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MEASURES OF ANISOTROPY AND THE UNIVERSAL
PROPERTIES OF TURBULENCE

S. Kurien! and K.R. Sreenivasan?

Abstract

Local isotropy, or the statistical isotropy of small scales, is one of the
basic assumptions underlying Kolmogorov’s theory of universality of
small-scale turbulent motion. The literature is replete with studies
purporting to examine its validity and limitations. While, until the
mid-seventies or so, local isotropy was accepted as a plausible approx-
imation at high enough Reynolds numbers, various empirical obser-
vations that have accumulated since then suggest that local isotropy
may not obtain at any Reynolds number. This throws doubt on the
existence of universal aspects of turbulence. Part of the problem in
refining this loose statement is the absence until now of serious ef-
forts to separate the isotropic component of any statistical object
from its anisotropic components. These notes examine in some de-
tail the isotropic and anisotropic contributions to structure functions
by considering their SO(3) decomposition. After an initial discussion
of the status of local isotropy (Sect. 1) and the theoretical back-
ground for the SO(3) decomposition (Sect. 2), we provide an account
of the experimental data (Sect. 3) and their analysis (Sects. 4-6).
Viewed in terms of the relative importance of the isotropic part to
the anisotropic parts of structure functions, the basic conclusion is
that the isotropic part dominates the small scales at least up to or-
der 6. This follows from the fact that, at least up to that order, there
exists a hierarchy of increasingly larger power-law exponents, corre-
sponding to increasingly higher-order anisotropic sectors of the SO(3)
decomposition. The numerical values of the exponents deduced from
experiment suggest that the anisotropic parts in each order roll off
less sharply than previously thought by dimensional considerations,
but they do so nevertheless.
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1 Introduction

Local isotropy, or the isotropy of small scales of turbulent motion, is onc
of the assumptions at the core of the belief that small scales attain some
semblance of universality [11]. This is a statistical concept, and is not
necessarily opposed to the idea of structured geometry of small scales [9].
The important question about local isotropy is not whether the small scales
are strictly isotropic, but the degree to which the notion becomes a better
approximation as the scales become smaller [20]. Aside from the generic
requirement that the flow Reynolds number be high (so that small scales
as a distinct range may exist independent of the large scale), the question
of how or if local isotropy becomes a good working approximation depends
on the nature of large-scale anisotropy, on whether or not there are other
body forces, on the nearness to physical boundaries, etc. All of this was
well understood by the time of publication of Monin and Yaglom [19]. The
general consensus at the time seems to have been that small scales indeed
attain isotropy far from the boundary at high enough Reynolds numbers,
at least when one considered second-order quantities.

The situation changed perceptibly when the small scales of scalar fluctu-
ations were experimentally found to be anisotropic in many types of shear
flows even at the highest Reynolds numbers of measurement. For a sum-
mary, see [23]. Since that time, various other pieces of evidence are slowly
accumulating to suggest that small-scale velocity is also anisotropic; see,
for example [22]. The claim is that the previously held belief - which, to
some degree, was comforting — loomed large only because we had not ex-
plored the right statistical quantities. The notion that anisotropy persists
at all scales at all Reynolds numbers (though manifested only in certain
statistical parameters) puts a strong damper on any theory that purports
to consider small-scale turbulence as a universal object. This is somewhat
of an impasse.

Since the problems began with passive scalars, we might as well con-
sider the evidence in that case a little more closely. The evidence, collected
over many years by many people, is reproduced in Figure 1 from [24]. The
argument is that if the temperature fluctuation 8 is locally isotropic, its
derivative 90/0z, being a small-scale quantity by construction, should be
isotropic. Taking reflection symmetry as part of isotropy, we should have
((08/0x)™) = —{(90/0x)™) for all odd values of n. This means that all
the odd moments must be zero. In particular, ((96/0x)%) = 0, or “small”
in practice. But small compared to what? The standard thing to do is
to normalize ((96/0z)3) by ((96/0x)%)3/2, or to examine the behavior of
the skewness S of 99/0x. These are the data shown in Figure 1. The
data suggest, despite some large scatter, that the skewness remains to be of
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Fig. 1. The magnitude of the skewness of the temperature derivative in turbulent
shear flows. The figure is taken from [24]. The Taylor microscale Reynolds number
R, is proportional to the square root of the large scale Reynolds number. It is
defined more precisely in Section 2.

the order unity even at the largest Reynolds numbers for which measure-
ments are available.

There are two points to be made. The first is that the Taylor microscale
Reynolds number Ry may not be the right parameter against which to plot
S. As articulated by Hill [8], the reasons are that the velocity that appears
in Ry is a large-scale quantity and the length scale A\ cannot be defined
independent of the large scale velocity. (In practice, the definition of A may
not require the large scale, see [26], though this is not a result that can
be shown formally; but the comment on the velocity remains valid in any
case.) We believe, however, that the situation will probably not change
qualitatively even if we adopted a different abscissae for Figure 1. The
second point is that, if one used ((88/0z)*)3/* instead of ((80/9z)?)%/? for
normalizing ((08/0z)3), the normalized quantity will vanish with Reynolds
number, roughly according to some power of the Reynolds number. Why
is it not legitimate to compare the third moment to the next high-order
even moment, instead of the neighboring low-order moment, or, perhaps to
the geometric mean of the lower and higher order even moments? In either
case, we will have a quantity that diminishes with the Reynolds number.

These are not elegant arguments, and seem like desperate efforts made
to save the situation at any cost. There is a further argument to be made,
however. Leaving aside the technicalities for a moment, let us suppose that,
for a given statistical quantity to be measured, there are at all scales an
isotropic part and an anisotropic part. We might now ask whether the ratio
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of the anisotropic part to the isotropic part vanishes as the scale size becomes
smaller. We are no longer asking if the third moment vanishes with respect
to {a suitable power of) some even order moment, but if, within a moment
of a given order, the isotropic part eventually dominates the anisotropic
part as the scale size vanishes. If this is indeed so, it allows us to say that,
while non-universal anisotropic parts may always be present, the isotropic
part dominates at small enough scales. If, of course, the isotropic part
contributes exactly zero to the statistical quantity being considered, the
anisotropic part will no doubt prevail at any finite Reynolds number, but
this is not in contradiction to the statement just made. This is a richer
point of view to take, potentially less inhibiting for the devclopment of a
sensible theory of turbulence. In such a picture, the universal theory that
may emerge holds for the isotropic part alone, but, for it to be applicable
to other types of turbulence, the anisotropic ‘correction’ has to be added in
some suitable way.

The questions of interest, then, are obvious: what is a good way to
decompose any statistical object of choice into isotropic and anisotropic
parts? How do these two parts vary with scale size, relative to each other?
A plausible method for answering these questions was proposed in [5] by
using the SO(3) decomposition of tensorial objects usually considered in
turbulence. One can argue as to whether this is the best perspective, but
there is no doubt that it provides one framework within which our questions
can be posed and answered. An experimental assessment of this issue is the
broad topic of these notes. This is preceded by a detailed description of the
theoretical issues involved.

The notes were part of the lectures presented by KRS at Les Houches,
and form part of the Ph.D. work of SK. We note in advance that the liter-
ature cited is limited to a few key articles. We thank Itamar Procaccia and
Victor L’vov for introducing us to the subject discussed here, and Christo-
pher White and Brindesh Dhruva for their help in acquiring some of the
data. KRS thanks the organizers of the School for the invitation to deliver
the lectures.

2 Theoretical tools

2.1 The method of SO(3) decomposition

A familiar example of decomposition into the irreducible representations
of the SO(3) symmetry group is the solution of the Laplace equation in
spherical coordinates

V3y(r) =0, (2.1)

where 1 is a scalar function defined over the sphere of radius . This
equation is linear, homogeneous and isotropic. The solutions are separable,
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and may be written as products of functions of r, § and ¢. The solutions
form a linear space, a possible basis for which are derived from the spherical
harmonics Yy, (8, ¢)

Yim (r) = TlYlm(ea ¢) = lezm(f') (2.2)

where the index [ = 0, 1,2, ..., 0o denotes the degree of the harmonic polyno-
mial. The angular dependence (8, ¢) is equivalent to the unit vector #, or the
unit sphere. In the angular dependence, the index m denotes the elements
of the orthonormal basis space that span each harmonic polynomial of de-
gree [. For each [ there are 21 + 1 elements indexed by m = —5, —j+1,...,7
which are the Y. Equation (2.2) is a useful basis space of solutions for
the Laplace equation because the ), () are each solutions of the Laplace
equation and are orthonormal for different {,m. Each basis element has a
definite behavior under rotations, that is, the action on it by an element of
SO(3) preserves the indices. In other words, the rotated basis element will
also be indexed by the same [,m. The general solution of (2.1) is given by

1/)(1‘) = Z almwlm(r)- (23)
Lm

The coeflicients ay, are obtained from the boundary conditions on ¥(r)
and, for a particular solution, any of them may be zero. In the theory of
group representations, ¥, (r) is said to be the 2+ 1 dimensional irreducible
representation of the group of all rotations, the SO(3) symmetry group, in
the space of scalar functions over the sphere. The space of scalar functions
is called a “carrier” or “target” space for the SO(3) group representations.
For each irreducible representation indexed by I = 0...00 there are 2] + 1
components indexed by m = —[... +[. A representation of a symmetry
group is said to be irreducible if it does not contain any subspaces that are
invariant under the transformation associated with that symmetry.

Here we make a distinction between the behaviors under rotation of
the equation (2.1) and of its solutions ¥(r). The statement that the equa-
tion is isotropic means that it will hold true in a rotated frame with the
Laplacian operator V and the function 1 (F) properly defined in the new

coordinate system, §2E(f) = 0. However, the function (r) may con-
tain both isotropic and anisotropic components. All symmetry groups pos-
sess a one-dimensional representation in the carrier space, which is invari-
ant under the transformations of that group. For the representations of
the SO(3) symmetry group in the space of scalar functions over the unit
sphere, the one-dimensional representation, indexed by [ = 0, is Yy =
constant; it will clearly remain unchanged under proper rotations. This is
the isotropic representation. The higher-dimensional representations Y7,
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(dimension 3,5,7, ... corresponding to [ = 1,2, 3,...) have functional forms
in # and ¢ which are altered under rotation even though the degree (I),
and hence the dimension, of the representation is preserved. These are
the anisotropic representations. We examine this point in more detail with
further discussion of the simple example of the scalar functions 1.

