of

scale separation betweerand 7 is required to observe this te sl q ¢ K ; with
feature, but not necessarily a high Reynolds number. Th&PPropriate siope are drawn to make comparisons Wi

value ofq is generally estimated by either measurements O?symptotlc scaling. It appears that thel region becomes
closure theories, but without universal agreement. For ex mcreasmgly well-defined with increasingG and that the

ample, Batcheldrtook q=2, whereas Qidt suggestedy spectrum is progressively spreading out towards wavenum-
=25, which was used for comparisons with DNS by

Bogucki et al?’
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FIG. 8. One-dimensional spectrum version of Fig. 7. A-F, respectively at R, ~38.
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FIG. 11. Moments of scalar gradients in different coordinate components as a function of Schmidt nuRpe3&t From top:(a) Var(V,¢)/Var(V, ¢), (b)
skewness oW ¢, (c) flatness ofVj ¢ (triangles andV, ¢ (squares

bers higher than ¥. As in Fig. 1, the spectra at low wave- Subject to some statistical deviation from isotropy in the

numbers are nearly independentSx lowest two wavenumber shells, the data suppdkt & scal-
Figure 7 shows the spectrum normalized by Batcheloing range, with a value of] that increases with Schmidt

variables(as a function ok7g) and compared with the ex- number(as already mentiongd

pressions of Batchelor and Kraichnan. The data suggest the The effects of Schmidt number on the scaling of second-

_1 . . y .
presence ok~ scaling forkng<<0.1. Kraichnan's form is  der structure functions fdc>1 are shown in Fig. 9. For
more accurate in the viscous-diffusive range, for which goodj .11 ¢ the Taylor-series resulfEq. (6)] in terms of
agreement is found even f@&c=1. To infer the value ofj

needed for the best fit, we have also plotted the quantit
KE 4(K) ({€)/v) "3 (x) versuskng (shown in the insef such

Obukhov—Corrsin variables is seen to continue to hold, even
Yor Sc>1. Whereas an increase of Reynolds number has

thatg would be the height of a plateau laz<1. It appears been see(ip Fig. 3) to promote the tendgncy for a plateau if‘
that the value ofj required for an optimum fit increases with the normalized structure function, an mcrea:_:,e_of Schmidt
Sc somewhat, being about 3.5 f@c=1 but 5.5 for Sc number apparently has no such effect. In the limit of larger
—64. the data conform to Eq.7) which is valid for all Schmidt

As in the study of the Obukhov—Corrsin scalif§ec. numbers. Since the scaling used in Fig. 9 is chosen to pro-
IIA), to facilitate comparison with experiment we also plot duce a universal “collapse” at small scales, the “fanning-
the one-dimensional form of the spectrum scaled by Batchout” of curves with increasingcalso reflects the existence
elor variables. This is shown in Fig. 8, with an inset usingof a wider range of scales in the scalar field at higBer
log-linear axes. One-dimensional versions of Batchelor’s and ~ Corresponding results for the mixed third-order structure
Kraichnan’s spectral forms are obtained by applying thefunction are shown in Fig. 10. It is interesting to note that,

spectral relationship although Yaglom’s relatiofEqg. (8)] is traditionally associ-
= E ,(K) ated with the inertial-convective range f&c<1 at high
Eld)(k):_j d)k dk 17 Reynolds number, the arguments leading to it are also in-
k

creasingly valid at higlSc Indeed it can be seen that our
to Egs.(14) and (15). The use of a linear axis for the nor- results at highSc appear to approach the limit of Yaglom’s
malized spectrum gives a more stringent teskfot scaling.  relation forr in the intermediate range.
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IV. LOCAL ISOTROPY: SCHMIDT NUMBER EFFECTS 10° p—————rrrm T

Many indicators of varying degrees of sensitivity can be i
used as tests of local isotropy. For example, in Sec. lll, we 10* £ 3
have discussed isotropy relations between spectra in one an E ]
three dimensions, and noted that structure functions show
some differences depending on the direction of the spatial 10° b 3
separation. Here, we focus mainly on statistics of scalar gra-,. i ]
dients in directions parallel\{¢) and perpendicularV ¢)
to the mean gradient, including their relationships with ve-
locity gradient fluctuations.