For a particular rotation A in Euclidean space which tells us how to
rotate a vector x into a new coordinate system where it is denoted by X,

T* = A%2”, (2.4)

we can define an operator O which tells us how to rotate the function ¢(r)
to ¥(T). If the function ¥ (r) is written in terms of a linear combination of
its basis elements as in equation (2.3), then the rotation operation is written
as

E(F) = OAU}(I‘) = OA Z almwlm,(r) = Z OAa[nﬂ,,/)lm (I') (25)
lom

I,m

The Op for each [ representation is a (21 + 1) x (21 + 1) matrix denoted
by Dgi),7m(A). The transformation is written as

l

Oatpim(r) = 3 DL (A (r). (2.6)

m/=—1

Thus, when a rotation of the function ¢(r) into a new coordinate system
is to be performed, the rotation matrices Df;i’)m,(A) are all that is needed
in order to transform each of the irreducible representations of the SO(3)
group that form the basis functions of ¥(r). As can be seen from equa-
tion (2.6), the j = 0 (one-dimensional) irreducible representation is the
one which is invariant to all rotations in that its functional form is always
preserved. The D(®)(A) matrix is merely a number, independent of A, mul-
tiplying the j = O representation. The j = 0 irreducible representation is
the isotropic component of the SO(3) decomposition. For all higher-order
Jj’s the rotation preserves the dimension of the transformed component. i.e.
the indices j and m are retained, but the functional form is altered. The
DW(A) for j > 0 are true (25 4+ 1) x (25 + 1) matrices that mix the various
m contributions of the original, unrotated basis.

The above simple example involved the case of a scalar function v that
depended on a single unit vector . The method of SO(3) decomposition
may be carried over to more complicated objects. The theory is given in
detail in [5]. In general we can imagine an n*® order tensor function which
depends on p unit vectors T2~ (f1 5, ... ¥p) and is the solution to an
isotropic equation. Then, the rules of SO(3) decomposition carry over in
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the following manner. The rotation operator Oy is now defined through the
relation

Talaz...an (E, E, g) — OATrnag.,.an (f,l’ f‘2, el fp)

= AJAG . AGTO P (AT AT Ry, AT ) (27)

The tensor function 7' may be written in terms of the irreducible repre-
sentations of the SO(3) symmetry group. The basis elements are denoted
by B;"T}l‘”“‘o‘" (t) where the j index plays the same role as the [ index in the
example of the scalar function. The basis elements are more complicated
than the 1)y, because the space of functions T is the direct product of n
Euclidean three-dimensional vector spaces (manifest in the indices a1 .. . )
with p infinite dimensional spaces of continuous single-variable functions
over the unit sphere (the ¥y ...%p). If the constituent spaces are also writ-
ten in the SO(3) decomposition, the rules of angular momentum addition,
familiar from quantum mechanics, may be used in taking the direct product.
The three-dimensional Euclidean vector space is a 7 = 1 space while each
of the infinite-dimensional spaces functions over the unit sphere is the sum
ofthe j =0,j = 1,...,j — oo irreducible representations of SO(3) (recall
the above example of ¥(f)) with each j representation appearing once.

In tensor product notation, the product space of two vector spaces V;
and V; is denoted by Vi ® Va. In the case of vector spaces in the SO(3)
notation the spaces are named uniquely by their index j. Using tensor
product notation, the n three-dimensional Fuclidean spaces form a space
1®1®...81 (n times). The tensor notation indicating a linear sum of tensors
with SO(3) representation indices j; and js is j1 @ j2. Using this notation,
each of the infinite dimensional spaces is 0&162®. . . The direct product of p
of these is (091926. . )@(08162. . )R...Q(04192&. . .) (p times). Thus,
the final product space for Bj,)"“" () is written in tensor-product notation
as 191®...®1 (n times) @(091926. . )Q(0P1H2&...) ... (081d2&...) (p
times). Now, the tensor product of spaces j; and j2 will contain new spaces
whose SO(3) indices are given in the following manner. We recall the rules
of angular momentum addition familiar from quantum mechanics. The total
angular momentum of an SO(3) representation space is given by its index j.
The rules of angular momentum addition dictate how the product of two
spaces of angular momentum (SO(3) index) j; and j» may be added and
the possible j indices of the resulting spaces,

J1®Ja=j1—Jel & ... ® (1 + J2). (2.8)

Equation (2.8) says that the direct product of two spaces each belonging to
a particular j will generate a sum of new spaces with only those j indices
allowed by the rule. The operations ® and @ are distributive like the
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corresponding arithmetic operators. For example

191 = 08162
191091 = (0ele2)ol
= elae(lol)e@2ol) (2.9)

If we now apply the angular momentum addition rules (2.8) to each of the
product terms on the right hand side of equation (2.9), we get

111l = 1000102010283
= 0e(1x3)d((2x2)®3. (2.10)

When taking the product of more than two spaces, there will be several
ways to arrive at a particular j in the final product space. We see this
in the final rearrangement of the right hand side of equation (2.10), where
there is only one representation each of j = 0 and 7 = 3, but three of
j=1and two of j = 2. Going back to our more complicated target space
for the basis elements B5 "> *"(£), which is 1® 1 ® ... ® 1 (n times)
RUUP1828..)02001020...)...(001802d...) (p times), we expect
that there may be many ways to obtain a particular j in the final product
space. To indicate this, for each basis element we associate a further index
g giving Bg;m (). These are important when we start to actually calculate
the basis elements. The machinery used is the Clebsch—Gordan method
well-known in quantum mechanics and the reader is referred to [5] for the
details. The tensor T' may also depend on vectors r; with magnitudes r; but
for each rotation operation O these may be treated as parameters included
in the weight associated with each basis element. The T arc represented as

T01a2~~'0‘n(r17r2,...71‘p) = Z aqj'm,(rlver""TI))
q

WJsm

X B By fa, . Bp). (2.11)

In the next two sections, we move away from the very general formalism
of SO(3) decomposition discussed above, and apply it to the specific case
of the statistical tensor quantities in fluid turbulence and their dynamical
equations obtained from the Navier—Stokes equations. We are motivated by
the observation that the SO(3) decomposition when applied in the correct
manner would allow (@) separation of the scaling variable r from the angular
dependence, and (b) the separation of the isotropic from the anisotropic
parts of the tensor.

2.2 Foliation of the structure function into j-sectors

We would like to use the formalism of the SO(3) representation, as presented
in general terms in the previous section, to study the structure function
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tensor in turbulence theory. The n-th order structure function is defined
by an ensemble average of the n-th moment of the difference of velocity
components across scales rp. It is in fact a tensor function over p unit
spheres. We define the velocity difference as

w(rK) = u® (x + ry) — v (x), (2.12)

where the a; denotes the component of the velocity vector in the direction ¢
in a defined coordinate system, and the subscript k£ on ry denotes a par-
ticular choice of the vector. The n-th order structure function for p such
choices of vector scale r is then

SarazGn(py g, ..., rp) = (W (r;)w?(rj) ... X w* (ry)), (2.13)

where the subscripts ¢, j, ... denote any of the vectors from r; to rp.

In this section we review briefly the reason why the structure functions
may be written as a linear combination of the irreducible representations of
the SO(3) symmetry group. For details the reader is again referred to [5].
The dynamical equation for the structure function may be derived from the
Navier-Stokes equations. Similar to the solutions of the Laplace equation,
the solution to the n-th order structure function equation forms a linear
space with the basis chosen to be the irreducible representations Bgjm(r)
of the SO(3) group as shown in previous sections (see Eq. (2.11)). Since
the basis is orthonormal for different j, m, and the equation is isotropic,
we obtain a hierarchy of dynamical equations each with terms of a given j
and m. This demonstrates that the dynamical equations themselves do not
mix the various j and m contributions, and that the dynamical equation for
the isotropic part of the structure function is different from the dynamical
equations for any of the higher j contributions. Further, it may be shown
from solvability conditions on this set of equations that the scaling part of
the function changes between j-sectors while remaining the same within a
j-sector, for different m. This motivates the postulate that the different j
sectors scale with exponents different from the isotropic {,. We denote these
by C,(Lj ) where subscript n indicates the rank of the tensor and superscript (7)
indicates the number of the irreducible representation. We will leave out the
superscript in the case of j = 0 since then we recover the known isotropic
scaling exponent (,.

2.3 The velocity structure functions

In the previous section we provided a heuristic justification for the use of
the SO(3) decomposition for this tensor using the fact that it is the solution
of an isotropic equation. Now, we use the rules of SO(3) (see Eq. (2.11))
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decomposition to write it as

Seraz.an (r17 re,... 7rP) = Z al]jm(rla T2y... 77'1’)
q,j,m
B;MJ],ZZ Qi (fl’f'27,,, ,f‘p). (214)

In this form, as was demonstrated for the scalar function ¢, the j = 0 repre-
sentation is the isotropic one. Its prefactor ag, (r1,72,...,7,) contains the
scale dependence. For p > 1 there will be infinitely many ways to obtain a
particular j for the product space as may be seen from the angular momen-
tum addition rules in equation (2.8) and the direct-product representation.
Therefore, ¢ ranges from 1 to co. This is a difficult hurdle computationally
but, fortunately, most experimental and theoretical work deals with the de-
pendence on a single vector, and p = 1. In that case, and for rank n = 2,
we obtain the second order structure function S“?(r) quite easily.

2.3.1 The second-order structure function

We consider the structure function of equation (2.14) for n = 2 and p = 1.
The tensor product space is

1l (0a1lae28...) = 00102)R0G1G26...)

(

0000 2)6...
e (1Ie0)o(lelh)e(le2)o...

20620 1)e(2®2)d...(2.15)
As demonstrated in (2.10) using the addition rule (2.8), there could be
more than one way of obtaining a particular j representation is obtained in
the product space. To count these for a given j, we had to add there the

index ¢ to the basis tensors (see for example Eq. (2.11)). We find for the
second-order tensor over a single sphere that

e j = 0 has a total of 3 representations;
e j =1 has a total of 7 representations;
e j > 1 has a total of 9 representations.