Because of reflectional symmetry in the plane perpen-
dicular to the mean gradient, all odd-order moment¥ ab
are expected to be zero. Furthermore, local isotropy requires I 1
odd-order moments oV, ¢ to vanish, and even-order mo- 10° ¢ &, 4
ments ofV,¢ andV, ¢ to be equal. Figure 11 presents sec- ; ]
ond, third and fourth order moments &f¢ and V, ¢, for T
Schmidt numbers 1/4 to 64 &, ~38. The ratio of variances 107 e P
is close to unity, but this is not a sensitive indicator of local 10 10 10 10
isotropy. More interesting is the behavior of the skewness of Se
Vi¢, which is nearly constant betwe&t=1/4 and about 4 Fig, 12, Normalized third, fifth, and seventh-order momefitangles,
but decreases steadilperhaps as a power lavior higher  circles, squares, respectivelgf V;¢ as a function of Schmidt number, at
Sc A weaker trend of decrease at high Peclet number magt~38.
also be present in results by Holzer and Sigétaf. 15; their
Table Ill) based on two-dimensional synthetic velocity fields.

The apparent trend of decreasing skewness at high Schmiateased probabilities for large negative fluctuations. The in-
number is, however, just one facet of the deeper question ¢feasing “width” of the PDF at high Schmidt number also
whether local isotropy would be recovered in the limit of indicates increased non-Gaussianity and intermittency. The
infinite Schmidt number. In any case, the trend of decreasinéPrm of the PDF is apparently close to exponential in the
skewness at high Schmidt number suggests that local isofange between 5 and 15 standard deviations. However, be-
ropy becomes a better approximation. The positive skewneguse of sampling limitations, the situation at the extreme
itself is usually>?2*thought to be due to the occurrence of tails is uncertain.

ramp-cliff structures of preferred orientation induced by the  Statistical relationships between fluctuations of velocity
mean gradient. If so, a reduction of skewness may be thand scalar gradients, expressed as “mixed” derivative mo-
result of the orientation of these structures in space becoming

more randomized. The effects of high Schmidt number on

these structures have yet to be investigated in detail though ¢ 1 ' T I " '
beginning has been mad. ol

We wish to emphasize that the observed values of the
skewness oV, ¢ do not decrease with increasing Reynolds ]
number. On the other hand, the flatness factors show increas -2+
ing closeness betweey¢ andV, ¢ at the highest Schmidt
numbers. For a more complete picture we also study higher-—
order moments. Normalized third, fifth, and seventh mo- & -4t
ments (us,us,u7) of Vi, shown in Fig. 12, seem to de- & I
crease wittScfor largeSc (The situation for moments of yet 5
higher orders is unclear because they are subject to Iargeg ~6r
uncertainties in statistical samplinglhe rates of decrease 7
depend on the order of the moment. It is clear that, if the

13, s,
5’\)

il

seventh order moment is to ultimately reach the isotropic -8 ]

value of zero, the Schmidt number would have to be ex- -9} .

tremely high. I i
A positive skewness fo¥,¢ as seen in Figs. 11 and 12 -10:

(and Table I} means that large positive fluctuations are more -1t
likely than negative ones. The probability density function

(PDPF of V¢ in normalized form is shown in Fig. 13. The Vig/ (Vi
PDF_becomefs more nearly §ymr_netnc at higBerwhich is FIG. 13. Standardized PDEhown as base-10 logarithrof V¢ for scalars
consistent with the reduction in skewness noted aboVes schmidt numbers 1, 4, 8, 16, 32, GHnes A—F, respectivelyat R,
Schmidt number effects appear to be primarily felt via in-~38. Dashed curve shows a Gaussian distribution for comparison.