The Clebsch-Gordon machinery tells us in addition about the symmetry (in
the indices) and parity (in r) of each ¢ contribution. Using this informa-
tion, the terins of the basis may be constructed. As in the casec of the scalar
function, the B;"j[:l are orthonormal for different j, m and ¢. In practice,
the Clebsch—Gordon method of constructing these objects is rather tedious

and so we follow the alternative method offered in [5]. We make use of the
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Clebsch-Gordon methods only to obtain the number of representations in
each j, and its parity and symmetry properties. Armed with this informa-
tion, the Bf;{:n may be constructed by a more convenient means. The idea is
to use the fact that we already know an orthonormal basis in the SO(3) rep-
resentation for the scalar function over the sphere (Eq. (2.2)). We can now
“add indices” to this basis in a way to be described, while retaining the prop-
erties under rotation, in other words its j and m values. To add indices in a
way that does not change the j, m values is to perform contraction with the
objects 8% 7, €*#7 and the partial derivative operator ,. This method
automatically takes care of the j and m properties; and all that needs to
be done now is to apply the above operators to obtain the different ¢ terms
with the right symmetry and parity properties. This gives us a complete
set of basis elements which are different than the Clebsch—Gordan method.
The orthonormality among different ¢ for the same j and m is lost, but the
orthonormality among different j and m is maintained because we start out
with a basis equation (2.2) which already possesses these properties. How-
ever, different ¢ elements are linearly independent and span a given j,m-
sector. The details on how this is done using the rules from [5] is presented in
Appendix A. In what follows we simply write down the components calcu-
lated using that method.
The second order structure function tensor is

598(r) = ((u®(x + 1) — u®(x))(u?(x + r) — v’ (x))) (2.16)

which we decompose using the SO(3) irreducible representations Bfl)‘ﬁn(f‘)
as

SP(r) = S(r) + 528 (x) + 5%, (x) + ...
= > am (") By (aB)(E). (2.17)

q,j,m
A further constraint is provided by the incompressibility condition
D8 (r) = 0. (2.18)

Each j, m-sector must separately satisfy the incompressibility condition
since taking the partial derivative preserves the rotation properties and does
not mix the j, m sectors. Therefore, the incompressibility condition provides
a constraint among the different ¢ contributions within a given j, m-sector.
For example, the j = 0 contribution has three different representations
(¢ = {1,2,3}), two of which are symmetric and one antisymmetric in the
indices «, (. By definition, the structure function is symmetric in the
indices, therefore the antisymmetric contribution will not appear giving
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only two ¢ contributions. The incompressibility constraint gives
Oa Z aq(erz B;ﬁ (f‘) =0,
q
(2.19)

and

TQTﬁ
Oa <a1007‘<25°‘5 + a2007‘<2 2 > = 0. (220)
Motivated by the expcectation that the structure functions scale as powers
of r in the inertial range, we assumed in equation (2.20) that the scale-
dependent prefactor is of the form ag,, " where a,,, is a flow-dependent
constant. Equation (2.20) results in a relationship between ajgy and agg
giving the final form of the isotropic j = 0 sector with just one unknown
coefficient ¢ to be determined by the flow boundary conditions. That is,

T(xr,ﬁ
T2

S (x) = cor® (24 ()0 — G

(2.21)
Here, (5 =~ 0.69 is the known empirically known anomalous sccond-order
scaling exponent. We would like to assume a similar scaling form for the
prefactor aqjm,(r) for 7 > 1. In such a formulation, there is a hierarchy of

scaling exponents which we denote by Céj ) = (5 corresponding to the higher-
order j sectors. Successive j's indicate increasing degrees of anisotropy.
The following section provides a justification for such a classification of the
scaling of the various sectors. It is the larger goal of this article to examine
these aspects of the theory with the help of high-Reynolds-number data.

2.4 Dimensional estimates for the lowest-order anisotropic scaling exponents

In this section we present dimensional considerations to determine the “clas-
sical” values expected for CQ(U and (52) the spirit of Kolmogorov’s 1941 the-

ory (henceforth called K41). We work on the level of K41 to produce the
value ggo) = 2/3. Ignoring intermittency corrections is justified to the low-
est order because the differences between any two values (éj ) and (éjl) for
j # j' are considerably larger than the intermittency corrections to either
of them.

It is easiest to produce a dimensional estimate for CéQ). One simply
asserts [15] that the j = 2 contribution is the first one appearing in S°?(r)
due to the existence of a shear. Since the shear is a sccond rank tensor, it
can appear linearly in the j = 2 contribution to S*%(r). We thus have for
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any m, —j <m < j,

o w85 OU7 _
SL5(x) ~ T f (1 €). (222)

Here T%%7% is a dimensionless tensor made of §*7, %, and bilinear contri-
butions made of the three unit vectors p, m, n, which form our coordinate
system as defined in Appendix A. The form of equation (2.22) means that
the dimensional function f(r, €) stands for the response of the second-order
structure function to a small external shear. Within the K41 dimensional
reasoning, this function in the inertial interval can be made only of the mean
energy flux per unit time and mass, € and r itself. The only combination
of € and r that yields the right dimensions of the function f is €'/3r4/3,
Therefore -

S35, (x) ~ TP %%gl/%‘l/?’. (2.23)

We thus find a “classical K417 value of CQ(Q) to be 4/3.

To obtain the value of <2(1) we cannot proceed in the same way. We
need a contribution that is linear (rather than bilinear) in the unit vectors
p, m, n. We cannot construct a contribution that is linear in the shear and
vet does not vanish due to the incompressibility constraint. Thus there is a
fundamental difference between the j = 2 term and the j = 1 term. While
the former can be understood as an inhomogeneous term linear in the forced
shear, the 7 = 1 term, being more subtle, may pcrhaps be connected to a
solution of some homogeneous equation well within the inertial interval.

We therefore need to consider some quantity other than the shear which
could contribute to the anisotropy. One invariance in the inviscid limit is as
given by Kelvin’s circulation theorem. In the so-called Clebsch representa-
tion, one writes the Euler equation in terms of one complex field a(r, t), see
for example [16]. In the k-representation, the Fourier component of the ve-
locity field u(k,t) is determined from a bilinear combination of the complex
field

1 . )
uk,t) = 3.3 A’k d%ko P (k1 ko )a* (k1. talka, t)  (2.24)
1 k? — k2
Wki, ke) = 2 k, +k2—(k1*kz)m : (2.25)

It was argued in [16] that this representation reveals a local conserved inte-
gral of motion given by

II = #/d%ka*(k,t)a(k,t). (2.26)
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Note that this conserved quantity is a vector, and so it cannot have a finite
mean in an isotropic system. Consider a correction to the second order
structure function due to a flux of the integral of motion 7. The dimension-
ality of 7 is [7] = [€%/3/r1/3], and thercfore now the dimensionless factor is
7rl/3/e2/3 As we did with the shear in the casc of the j = 2, we assume
here the expandability of 6,5 at small values of the flux 7 and find

SO (x) ~ TP 77 r (2.27)

where T*?7 is a constant dimensionless tensor that is linear in the unit
vectors p, m, n. We thus find the “classical K417 value (2(1) is 1. The

derivation of the exponents Cz(l) and CQ(Q) is given in [12]. It is concluded

that dimensional analysis predicts values of 2/3, 1 and 4/3 for Céj) with
7 =0, 1 and 2 respectively. It is not known at present how to continue this
line of argument for j > 2.

For the higher-order structure functions S*1®2--%n(r) where n > 2, sim-
ilar dimensional analysis may be performed in order to find the K41 con-
tribution to scaling due to shear (corresponding to the j = 2 component).
For each n, the lowest order correction to scaling that is linear in the shear
is (n +2)/3.

2.5 Summary

The technique of SO(3) decomposition may be used in order to write the
structure function tensor in terms of its isotropic part, indexed by 5 = 0, and
higher-order anisotropic parts, indexed by j > 0. The dynamical equation
for the structure function of order n foliates into a set of equations each
of different j,m. This motivates the postulate that the different scctors
scale differently. The theory also indicates that any scaling behavior would
depend only the j index and be independent of the m within that sector.
There is allowance for dependence on boundary conditions, specific kinds of
forcing and so on, in the unknown coefficients a,;,, in the SO(3) expansion
(Eq. (2.11)). We first consider the second-order structure function in a
detailed manner in the light of this group representation. The analysis may
be implemented for structure functions of any order but the task becomes
computationally and conceptually more difficult for n» > 2. In Section 6, we
present a means of circumventing these problems.

We have reviewed the theoretical estimates for the low-order anisotropic
scaling exponents for the second-order structure function. The method may
be carried over to the higher-order objects as well, and we have derived the
lowest order shear-dependent scaling contributions to the n™ order struc-
ture function to be r(»t2)/3 For the second-order structure function, we
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have shown that the j = 2 contribution corresponds to a low-order shear-
dependency. Again for the second-order structure function, we have pre-
sented a conserved quantity in the Clebsch-representation which provides
the correct dimensional properties for the j = 1 scaling contribution to
be r. The arguments used are purely dimensional in the K41 sense, and
do not take account of anomalous scaling. We expect that real turbulent
flows will exhibit anomalous scaling in the isotropic sector, and in every
anisotropic sector in the SO(3) hierarchy. The issue of anomalous expo-
nents in turbulence has now multiplied several-fold, to all the j sectors,
in light of the apparent universality that this work suggests. Thus, the
theoretically predicted anisotropic exponents are to be treated merely as
estimates, especially for higher-order structure functions (n > 2}, since the
scaling anomalies are expected to increase with the order n, similar to the
isotropic case.

In subsequent sections we demonstrate the use of experimental data in
order to test the predictions of the theory. In particular, we provide explicit
calculations of measurable tensor quantities and extract scaling corrections
due to anisotropy.

3 Some experimental considerations

3.1 Background

Experimental studies of turbulent flows at very high Reynolds numbers
are usually limited in the sense that one measures the velocity field at a
single spatial point, or a few spatial points, as a function of time [19], and
uses Taylor’s hypothesis to identify velocity increments at different times
with those across spatial length scales, ». The standard outputs of such
single-point measurements are the longitudinal two-point differences of the
Eulerian velocity field and their moments. In homogeneous and isotropic
turbulence, these structure functions are observed to vary as power-laws
in r, with scaling exponents ¢, [7].

Recent progress in measurements and in simulations has begun to offer
information about the tensorial nature of structure functions. Ideally, one
would like to measure the tensorial n-th order structure functions defined in
equations (2.12) and (2.13). Such information should be useful in studying
the anisotropic effects induced by all practical means of forcing.

3.2 Relevance of the anisotropic contributions

In analyzing experimental data the model of “homogeneous and isotropic
small-scale” is universally adopted, but it is important to examine the rel-
evance of this model for realistic flows. As we will demonstrate in the next
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section, our data we use exhibit anisotropy down to fairly small scales [25].
We have shown mathematically that keeping the tensorial information helps
significantly in disentangling different scaling contributions to structure
functions. In the light of the SO(3) representation of Section 2, where
it is shown that anisotropy might lead to diffcrent scaling exponents for
different tensorial components, a careful study of the various contributions
is needed. This is our goal in the rest of this article.

3.3 The measurements

In order to extract a particular j contribution and the associated scaling
exponent, one would ideally like to possess the statistics of the velocity at
all points in three-dimensional space. One could then extract the j contri-
bution of particular interest by multiplying the full structure function by
the appropriate By, and integrating over a sphere of radius 7. Orthogo-
nality of the basis functions ensures that ounly the j contribution survives
the integration. One could then perform this procedure for various r and
extract the scaling behaviors.

The method just described was adopted successfully in [2] using data
from direct numerical simulations of channel flows. The Taylor microscale
Reynolds number R) for the simulations was about 70. This is not large
enough for a clear inertial scaling range to exist. The authors of [2] resort
to extended self-similarity (ESS) in both the isotropic and the anisotropic
sectors. Nonetheless, the results indicated a scaling exponent of about 4/3
in the 7 = 2 sector. While the experimental data are limited to a few
points in space, and the integration over the sphere is not possible, we are
able to attain very high Reynolds numbers especially in the atmosphere
under steady conditions (R & 10000 — 20000). Despite the advantage of
extended scaling range, we are however faced with a true superposition of
contributions from various j sectors with no simple way of disentangling
them as was done with the numerical data. However, as we will show in
Section 6, we can make a judicious choice of the tensor components studied,
and obtain access to the anisotropic contributions.

The tensor structure of the velocity structure functions is lost in the
computation of the usual single-point single-component measurement of lon-
gitudinal and transverse objects. This is because the part of the expansion
that is dependent on the angle # is hidden: the longitudinal and transverse
components set the value of 6 to a constant. The boundary-dependent
prefactors now collapse to a single number as

S;’fg(r) e (3.1)
On the one hand, this is a simple expression. On the other, the angular
dependence is completely lost and there is no formal difference from the
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Fig. 2. Schematic of the experimental set-up. Shown is the positioning of the
single wire probes 1 and 2 with respect to the mean wind, and a visual explanation
of how Taylor’s hypothesis is employed. The coordinate system chosen is different
from what is conventional in turbulence — where the mean-wind is taken to lie
along the z-axis. The pictured choice of coordinates simplifies the calculations
involving the spherical harmonics.

isotropic object
;’:ﬂo(r) = coré?. (3.2)

In order to see the true tensor character of the structure function we need
an angular variation of the scale separation r. In the atmospheric bound-
ary layer which offers the highest Reynolds numbers available, the simplest
configuration that would allow us to do this is a two hot-wire combination
separated by distance A in the spanwise direction (y), orthogonal to the
mean-wind. By Taylor’s frozen flow hypothesis, such a set-up will provide
two simultaneous one-dimensional cuts through the flow. Therefore, one
can measure the correlation between the two probes, across a scale r that
makes an angle § with the mean-wind direction. As r varies, the angle with
respect to the mean-wind will also vary, giving some functional dependence
on ¢ for the coeflicients in the SO(3) decomposition. A schematic of the
experimental configuration is presented in Figure 2.

A final consideration in measurements aimed at measuring anisotropic
contributions is the homogeneity of the flow. The incompressibility
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Fig. 3. A typical compensated longitudinal third-order structure function. The
inset indicates the region of isotropic inertial range scaling. (From Ref. [6].)

condition may only be applied as a constraint on the structure function
cocefficients if the flow is homogeneous in the r direction. If we consider, for
instance, probes separated in the shear (vertical) direction, r will have a
component in the inhomogeneous direction and incompressibility may not
be used to constrain the terms in the SO(3) expansion, leaving too many
free parameters. However, in some instances, it is important to consider
quantitics that are not constrained by the incompressibility condition. For

example, the 7 = 1 contribution to the second order structure function
will not appear in the experimental configuration described above. This
is so because only one symmetric, even-parity, term exists in 7 = 1 by

the Clebsch—Gordon rules, and this must vanish by the incompressibility
constraint. Probe-separation in the shear direction would be needed to
produce a non-zero contribution of the j = 1 term. In short, one can under-
stand the nature of the optimal experimental configuration from carefully
studying the tensor decomposition of the structure function.

We analyze measurements in atmospheric turbulence at various heights
above the ground (data sets I, IT and IIT). Sets T and III were acquired from
flow over a long fetch in the salt flats in Utah. The site of measurements
was chosen to provide steady wind conditions. The surface of the desert
was smooth and even: the water that floods the land during spring recedes
uniformly and leaves the ground hard and essentially smooth during early
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Table 1. Data sets I (first line), II (second line) and III (third-fifth lines). The
various symbols have the following meanings: U = local mean velocity, u’ = root-
mean-square velocity, {(¢) = energy dissipation rate obtained by the assumption
of local isotropy and Taylor’s hypothesis, n and A are the Kolmogorov and Taylor
length scales, respectively, the microscale Reynolds number Ry = u'A/v, and f;

is the sampling frequency.

Height| U w102 (&), n | A| Ra fs, per # of
meters|m s~ !{m s ! m? s7* {mm|cm channel, Hz|samples
6 4.1 | 1.08 1.1 {0.75/15|10500{ 10000 |4 x 107
35 8.3 | 2.30 7.8 10.45|13 (19500 5000 4 x 107
0.11 | 2.7 | 047 6.6 0.47|2.8| 900 5000 8 x 108
0.27 | 3.1 | 0.48 2.8 0.6 (4.4, 1400 5000 8 x 109

0.54 | 3.5 0.5 1.5 | 0.76.2] 2100 5000 8 x 108

summer. The boundary layer on the desert floor in early summer is thus
quite similar to that on a smooth flat plate [10]. The measurements were
made in the early summer season roughly between 6 PM and 9 PM during
which nearly neutral stability conditions prevailed. Data set II was acquired
over a rough terrain with ill-defined fetch at the meteorological tower at the
Brookhaven National Laboratory. In sets I and II, data were acquired at
heights 6 m and 35 m respectively. They were recorded simultaneously from
two single hot-wire probes separated in the spanwise direction y by 55 cm
and 40 cm respectively. In both cases, the separation distance was within
the inertial range, and was set nominally orthogonal to the mean wind di-
rection (see below). Set Il was acquired from an array of three cross-wires,
arranged above each other at heights 11 cm, 27 cm and 54 cm respectively.
These measurements are thus much closer to the desert floor. The hot-
wires, about 0.7 mm in length and 6 pm in diameter, were calibrated just
prior to mounting them on the meteorology towers and checked immedi-
ately after dismounting. The hot-wires were operated on DISA 55M01
constant-temperature anemometers. The frequency response of the hot-
wires was typically good up to 20 kHz. The voltages from the anemometers
were suitably low-pass filtered and digitized. The voltages were constantly
monitored on an oscilloscope to ensure that they did not exceed the
digitizer limits. Also monitored on-line were power spectra from an
HP 3561A Dynamic Signal Analyzer. The wind speed and direction were
independently monitored by a direction indicator mounted on the tower
(sets I and IIT), or a vane anemometer a few meters away (set II). The real-
time durations of data records were limited only by the degree of constancy
demanded of the wind speed and its direction.
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Fig. 4. The one-dimensional energy spectrum computed from data set II. (From

Ref. [6].)

The Taylor microscale Reynolds number was 10000 for set I and about
20000 for set II {6]. For set III, the corresponding numbers were 900, 1400
and 2100, respectively, at the three heights. Table 1 lists a few relevant facts
about the data records analyzed here. Figure 3 shows a compensated third
order longitudinal structure function and indicates the region over which
the inertial range is expected to hold. As another example of the nature
of the data, we show in Figure 4 the longitudinal encrgy spectrum which
displays extensive range of scaling. The slope is slightly larger than 5/3, as
the compensated spectrum in the inset is supposed to clarify.

4 Anisotropic contribution in the case of homogeneity

4.1 General remarks on the data

We analyze data sets I and IT described in Section 3 (see Tab. 1) to ex-
tract the lowest order anisotropic contribution to scaling [4,12]. First, some
preliminary tests and corrections need to be made. To test whether the
separation between the two probes is indeed orthogonal to the mean wind,
we computed the cross-correlation function (uj(t + 7)uz(t)). Here, uy and
us refer to velocity fluctuations in the direction of the mean wind, for the
arbitrarily numbered probes 1 and 2 respectively (see Fig. 2). If the sep-
aration were precisely orthogonal to the mean wind, the cross-correlation
function should be maximum for 7 = 0. Instead, for set I, we found the
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maximum shifted slightly to 7 = 0.022 s, implying that the separation was
not precisely orthogonal to the mean wind. To correct for this effect, the
data from the second probe were time-shifted by 0.022 s. This amounts
to a change in the actual value of the orthogonal distance. We computed
this effective distance to be A & 54 cm (instead of the 55 cm that was set
physically). For set 11, the effective separation distance was estimated to be
31 cm (instead of the physically set 40 ¢cm). Next, we tested the isotropy of
the flow for separations of the order of A. Define the “transverse” structure
function across A as St(A) = ([uy (Ut) — u2(Ut))?) and the “longitudinal”
structure function as Sp,(A) = ([u1 (Ut +Uta) —u1(Ut)]?) where ta = A/U.
If the flow were isotropic we would expect [19]

A 9SL(A)

2 0A

In the isotropic state both longitudinal and transverse components scale
with the same exponent, St 1,(A) o< A%, and the ratio St/S, is computed
from (4.1) to be 14 (3/2 ~ 1.35, because (3 ~ 0.69 (see below). The exper-
imental ratio was found to be 1.32 for set I, indicating that the anisotropy
at the scale A is small. This same ratio was about 1.8 for set I1I, indicating
higher degree of anisotropy in that scale range. The differences between
the two data sets seem attributable partly to differences in the terrain and
other atmospheric conditions, and partly to the different distances from the
ground.

Lastly, we needed to assess the effects of high turbulence level on Taylor’s
hypothesis. A comparison was made of the structure functions of two signals
with turbulence levels differing by a factor of 2 and no difference was found.
The correction scheme proposed in [27] also showed no changes. For a few
separation distances, the statistics of velocity increments from two probes
separated along n, the direction of the mean wind, agreed with Taylor’s
hypothesis. More details can be found in [6].

The use of the isotropy equation (4.1) presents some evidence regard-
ing the prevalence of modest amounts of anisotropy in the second-order
statistics. This persistence is more explicit if one considers another familiar
object, namely the cross-spectral density between horizontal and vertical ve-
locity components. We consider the one-dimensional cross-spectral density
(or shear-stress cospectrum) FEy3(ks), which is zero in the case of isotropy.
From dimensional considerations, the scaling exponent for this quantity is
—7/3 (see [15] for theory and [21] for experimental tests). Figure 5 shows
the cospectrum computed for the height of 0.54 m. The inset shows that
the cospectrum compensated with a scaling exponent of —2.1 is flat. To the
extent that this is numerically smaller than 7/3, the decay of anisotropy
is slower than expected for second-order quantities. Even allowing for the
fact that the dimensional analysis assumes K41 scaling and therefore does

St(A) = SL(A) + (4.1)
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Fig. 5. Log-log plot of the shear-stress cospectrum FE13(ks) computed at 0.54 m.
The inset shows a log-log plot of k3 ' E13(ks) vs. k3. The flat region indicates a
region of scaling with exponent —2.1.

not account for possible intermittency corrections in the anisotropic sec-
tors, it is still clear that the small scales do not attain isotropy as fast
as dimensional considerations suggest. We would like to use the proper-
ties of the SO(3) decomposition in order to disentangle the isotropic from
the anisotropic contributions and better quantify the anisotropy. We first
consider the second-order structure function in detail.