)2)1/2
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3.0 T T T ) In addition to single-point statistics presented above, it is
C ] useful to consider the degree of local isotropy as a function
25 [ ] of scale size. In Fig. 14 we do this by showing the skewness
[ ] structure function
20 | ] ([46(N)]°)
[ ; #0080 o
5 F ] which is the skewness of the incremexité(r). Similar to
L ] measurements in grid turbulence with transverse temperature
1.0 — j gradientt? this function is found to be non-negative for all
C 1 scale sizeg. Furthermore, contrary to local isotropy, this
sL ] skewness becomes largerrabecomes smaller. Farof or-
r ] der g or less, different curves are seen to approach plateaus
[ i of different heights, corresponding to the skewnes$af
e ] (see Table lIl. All curves approach zero for large because
A, ¢(r) would then become a difference between two inde-

—.5; e 15° S 'L“1'(')1 — 16’ R pendent random variables. For hi@t (e.g., curve H for
0 Sc=64), there is a hint of an intermediate scaling range
FIG. 14. The skewness structure functionq#s(r) [Eq. (19)] as a function ~ around 40ng, where the skewness becomes nearly indepen-
of separation on Batchelor scales, for scalars of Schmidt numbers 1/4, 1/glent of r. This observation suggests the emergence of an
1, 4,8, 16, 32, 64lines A-H, respectivelyat R,~38. Dashed line shows  jnartjg|-convective range where a small deviation from local
Gaussian value of 0. . . .
isotropy exists at the level of the third-order moment.

INTERMITTENCY: EFFECTS FOR HIGH SCHMIDT
MBERS

ments, are also relevant tests of isotropy. Similar to th%’U
mixed gradient skewnes§,, [Eq. (10)], the mixed gradient
flatness is defined by The small-scale intermittency of the passive scalar field
is usually expressed in terms of the statistical properties and
[ au\?[ag)\? Ju\?\ [[ag)\? spatial structure of scalar gradients and the dissipation rate.
Fus=\13x/) | ax X ox) |- 18 our prime concern here is how these characteristics depend
on the Schmidt number, with observations of Reynolds num-
Similar quantitiesS, ,, S, andF,,, F, defined in the ber dependence also providing a useful contrast.
other(y andz) coordinate directions are also calculated. Nu- Table Ill also presents several moments of the scalar
merical values listed in Table Il show that the mixed skew-dissipation rate, and of its logarithfh Becausey is a non-
ness and flatness are generally larger in the direction of theegative random variable, both its skewness and flatness fac-
mean scalar gradient. The contrast among different coordior are indicators of the occurrence of intense fluctuations
nate directions is strongest for low Schmidt number, but bethat are large compared to the mean. In addition, the ratio
comes less so at higher Reynolds number and/or Schmidt, /(x) (whereo, is the standard deviatioras well as the
number. If gradients of velocity and scalar were statisticallyvariance of Iny provide information on intermittency
independent, the mixed skewness would be zero, and theharacteristics:> From Table Ill it is clear that, for a fixed
mixed flatness would be unity. However, our data do notSchmidt number, intermittency increases with Reynolds
show a clear trend towards these asymptotic states. number.

TABLE Ill. Statistical moments of scalar gradients and the scalar dissipation.

N 64 64 256 256 256 512 512 512 256 256 512 512
R, 38 38 38 38 38 38 38 38 140 140 240 240

Sc 1/4 1 4 8 16 16 32 64 1/8 1 1/8 1
Var(V,¢) 1.05 1.11 1.10 1.08 1.07 1.00 0.99 0.98 1.04 1.05 1.08 1.05
Var(V, ¢)

ws(V ) 1.54 1.53 1.49 1.27 0.98 1.01 0.78 0.54 1.72 1.46 2.14 1.63
wa(V ) 8.47 9.97 12.9 13.3 12.6 13.7 135 13.0 11.6 14.7 18.6 21.2
wa(V. &) 0.10 009 -005 -003 -002 -003 -002 -000 -009 -005 —0.01 0.02
wa(V, &) 7.06 8.74 10.7 11.3 11.1 12.1 12.3 11.8 10.1 13.0 15.1 18.4
wa(x) 5.53 5.88 7.04 7.22 6.82 8.13 8.08 7.47 6.66 7.63 10.0 10.5
walx) 54.4 60.0 91.4 94.5 81.4 121 120 101 77.7 103 192 204
var(In y) 1.86 2.45 3.39 3.67 3.52 3.89 4.07 3.75 2.59 3.30 3.18 3.60
us(n x) -015 -012  -017 —-021  -018 -028 -030 -022 -0.06 —-005 —0.00 0.03
wa(in x) 3.22 2.97 2.84 2.86 2.84 2.90 2.91 2.82 2.89 2.81 2.87 2.85
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FIG. 15. Plot of flatness versus skewness for the scalar dissipatidt), at
~38 for Sc=4, 8, 16, 32, 64. Each data point represents one realization
taken from 258 and 512 simulations. The dashed line is a least-square fit,
of slope 2.47.