4.2 The tensor form for the second-order structure function

4.2.1 The anisotropic tensor component derived under the assumption of
axisymmetry

To obtain a theoretical form of the structure function tensor we first select
a natural coordinate system. Qur choice is to have the mean-wind direc-
tion n along the z-axis which we label as 3. The angle with respect to the
3-axis is the polar angle 6. The second axis is given by the separation vec-
tor A between the two probes. We make the simplifying assumption that
the main symmetry broken in the flow is the cylindrical symmetry about
the mean-wind direction. In other words, the main anisotropic contribu-
tion is cylindrically symmetric about the mean-wind direction. It is shown
a posteriori that this assumption probably accounts for most of the aniso-
tropy for this particular geometrical set-up. In the next section, we provide
a complete analysis with no assumptions about the symmetries of the flow.
We conclude from that analysis that the simplification of the present scction
is not inconsistent with the properties of the full tensor.
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Next, we write down the tensor form for the general second-order struc-
ture function (defined by Eq. (2.13) for n = 2) in terms of irreducible repre-
sentations of the SO(3) rotation group. Since we are far from the wall, our
interest is in relatively modest anisotropies, and so we focus on the lowest
order correction to the isotropic (§ = 0) contribution. We therefore write

S8 (r) = S5 (r) + S35, (r) + ... (4.2)

We do not have a j = 1 term because it vanishes from parity considerations
(the structure function itself is even in 7 in our experimental configuration)
or by the incompressibility constraint. Assumed cylindrical symmetry of
the anisotropic j = 2 contribution implies that we only consider the m = 0
subspace in this contribution. Now, the most general form of the tensor
can be written down by inspection. The case j = 0 is well known (see
Eq. (2.21)) to be

rorf
S3L0(r) = colr) |24 ()57 — ¢ 2 (4.3)

where cp(r) = cor?, and ¢y is a non-universal numerical coefficient that
needs to be obtained from fits to the data. The j = 2 component has six
independent tensor forms and corresponding coeflicients. These correspond
to the different ag4,, described in Section 1. As with j = 0, the j = 2
component can be simplified by imposing conditions of incompressibility
and orthogonality with the j = 0 part of the tensor. This leaves us (in the
case of cylindrical symmetry) with two independent coefficients which we
call a and b, giving,

o (2) o
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We note that the forms for the tensor were derived on the basis of the
assumption of cylindrical symmetry. We used neither the Clebsch—Gordon
method nor the “adding indices” method of Section 1. This is why they
were not automatically orthogonal to the j = 0 contribution; that condition
had to be explicitly imposed. However, in the end, this method also yields
the same number of independent coefficients as the formal Clebsch-Gordon
methods. This merely shows that there are different ways of writing the
tensor forms for the basis elements. However, the Clebsch—Gordon rules
tell us the number, parity and symmetry of the terms we must in the end
have for a given j, m sector.

Finally, we note that in the present experimental set-up only the com-
ponent of the velocity in the direction of n (the 3-axis) is measured. In
the coordinate system chosen above we can read from equations (2.21) and
(4.4) the relevant component to be

SB(r,0) = S2,(r,0) + 572,(r,0)
G2
= ¢ (L) [2+§2—C2c0529}

A
¢
ta (%) [< 52) +2)? ~ 52)(362) +2) cos? 0
+2C§2)(C2(2) — 2)cos* 0} (4.5)
N ‘
(1) [+ 2 +3) - 6+

x cos? 0 + (2(;2) + 1)( 52) —2)cos* 4.

Here 0 is the angle between r and n, and r has been normalized by A,
making all the coefficients dimensional, with units of (m/sec)?. Taylor’s
hypothesis allows us to obtain components of S*? from (4.5), with § = 0

and variable, respectively. In other words,
S33(r,0 = 0) = ([ur (Ut + Ut,) — ur (Ut)]?), (4.6)
where t, = r/U, and
S53(r,0) = ([u1 (Ut + Utz) — ua(Ut))?)- (4.7)

Here 6 = arctan(A/Utz), t; = 7/U, and r = /A2 + (Ut;)2.

The quantities on the left hand side of equations (4.6) and (4.7) were
computed from the experimental data and fitted to the theoretical expres-
sion (4.5) using the appropriate values of §. The fits were performed in the
range 1 < /A < 10 (0.54 m < r < 5.4 m) for set I and 1 < r/A < 25
(0.31 m < r < 8 m) for set II. The ranges were based on the constancy
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Table 2. The scaling exponents and the three coefficients in units of (m/s)? as
determined from the nonlinear fit of equation (7) to data sets I (first line) and 11
(second line).

C2 C2(2) Co a b
0.69|1.38 + 0.15/0.023 4+ 0.001|{—0.0051 % 0.0006|0.0033 £ 0.0005
0.69|1.36 + 0.10/0.112 4+ 0.001| —0.052 = 0.004 | 0.050 £ 0.004
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Fig. 6. The structure functions S** for §# = 0 and for non-zero § computed for
set I. The dots are for experimental data and the line is the analytic fit. Panel (a)
presents fits to the j = 0 component only, and panel (b) to components j = 0 and
j = 2 together.

of the third order structure function (sec Fig. 3 for an example). Panels
(a) of Figures 6 and 7 show, for data sets I and II respectively, a com-
parison between the measured S*3(r,6 = 0) and the j = 0 form of the
equation. The comparison shows that the agreement is modest, and that
the best-fit yields the exponent (3 to be 0.69. A careful analysis of the data
elsewhere [25] shows that, if the effect of the shear is removed in a plausible
way, the power-law fit is excellent over a range of scale separations. To
include the 7 = 2 contribution, we fixed (> to be 0.69 and performed the
following analysis. For given values of the variables r and 6, we guessed the

second exponent C2(2) and estimated the unknown coefficients ¢g, a and b by



80 New Trends in Turbulence

0)

i o
0.5 / / .

(®

S
AN

1.6

- 1.2 7
o o
wn 0.8 " ot - -

0.4, N / |

H |
L | Al
0 S 10 15 20 250 5 10 15 20 25

®
N
N

R/ A R/ A
(a) (b)
Fig. 7. The structure functions S for § = 0 and for non-zero 6 computed

for set III. The dots are for experimental data and the line is the analytic fit.
Panel (a) presents fits to the 7 = 0 component only, and panel (b) to the sum of
the components j =0 and j = 2.

using a linear regression algorithm. We followed this procedure repeatedly
for different values of CéQ) ranging from 0 to 2. We then chose the value of

52) that minimized x? (the sum of the squares of the differences between
the experimental data and the fitted values).

In Figure 8 we present x? values as a function of C§2). The optimal
value of this exponent and the uncertainty determined from these plots is
C2(2) ~ 1.38 £ 0.15 from set I, and §2(2) ~ 1.36 £ 0.1 from set II. The best
numerical values for the coeflicients are presented in Table 2. Pancls (b) in
Figures 6 and 7 show fits to the sum of the j = 0 and j = 2 contributions to
the experimental data. Even though the j = 2 contributions are small, they
improve the fits tremendously. This situation lends support to the essential
correctness of the present analysis.

The figures show that the purely longitudinal structure function cor-
responding to 8 = 0 is somewhat less affected by the anisotropy than is
the finite # structure function (see especially, Fig. 7). The reason is the
closeness of the numerical absolute values of the coefficients o and b (see
Tab. 2). For 8 = 0 the two tensor forms multiplied by @ and b coincide,
and the j = 2 contribution becomes very small. The value of (> = 0.69
quoted above can be obtained from such a fit to the (o = 0 part alone; as
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Fig. 8. The determination of the exponent CéQ) from a least-square fit of $33(r, §)
to its analytic form. From set I we obtain a numerical value of the best fit,
¢{? = 1.38 £ 0.15 while from set III the best fit value is 1.36 & 0.1 both of
which are in close agreement with the theoretical expectation of 4/3 of Section 2.4
(without intermittency corrections). The differences in the nature of the minima
are not understood.

long as one measures only this component, it seems reasonable to proceed
with just that one exponent. However, the inclusion of the second exponent
(2(2) improves the fit even for the longitudinal case; for the finite 8 case, this
inclusion appears essential for a good fit. In fact, the fit using j = 0 and
j = 2 for data set II extends all the way to 40 m (beyond the range shown
in Fig. 7). This indicates that the “inertial-range” where scaling theory
applies is much longer than anticipated by traditional log-log plots. The
close agreement with the theoretical expectation of 4/3 (e.g. [12,15]), and
the apparent reproducibility of the result for two different experiments is a
strong indication that this exponent may be universal.

It should be understood that, for the objects considered in this section,
the exponent CéQ) is just the smallest exponents in a possible hierarchy Céj )
that characterizes higher order irreducible representations indexed by j.
(The case of (él) will be discussed in Sect. 5.) As discussed earlier, we expect
the exponents to be a non-decreasing function of j, and that the highest
values of j are being peeled off quickly when r decreases. Nevertheless, the
lower order values of Céj ) can be measured and computed. The results of
this section were first reported in [4]. Results are also in agreement with
the subsequent analysis of numerical simulations [2].

4.2.2 The complete j = 2 anisotropic contribution

In the previous section, preliminary results on the scaling exponent Céz),
were obtained under the assumption of cylindrical symmetry of the
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dominating anisotropic contribution. The analysis here is more complete,
and takes into account the full tensorial structure. We show that this is
feasible, and the final results are in agreement with those presented in the
previous section.

The method used to extract the unknown anisotropic scaling exponent
is essentially the same as in the previous section. Since we look for the
lowest order anisotropic contributions in our analyses, we perform a two-
stage procedure to separate the various sectors. First we look at the small
scale region of the inertial range to determine the extent of the fit with a
single (isotropic) exponent. We then seek to extend this range by includ-
ing appropriate anisotropic tensor contributions, and obtain the additional
scaling exponents using least-squares fitting procedure. This procedure is
self-consistent.