To interpret Schmidt number effects we note first that,
for Sc=16, all measures of intermittency are consistently
stronger in the 512simulations compared to 2%6suggest-
ing that intermittency may be underestimated if the grid reso-
lution is not sufficiently refined. That is, it is not unlikely that
the intermittency atSc=64 (as well as atSc=1 for R,
~ 140 and 24Dis somewhat stronger than suggested in Table
lll. The flatness of the scalar dissipation, which is highly
intermittent, is also subject to substantial statistical uncer-
tainty. However, it is worth noting that, although the
ensemble-averaged moments individually dependSana
scatter plot of the flatness versus skewng@gish one data 100

g of Aj p(r)

il i tooeacnl L Lo el

point for each realizationis essentially universal indepen- 107" 10° 10 102 10°

dent of Sc(see Fig. 1% In other words, despite the substan- (b)
tial variability expected for higher-order moments, all real-
izations obey a systematic trend, which Ry~38 in Fig. 15  FIG. 16. (8 Flatness structure function df;¢(r) (in the direction of the
is represented as a power-law variation with exponent apr_m:—zan gcalar gradientwith symbols same as in Fig. 14. .Dashed .Iine _shows

. . Gaussian value of 3(b) Same as(a), but for A, ¢(r) (in the direction
proxmately 2.4.(This exponent appears to be about theperpendicular to the mean scalar gradient
same at higheR, .)

Some general conclusions on the Schmidt number de-
pendence can be drawn. It has been seen in Table Il and Figed fifth-order moment is of the order2.0), it appears that
11(c) that the flatness factor of scalar gradients increasean approach to lognormality is plausibl@n the other hand,
with Scfor low values ofSg but varies little at higheBc  theorie4® based on rapidly varying Gaussian velocity fields
Overall, it can be said that, consistent with other works in thesuggest thay has a stretched-exponential PDF in the limit of
literature?**” all measures of intermittency for scalar dissi- very high Schmidt number.
pation atSc=1 are more pronounced than for energy dissi-  Next, it is useful to consider intermittency as a function
pation. In addition, it seems clear that the flatnessvief of scale size. Figures 1® and 1@b) show the flatness struc-
stops increasing aBc~4, followed by V, ¢ beyond Sc  ture functions for the quantitied;¢(r) and A, ¢(r) with
~16. This saturation of the flatness data suggests that sonseparation distance taken in the parallel and perpendicular
asymptotic state is reached 8s—o0. Data on the skewness directions, respectively. It can be seen that although the in-
of In y indicates thaty becomes closer to lognormal &  creasing trend ceases to hold for small scales vden4, it
increases. Although departures from lognormality may stilldoes persist for intermediate scale sizes. This is especially
be present in higher-order moments oflfe.g., the normal- true in the parallel direction. At lower Schmidt numbers

r/ns
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viscous-diffusive rangeto decrease witlscseems clear and
its eventual decrease to zero 36— seems plausible. In-
deed most of the variation occurs f8rc<4, which is con-
sistent with the discussion above.

10° ¢

VI. CONCLUSIONS

We have studied the dynamics of turbulent scalar trans-
port in direct numerical simulations by solving the
advection-diffusion equatiofiEg. (1)] in the presence of a
uniform mean scalar gradient. The background turbulence is
statistically stationary, homogeneous and isotropic. The
Schmidt number varies between 1/4 and 64 for a fixed value
of the Taylor microscale Reynolds numberRt~38. The

(x(@)x(z + 1)/ ()

107! .. .
10° 10! 102 _ restriction to lowR, is necessary to ensure adequate resolu-

Se tion of the scalar field. To provide further checks, some cal-
, l culations are repeated for grid resolutions of 286d 513.