Reference [18] presents a detailed analysis of the consequences of
Taylor’s hypothesis on the basis of an exactly soluble model. It also pro-
poses ways for minimizing the systematic errors introduced by the use of
Taylor’s hypothesis. In light of that analysis we will use an “effective” wind,
Uesr, for surrogating the time data. This velocity is a combination of the
mean wind U and the root-mean-square u’,

Uegg = T+ (bu')? (4.8)

where b is a dimensionless parameter.
In the second order structure function defined already, viz.,

S8 (r) = {(u®(x + 1) — u*(x)) (" (x + 1) — u’(x))), (4.9)

the j = 2 component of the SO(3) symmetry group corresponds to the
lowest order anisotropic contribution that is symmetric in the indices, and
has even parity in r (due to homogeneity). Although the assumption of
axisymmetry used in [4] and in the previous section seemed to be justified
from the excellent qualities of fits obtained, we attempt to fit the same data
{set T) with the full tensor form for the § = 2 contribution. The derivation of
the full 7 = 2 contribution to the symmetric, even parity, structure function
appears in Appendix A. We then find the range of scales over which the
structure function

§%(r,6 = 0) = (P (2 +r) — uP(2))?), (4.10)

with the subscript 1 denoting onc of the two probes, can be fitted with a
single exponent. To find the j = 2 anisotropic exponent we need to use data
taken from both probes. To clarify the procedure, for the geometry shown
in Figure 2, what is computed is actually

53(r,0) = ([ul® Ut + Uetts) — u8 Uest)]?). (4.11)
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Here 6 = arctan(A/Usgts), ti = 7/Ue, and 1 = /A2 + (Uet;)2. Ut
is defined by equation (4.8) with the optimal value of b taken from model
studies to be 3. For simplicity we shall refer from now on to such quantities
as

§%(r.0) = (uf” (2 + ) - ug” (2))?), (4.12)

Next, we fix the scaling exponent of the isotropic sector to be 0.69 and find
the j = 2 anisotropic exponent that results from fitting to the full j = 2
tensor contribution. We fit the objects in equations (4.10) and (4.12) to
the sum of the j = 0 (with scaling exponent (o = 0.69) and the j = 2
contributions. The sum is given by (see Appendix A)

G2
SB(r,0) = S8.(r,0) + S2,(r,0) = co (%) [2+g2—42 cos® 6
PGS T @) Lo (2 @) )
+a (Z) [(Cz +2)* = (7 (36" +2) cos“ §

+2C§2)(C2(2) —2) cost 9}

C(Q)
(1) [+ 2 +3) - B¢ + ) cos?6
+(265” + (¢ —2) cos' 6] (4.13)
¢
+ag9,2,1 (%) {— 2C2(2)(C§2) +2)sinf cosd

+2C2(2)( 52) — 2) cos® fsin 0}

+ag, 2,2 (%)CéZ) { - 2@2(2) (CéQ) — 2) cos? f sin? 9}

+a12.2 <£)<é2) [— 2@‘;2)@52) — 2) sin? 9]

We fit the experimentally generated functions to the above form using val-
ues of CZ(Q) ranging from 0.5 to 3. Each iteration of the fitting procedure in-
volves solving for the six unknown, non-universal coefficients. The best value
of {éz) is the one that minimizes the x? value for these fits; we obtain that
to be 1.38 + 0.15. The fits with this choice of exponent are displayed in
Figure 9.

The corresponding values of the six fitted coeflicients is given in Table 2.
The range of scales that are fitted to this expression is 0.2 < r/A < 25
for the § = 0 (single-probe) structure function and 1 < r/A < 25 for
the 6 # 0 (two-probe) structure function. We are unable to fit equa-
tion (4.14) to scales larger than about 12 m without losing the quality
of the fit in the small scales. This limit is roughly twice the height of the
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Fig. 9. The structure functions computed from data set I and fit with the j =0
and full j = 2 tensor contributions using the best fit values of exponents (> = 0.68
and Céz) = 1.38. Panel (a) shows the fit to the single-probe (6 = 0) structure
function in the range 0.2 < r/A < 25 and panel (b) shows the fit to the 6-
dependent structure function in the range 1 < r/A < 25.

probe from the ground. Based on the earlier discussion, we should be in the
regime of the largest scales up to which the three-dimensional theory would
hold. (Beyond this scale the boundary layer is dominated by the sloshing
motions which are quasi two-dimensional in nature.) Therefore this limit to
the fitting range is consistent with our expectations for the maximum scale
of three-dimensional turbulence. We conclude that the structure functions
exhibit scaling behavior over the whole scaling range, but this important
fact is missed if one does not consider a superposition of the j = 0 and
j = 2 contributions. We thus conclude that the estimate for the j = 2
scaling exponent (152) ~ 1.38. This same estimate was obtained in [4] and in
the previous section using only the axisymmetric terms. The value of the
coefficients a and b are again close in magnitude but opposite in sign - just
as in [4], giving a small contribution to $33(r, # = 0). The non-axisymmetric
contributions vanish in the case of § = 0. The contribution of these terms
to the finite 6 function is relatively small because the angular dependence
appears as sinf and sin?§, both of which are small for small # (large r):
it was for this reason that we were able to obtain in the previous section
a good fit to just the axisymmetric contribution. Lastly, we note that the
total number of free parameters in this fit is 7 (6 coefficients and 1 expo-
nent). The relative “flatness” of the x? function near its minimum (see,
especially the left panel of Fig. 8) may be indicative of the large number of
free parameters in the fit. However, the value of the exponent is perfectly
in agreement with the analysis of numerical simulations [2] in which one
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can properly integrate the structure function against the basis functions,
eliminating all contributions except that of the 7 = 2 sector. Furthermore,
fits to the data in the vicinity of Céz) = 1.38 show enough divergence from
experiment that we are satisfied about the genuineness of the x? result. The
results of this analysis taking into account the full j = 2 tensor were first
presented in [12].

4.3 Summary

We consider the lowest order anisotropic contribution to the second order
tensor functions of velocity in the atmospheric boundary layer. The j =1
contribution is absent in our experimental configuration because of the in-
compressibility constraint. The j = 2 sector is expected to be the dominant
contribution to anisotropy. First we make the a priori assumption that the
cylindrical symmetry is broken in the first deviation from anisotropy. The
use of the Clebsch- Gordon rules tell us the number of terms that must be
included. We derive on this basis the tensor form for the ;7 = 2 contribu-
tion that is axisymmetric. The conditions of orthogonality with j = 0 and
incompressibility are used to constrain the unknown coeflicients giving two
unknown coefficients and one unknown exponent in the anisotropic sector.
Using this form along with the known isotropic contribution, we can extract
the anisotropic scaling exponent from the experimental data. We have also
used the full form of the 7 = 2 tensor including all its 25 + 1 components
in order to examine if the results from the initial analysis were justified.
The excellent agreement between the two strengthens our confidence in the
value of the j = 2 exponent 42(2) ~ 1.36, and in our initial assumption of
the breaking of axisymmetry of the flow.

5 Anisotropic contribution in the case of inhomogeneity

5.1 Extracting the j = 1 component

The homogeneous structure function defined in equation (4.9) is known from
properties of symmetry and parity to possess no contribution from the j =1
sector (see Sect. B.2), the j = 2 sector being its lowest order anisotropic
contributor. In order to isolate the scaling behavior of the j = 1 contribution
in atmospheric shear flows we must either (a) explicitly construct a new
tensor object which will allow for such a contribution, or (b) extract it from
the structure function itself computed in the presence of inhomogeneity.
Adopting the former approach, we construct the tensor

TP (r) = (u¥(x + 1) — u*(x)) (v’ (x + 1) + v’ (x))). (5.1)
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This object vanishes both when a =  and when r is in the direction of
homogeneity, viz., the streamwise direction. From data set III we can cal-
culate this function for non-homogeneous scale-separations (in the shear
direction). In general, this will exhibit mixed parity and symmetry; the
incompressibility condition does not reduce our parameter space. There-
fore, to minimize the final number of fitting parameters, we examine only
the antisymmetric contribution. In Section B.2, we have derived the anti-
symmetric tensor contributions in the j = 1 sector, and used this to fit for
the unknown j = 1 exponent. We describe the results of this effort below.
This can be used to find 7 = 1 exponent for the inhomogeneous structure
function which is symmetric but has mixed parity. We do not present the
result of that analysis here essentially because it is cousistent with those
from the antisymmetric case.

Returning to consideration of the antisymmetric part of the tensor object
defined in equation (5.1), viz.,

T _ TF (I‘) - Tﬁa(r)
T°P(r) = 5

= W u(x+1) - (WPux ), (52)

it is easy to see that it will only have contributions from the antisymmetric
j = 1 basis tensors. An additional useful property of this object is that,
for the configuration of data set II, it does not have any contribution from
the isotropic j = 0 sector spanned by 6% and r®r? since these objects are
symmetric in the indices. This allows us to isolate the 7 = 1 contribution
and determine its scaling exponent §2(1) starting from the smallest scales
available. Using data (set III) from the probes at 0.27 m (probe 1) and at
0.11 m (probe 2) we calculate

T3 (r) = (ul® (x)uf (x + 1)) — (¥ (x + r)u’ (x)) (5.3)

where again superscripts denote the velocity component and subscripts de-
note the probe by which this component is measured. The goal is to fit
this experimental object to the tensor form derived in Appendix B, equa-
tion (B.8), namely,

~ ) e} o)
T3 (r,0,6 = 0) = —a371,0r42 sin @ + a2,1,1TC2 +azy, 172 cosf. (5.4)

Figure 10 gives the x? minimization of the fit as a function of Cé”. We
obtain the best value to be 1 £ 0.15 for the final fit. This is shown in
Figure 11. The fit in Figure 11 peels off at around r/A = 2. The values of

the coeflicients corresponding to the exponent C;l) = 1 are given in Table 3.
The maximum range of scales over which the fit works is of the order of the
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Fig. 10. The x? minimization by the best-fit value of the exponent (2(,1) of the
4 = 1 anisotropic sector from the fit to 8-dependent 7! (r, §) function in the range
1<r/A <22
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Fig. 11. The fitted T3 (r,0) function. The dots indicate the data and the line is
the fit.

height of the probes from the ground, consistent with the considerations
presented earlier. This value of the scaling exponent of the j = 1 sector
is in agreement with the theoretically expected value of unity (Sect. 2.4).
Again, we have satisfied ourselves that a different value of the exponent
yields a substantially poorer fit to the data. These findings significantly
strengthen the proposition [5] that the scaling exponents in the various
sectors (at least up to j = 2) are likely to be universal.
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Table 3. The values of the exponents and coefficients (in units of (m/s)?) obtained
from the fit to the function 72 (r, ).

él) a3.1,0 21,1 ag.1,—1
1+0.15 | 0.0116 = 0.001 | 0.0124 + 0.001 | —0.0062 £+ 0.001

6 The higher-order structure functions

6.1 Introduction

The method of SO(3) decomposition is applicable to tensor functions of any
rank. However, computing the anisotropic terms in the higher order struc-
ture functions (n > 2) becomes an increasingly difficult task. The number
of contributions to a given j (i.e., the ¢ index) quickly becomes too large. If
we were to use the methods adopted in the case of the second order struc-
ture function, the large number of free parameters available for fitting the
data guarantees over-fitting. This would not allow us to unambiguously ex-
tract the anisotropic scaling behavior. In order to circumvent this problem
we recall two properties of the tensor decomposition. First, for the single-
point measurements, with # = 0 (no angular dependence), although the
tensorial information is lost, the free coeflicients collapse to a single num-
ber, see equations (3.2) and (3.1). Second, the isotropic part of the structure
function tensor is very easily obtained, as we will show below. Examination
of this part of the SO(3) expansion will show us which tensor components
do not contribute to the isotropic sector. We then extract anisotropic expo-
nents by considering only those tensor components that are explicitly zero
in the isotropic sector, so that whatever is measured derives its contribution
entirely from the anisotropic sector. We use an interpolation formula to
compensate for the large-scale encroachment of inertial-range scales. This
allows us to examine the lowest order anisotropic scaling behavior. The re-
sulting anisotropic exponents for a given tensorial order are larger than those
known for the corresponding isotropic part. One conclusion that emerges
is that the anisotropy effects diminish with decreasing scale, although more
slowly than previously thought.