In addition, results foSc<1 are obtained from simulations
at R, ~140 and 240. Together we have obtained a data base
r/n that allows us to learn about trends with respecBte-this
FIG. 17. Normalized two-point, second-order moment of scalar dissipationbemg_the main purpose of the paper. We have paid particular
as a function of spatial separatifq. (20)] atR, ~ 38, Sc=16. The dashed  attention toSceffects on the scalar spectra, structure func-
line has a slope of-0.56. Inset shows the intermittency expongntas a  tions, plus various quantities that characterize local isotropy
function of Schmidt number. The value othat equalsyg is marked by an  and intermittency.
arrow on ther/7 axis. For moderateSg the spectra at the highest Reynolds
numbers show a modest scaling in the inertial-convective
region. The Obukhov—Corrsin constant is about 0.4 in one-
A, ¢(r) is more intermittent than | ¢(r), but this difference  dimensional spectra and 0.67 in three dimensions. The
(which is an indication of anisotropy at scale sizeappears former is comparable to that in experimeffshe behaviors
to vanish in theSc>1 limit. of scalar structure functions and mixed velocity-scalar struc-
A central feature of intermittency is the manner in which ture functions are consistent with the existing theoretical
appropriate statistical properties depend on the averaginifamework provided that averages are taken over all three
scale size. This effect is partly apparent in the previous figur€oordinate directions. There are conspicuous differences be-
but a more direct, and conventional, test is to measure thveen statistics in directions parallel and perpendicular to the
so-called intermittency exponept, in mean scalar gradient. There is no clear tendency for these
o differences to diminish with the Reynolds number, within the
X(x(x+))~r=#x, (20 range considered here.
where, with local isotropy as at least a first approximation, = The Sc dependence in the weakly diffusive casgc(
dependence on the separation veatois assumed to be >1) is studied by using high grid resolution while holding
through its magnitude only. A brief summary of similar the Reynolds number fixed. The spectra developlaslope
guantities for the energy dissipation rate was given byin the viscous-convective region consistent with Batchelor’s
Sreenivasan and KailasndthFor scalars at high Schmidt theory. In the viscous-diffusive region, the spectral shape
number we are interested in this equation for scale size agrees better with the Kraichnan’s form, which takes into
varying nominally betweenng and #. In previous account the intermittency of strain-rate fluctuations. How-
measurement$where the Batchelor scale was resolved in aever, there is one free parameteyin the spectral form. Best
low Reynolds number jetw, was found to be very close to fits to the data show that this parameter depends weakly on
zero. The Schmidt number for the dye used in the jet experiSg but it is not clear if this dependence would persist at
ment was of the order £0 Here in the DNS data we can much higher Schmidt numbers. It is interesting that, even for
extractu , at different Schmidt numbers and determine theSc>1, second-order structure functions obey the Obukhov—
Sc dependence. Figure 17 shows a log-log plot ofCorrsin scaling meant fdscof the order unity. Furthermore,
(x(X)x(x+r)) as a function ofr and normalized by the perhaps surprisingly, the form of Yaglom’s equation for the
mean-square of dissipation fluctuatiofig?). To understand mixed structure functions appears to be valid in the convec-
the general shape of the curve shown, we note that the twdive region even folSc>1.
point correlator { x(x) x(x+r)) approaches its maximum An issue that has received considerable attention is the
value of (x?) at smallr, and its minimum value ofx?) at  small-scale anisotropy of the scalar. A conclusion of the
larger. As expected, the scaling expressed in ) is not  present work is that the usual measures of anisotropy dimin-
readily apparent for sma$¢ but if we insist on power laws, ish with increasingSc This suggests that a proper limit for
the estimated values gf, as a function ofScare as shown local isotropy to work isR,— and Sc>1. A numerical
in the inset. The trend for this intermittency exponéntthe  value of Sc=4 seems to be large enough to begin to see the
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