We can use the present method in principle to examine the anisotropic
contribution of tensors of any order without requiring the knowledge of the
particular mathematical form of the anisotropic sectors of these tensors.
This is a considerable advantage theoretically because the high-order tensors
are non-trivial to compute; it is an advantage experimentally because, unlike
in numerical simulations, one can measure only some components for simple
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geometric arrangements of probes. The results of this analysis were first
presented in [13].

6.2 Method and results

In this part of the analysis we use data set I described in Section 2. We first
consider the second-order tensor S*%(r). Isotropy implies that this tensor
can be expressed as a linear combination of two terms, §*# and rr?. As is
well known, both terms give non-zero contributions to longitudinal as well
as transverse components, corresponding to o = 3. For a # 3 these two
terms are identically zero if r is taken to be in the streamwise direction 3.
Therefore, we compute the so-called mixed structure function

S (r) = (@ (x + 1) = v’ (@) (u! (@ + 1) —ul(2)), (6.1)

where, as already noted, the superscripts 1 and 3 denote the vertical and
streamwise components respectively. This object is identically zero in the
isotropic sector, and so, any non-zero value comes from anisotropy. In par-
ticular, any scaling behavior that it obeys should relate solely to anisotropy.
By computing equation (6.1) and examining its scaling, we intend to extract
the purely anisotropic scaling behavior in the j = 2 sector, uncontaminated
by any isotropic scaling, in contrast to the case of either longitudinal or
transverse structure functions.

6.2.1 The second-order structure function

The previous paragraph provides the motivation for examining the measured
structure functions S (r). However, as we shall see shortly, apart from the
expected 72 behavior in the dissipative range and saturation at some large
scale, there appears to be no distinct inertial range scaling. We suspect
that this happens because there is poor scale separation, since the probes
are fairly close to the ground; in fact, the large scales (which we expect
to be of the order of the height of the probe from the ground and larger
(see previous section)) may be encroaching significantly into the inertial
range. We would be aided materially in our search for scaling if, somehow,
the large-scale effects can be separated. One way of doing this is to write
down an interpolation function that models the entire structure function in
its three different scaling regions — a dissipative range that scales like r2
when 7 is of the order of the Kolmogorov scale 7, a large-scale behavior
that tends to saturate (indicating decorrelation) as r gets to be larger than
L, and the intermediate inertial range for n < r <« L which may exhibit
scaling. Through the use of the interpolation formula, one can extract the
scaling part in a natural way. This is described below.
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r(m)

Fig. 12. Log-log plots of transverse structure functions at 0.54 m. (x) denote the
second order, (o) the fourth order and the solid lines represent the interpolation
fit.

A suitable form of the interpolation function is given in [6] for structure
functions of arbitrary order. It has the form

sevesan(r) = e (14 DAL " (62)

where A,, By, C, and D,, are variable parameters. This formula is an ex-
tension of that given in [28] and includes a large-scale term. Such extensions
have been attempted earlier (e.g. [14]). Antonia et al. [1] have successfully
tested the function (6.2). Dhruva [6] has shown that the present interpo-
lation formula works extremely well for longitudinal structure functions of
order 2, 4 and 6. To reinforce this point, we test its performance by com-
paring it to the measured transverse structure function, « = § = 1, r in
the direction 3. For each data set, the height of the probe is assumed to
be the large scale L. The fit is shown for the transverse structure function
of orders 2 and 4 at the 0.54 m probe in Figure 12. The agreement be-
tween the formula and the data is excellent. Taken together with similar
conclusions in [6] for longitudinal structure functions, we conclude that the
interpolation formula describes the familiar structure functions very well.
For this pragmatic reason, we shall adopt it for our purposes here, and test
the robustness of the results obtained in the Appendix C.

In the formula (6.2), the large scale behavior is given by the factor (1 +
Dy(r/L))2¢2=2, If the measured structure function is divided by this factor,
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Fig. 13. Log-log plot of second order mixed structure function at 0.54 m. (x)
denote data, the solid line is the interpolation fit (not visible beyond an r of
10™! m because of the closely packed symbols), and (o) correspond to the large-

scale compensated function.
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Fig. 14. Log-log plot of second order mixed structure function at 0.27 m. The

legend is the same as for Figure 13.

we should recover the contribution of the remaining parts - in particular the
inertial range part, with the leading order scaling exponent given by 2—2C5.
Figures 13 and 14 display a second-order anisotropic structure function for
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two heights above the ground. Presumably because of the finiteness of the
Reynolds number and the relatively large shear effect, the scaling in the
intermediate range n < r < L is not apparvent. However, by dividing
out the large scale contribution as described above, we sce two distinet
regions of scaling; the dissipative range of ~ r? and the extended mid-
range which scales with exponent between 1.22 and 1.12. The advantage of
the scaling function is thus evident: it has allowed us to extract a scaling
exponent that is most likely to be due to anisotropy. The values of the
fitted parameters and the corresponding <2(2) are given in Tables 4 and 5
for the probes at 0.54 m and at 0.27 m respectively. The error on the
measurement of the exponent C; at 0.54 m is about 0.05 while at 0.27 m it
is about 0.08. This gives an error on the estimates of (52) of 0.07 and 0.11
respectively, and places the theoretically expected value of ~4/3 within 1.5
to 2 standard deviations of the present value. This result is consistent with
general expectations [15] and the findings of the previous section.

6.2.2 Higher-order structure functions

In general, the tensor forms contributing to the j = 0 sector for tensors of
any rank n are composed of linear combinations of the Kronecker-§ and the
components of r along the tensor indices. The following is a list of isotropic
tensor contributions for rank 3 through 6:

e n=3: §*°r7 + permutations, and r*r?r7;

o n =4: §*7§7% 1 permutations, 6*?r7r® + permutations, and
rerBprpd,

o n =5 6*P§7rt 4+ permutations, §*?r7rér# + permutations, and
LJT
rorfryrdps,

o n=6: 6298795 & permutations, s*?§70r Y + permutations,
§¥Bp¥pdrtie? 4 permutations, and rorBrypdpspy,

Based on the above considerations, it can be expected that the structure
function components that are zero in the j = 0 sector are:

e n=3: S (transverse), §33;
o n—4; G331 g3
e n =5 SN (transverse), 33111 §33331,

o n==6: 5333111,5*311111’ 5333331.
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Table 4. Structure function calculated and the anisotropic scaling exponents for
the data at 0.54 m.

2)

Order n|Tensor| A, Bn | Co I Dn [ =n—20,] ¢,
2 531 3.9 |0.014]0.39]0.67 1.22 0.7
3 S 2400 |0.010/0.93/2.28 1.14 1
4 53331 5200 (0.014{1.2110.27 1.58 1.26
5 S 199 % 107]0.029|1.5913.09 1.82 1.56
6 [S33311113.75 x 107]0.041[1.93}0.50 2.14 1.71

Table 5. Structure function calculated and the anisotropic scaling exponents for
the data at 0.27 m.

Order n| Tensor A, B, {C,|D, ,(7,2) =n—-2Cy| ¢
2 S31 9.4 [0.005/0.44]0.52 .12 |07
3 S 6940 [0.015/0.89(2.78 1.21 1
4 53331 121 x 10%/0.014{1.23[0.23 1.54 1.26
5 ST 15 9 % 107(0.028[1.58(3.52 1.84 1.56
6 |§88311119 7« 108(0.038(2.00(0.34 2.00 1.71

Note that the odd-order transverse structure function is always zero in the
isotropic sector. The functions we shall now consider are given in the sec-
ond column of Tables 4 and 5. For the case of the third and fifth order
transverse structure functions we use the moments of the absolute value of
the velocity differences in order to obtain better convergence. In using the
interpolation function we assume that the inertial range scaling of these
anisotropic components is given by a single exponent (,(1]) where the su-
perscript denotes an isotropic exponent without reference to the precise j
sector. The compensated functions (with large-scale effects removed) are
shown in Figures 15-22. The errors on the value of Céz) obtained are about
7% at 0.54 m and about 9% at 0.27 m. For comparison, the last column in
Tables 4 and 5 gives the empirical values of the isotropic scaling exponent
of the same order as given in [6]. The entries in this column are measurably
smaller than the corresponding non-isotropic exponents. This suggests that
the isotropic component alone survives at very small scales.

6.3 Summary

We have presented a new method of extracting anisotropic exponents that
avoids mixing with contributions from the isotropic sector. We do this by
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Fig. 15. Log—log plot of third-order transverse structure function at 0.54 m. The

legend is the same as for Figure 13.

Fig. 16. Log-log plot of third-order transverse structure function at 0.27 m. The

legend is the same as for Figure 13.

explicitly constructing those tensors that are zero in the isotropic scctor.
An operational step in the extraction of the scaling exponents is the usc of
an interpolation formula in the spirit of a “scaling function”. This method
has allowed us to examine anisotropic effects in structure function tensors of
order greater than 2. The resulting anisotropic exponents are consistently
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Fig. 17. Log-log plot of fourth-order mixed structure function at 0.54 m. The

legend is the same as for Figure 13.
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Fig. 18. Log-log plot of fourth-order mixed structure function at 0.27 m. The

legend is the same as for Figure 13.

larger than those known for isotropic parts at all orders. This suggests
that anisotropy effects decrease with decreasing scale. However, the rate of
decrease is much slower than expected from dimensional arguments (which
yield 4/3, 5/3, 2, 7/3 and 8/3 for orders 2 through 6, to be compared with
the values obtained at 0.54 m of 1.22, 1.14, 1.58, 1.82, 2.14).
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811111(r)

Fig. 19. Log—log plot of fifth-order transverse structure function at 0.54 m. The

legend is the same as for Figure 13.

r (m)

Fig. 20. Log-log plot of fifth-order transverse structure function at 0.27 m. The
legend is the same as for Figure 13.

Our conclusions are based on the usc of the interpolation formula, given
by equation (6.2). While this formula is not based on a solid theoretical
framework, we have shown that it works very well in describing the mea-
sured structure functions. We have also performed tests of its robustness
by fitting it to smaller sections of the data in order to detect changes in
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Fig. 21. Log-log plot of sixth-order mixed structure function at 0.54 m. The

legend is the same as for Figure 13.
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Fig. 22. Log-log plot of sixth-order mixed structure function at 0.27 m. The

legend is the same as for Figure 13.

the exponent. A discussion of these checks and their results is presented in
Appendix C. To the lowest order, the results are independent of the r-
segment to which the formula is fitted (except, of course, when the fit is
entirely for the dissipation range or in the large-scale range). Any other
formula that works equally well will yield similar results. Even so, the
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formula is empirical, which is why we have not paid much attention to the
fact that the scaling exponents obtained for the two probe positions are
slightly different, and that the second-order exponent for 0.54 m is slightly
larger than that obtained for the third-order. On the whole, the trend is that
the anisotropic exponents become larger for larger orders of the structure
function.

An interesting conclusion of the present work is that the effects of
anisotropy vanish with decreasing scale more slowly than expected. The
expectation in the light of the SO(3) formalism is that a hierarchy of
increasingly larger exponents, corresponding to increasingly higher-order
anisotropic sectors [17], would exist. This expectation appears to be true in
the case of the passively advected vector ficld {3] where a discrete spectrum
of anisotropic scaling exponents is obtained theoretically for all anisotropic
sectors. In the present experiments, the fact that anisotropic effects can be
fitted reasonably well by power laws suggests that the high-order effects may
be small. It is perhaps true, however, that the power-laws described here
may contain high-order corrections, and that the exponents deduced for the
behavior of anisotropy may indeed undergo some revision when contribu-
tions from other sectors of the SO(3) decomposition are also considered. In
spite of this possibility, we wish to emphasize that the anisotropy effects for
each order of the structure function appear to be well described by some-
thing close to a power law with a single exponent. The magnitudes of the
anisotropic exponents in each order indicate that the roll-off from isotropy
happens less sharply than previously thought, but the roll-off occurs nev-
ertheless. The higher-order objects considered here have not been studied
extensively in the light of anisotropy.

7 Conclusions

We have used the SO(3) decomposition of tensorial objects such as structure
functions measured in fluid turbulence experiments. This enables us to
separate, for any given order structure function, the isotropic part from the
anisotropic part. We have used experimental data at very high Reynolds
numbers (Taylor microscale Reynolds numbers of up to 20000) to carry
through this decomposition.

We considered the lowest order anisotropic contribution to the second
order tensor functions of velocity in the atmospheric boundary layer. For
second order structure functions, we have extracted the anisotropic scaling
exponent from the experimental data. We also used the full form of the
Jj = 2 tensor, as well as the axisymmetric version of it. In both instances, we
have shown that the j = 2 exponent (52) ~ 1.36. This compares favorably
with the estimate based on purely dimensional grounds. It should be noted
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that the dimensional estimates do not take into account possible anomalous
scaling. We expect that turbulence flows will indeed exhibit anomalous
scaling in the isotropic sector, and in every anisotropic sector in the SO(3)
hierarchy. By suitably arranging the measurement configuration, we have
also extracted the j = 1 contribution, and find the appropriate scaling
exponent to be close to the dimensional estimate of unity.

For high orders, we have presented a new method for the extraction
of anisotropic exponents that avoids mixing with contributions from the
isotropic sector. We do this by explicitly constructing those tensors that
are zecro in the isotropic sector. The resulting anisotropic exponents are
consistently larger than those known for isotropic parts at all orders. This
suggests that anisotropy effects decrease with decreasing scale. However,
the rate of decrease is slower than expected from dimensional arguments.

Armed with these details, it is now possible to say something of value
about local isotropy. These statements are interspersed through out the
text, but the most important conclusion is that the effects of anisotropy
within a structure function of a given order do vanish with decreasing scale,
though more slowly than expected. This provides a rich perspective on
the notion of local isotropy and removes a hurdle towards the search for a
universal theory of small-scale turbulence.

Appendix

A Full form for the j = 2 contribution for the homogeneous case

Each index j in the SO(3) decomposition of an n-rank tensor labels
a 2j + 1 dimensional SO(3) representation. Each dimension is labeled by
m=—j4,—7j+1,...5. The j = 0 sector is the isotropic contribution while
higher order j’s should describe any anisotropy. The j = 0 terms are well

known to be
rorf
r2

Pa(r) = cor®® | (2+ ()6 — (o

(A1)
where (o ~ 0.69 is the known universal scaling exponent for the isotropic
contribution, and ¢j is an unknown coefficient that depends on the boundary
conditions of the flow. For the j = 2 sector, which is the lowest contribu-
tion to anisotropy to the homogeneous structure function, the m = 0 (ax-
isymmetric) terms were derived from constraints of symmetry, even parity
(because of homogeneity) and incompressibility on the second order struc-
ture function to be [4]

« (2) o
Si:ﬂZW:O(r) = ar>z (CéQ) —2)6 - C2(2)(C2(2) +6)
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2 RG] 2
a n-r 2 2 T n-r

7-4
+H(G? + 3¢5 + omen”
452)(4';2) _2) o, 3 8, «
—2 2 40 )(n-r)} (A.2)

e 3

_+_b,r€§2) [_ (<2(2) + 3)(C§2) + 2)6a/3(n . r)Q + >

+(G&? +3)(¢7 + 20’ + 267 + 1)(E? - 2)
y rerf(n-r)?

T (G = 6 4 ) ()]

Here §§2) is the universal scaling exponent for the j = 2 anisotropic sector
and a and b are independent unknown coefficients to be determined by the
boundary conditions. We would now like to derive the remaining m = +1,
and m = +2 components

2
Sy = 3 Gapmt By (B), (A.3)
q

where (2 is the scaling exponent of the j = 2 SO(3) representation of the
n = 2 rank correlation function. The Bg“’?m(f') are the basis functions in
the SO(3) representation of the structure function. The ¢ label denotes the
different possible ways of arriving at the the same j and runs over all such
terms with the same parity and symmetry (a consequence of homogeneity
and hence the constraint of incompressibility); see [5]. In our case, even
parity and symmetric in the two indices. In all that follows, we work closely
with the procedure outlined in [5]. Following the convention in [5] the ¢'s
to sum over are ¢ = {1,7,9,5}. The incompressibility condition d,u® = 0
coupled with homogeneity can be used to give relations between the ag .,

for a given (j,m). That is, for j =2, m = —2...2, we have
( 2(2) - 2)“1,2,771, + 2(@—52) - 2)a7,2.m + (CQ(Z) + 2)(19,2.711, = 0
@1,2,m + (<§2) + 3)a7,2,m + 452)(15,2.771 = 0. (A“l)

We solve equations (A.4) in order to obtain as 2., and a7z, in terms of
linear combinations of a1 2,m and ag 2 m:
2 2 2 2
1,25 (71 = & = 2) + ag2m (65712 + 567 +6)
2y, (2
2657 (87 - 2)
(2)

a1,2,m(2 52 ) — a9=2’m(2 + <2(2)) . (A 5)
2(¢sY — 2)

aso2m =

a7.2.m
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We note here that the choice of constants eliminated using the above so-
lutions is arbitrary. We could have solved for any two of the agm and
obtained equivalent results. Using the above constraints on the coefficients,
we are now left with a linear combination of just two linearly independent
tensor forms for each m:

Sy = agamr [~(2@+P)BS L (#)
+20(7 - 2)B5Y . (5)
+H(IG? + 567 +6)B2S ()]
tarpmr 2657~ 2)BYS,.(F)
—(¢P - 2B (®) (A.6)
+HIE1? - ¢ - 2)BgY,. (7).

The task remains to find the explicit form of the basis tensor functions
BySm(®), 0 € {1,7,9,5}, m € {+1,+2}
o BYS (F) =17 20%r2Yy,, ()

. B?’gm(f') =r72[r*98 + rBO%)r2 Yo, (F)

e BP

J,Q,W(f') = 8065742)/}7”/6;)'

We obtain the m = {£1, 2} basis functions in the following derivation. We
first note that it is more convenient to form a real basis from the 72Ya, ()
since we ultimately wish to fit to real quantities and extract real best-fit

parameters. We therefore form the r2Yay, () (k= -2,-1,0,1,2) as follows:

Y 0(f) = r?Yao(F) = rcos? = rs
Yy 1(F) = 2Y2 1(f) — Y2 41(F)
21 5
2
- 9 [(COS ¢ —ising)cos@sind

+(cos ¢ + isin¢) cosfsin 9}

= 7 cosfsinfcos¢ = r3ry
) _ T2m,1(f)+}/2+1(f')
—24
2

= r_2 {(cosqﬁ —isin @) cosfsin b
—2i

7“2372 +1(

-
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—(cos ¢ + isin @) cosdsin HJ

= r2cos@sinfsing = ryry
2 Yaot) — Yo o(F)

7“2)72 _off) = 5
= g—j [(cos 26 + i 5in 2¢) sin2 f — (cos 2¢ — i sin 26) sin? 9]
= rZsin2¢sin®6 = 2ri7mo
Yy o(f) = 1’ Y22(f) +2Y2 —2(F)
= %2 [(COS 2¢ + isin 2@) sin? 0 + (COS 26 — i sin 2¢) sin? 9:|
= reszpato =it rf a7

This new basis of T'Q?Qk(r) is equivalent to the rQij(r) themselves as they
form a complete, orthogonal set (in the new k’s). We omit the normaliza-
tion constants for the spherical harmonics for notational convenience. The
subscripts on r denote its components along the 1 (m), 2 (p) and 3 (n)
directions; m. denotes the shear direction, p the horizontal direction paral-
lel to the boundary and orthogonal to the mean wind direction and n the
direction of the mean wind. This notation simplifies the derivatives when
we form the different basis tensors; the only thing to remember is that

9% = 9% - m) = m"“

0%y = 9%(r - p) = p*

9%r3 = 0%(r - n) = n®, (A.8)
We use the above identities to proceed to derive the basis tensor functions
B () = v n)(r-m)
ByS () = r7[(r*mf +Pm®)(x n) + ("0 + r"n®)(r - m)]
ng,—l(f) = 7 %%"(r . n)(r - m)
B;’gﬁl(f‘) = %’ +nPm°
Bi5.@®) = v 20%(r-n)(r-p)
B23.(8) = ro(rp” + Pp)(rm) + (0 %) (r - p)]
Bg3.(8) = r%r*’(x n)(r-p)
BS3.(8) = n°p’+nlp°
BYS 5(8) = 2r %*(r-m)(r-p)
BYS o(F) = 272" +0%p)(r- m) + (r“m + 7P m)(x - p)]
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ng H(F) = 2r=2r%P(r . m)(r - p)

;g,fz(f“) = 2(mapﬁ + mﬁpa)

BY5a(®) = r726%%(r-m)® — (r-p)’]

BISo(®) = 272 m” + P m®) (- m) — (r°p” +r°p%)(x - )]

B33a(E) = r7irr?[(r-m)® — (r-p)’]

Bgho(®) = 2mm’ —p™p”). (A.9)
Substituting these tensors forms into equation (A.6) we obtain the full ten-
sor forms for the j; = 2 non-axisymmetric terms, with two independent
coefficients for each k:

S e (@ = gz ar” (P12 4 57 +6)(nm” + nPm)
+2¢2(¢? - 2)r~ P (x - n)(r - m)
- éz)(2 + CQ(Q))T_Z[(ramﬁ + r8m®)(r - n)
+(r*n® + rPn®)(r - m)]}
+a1,2‘41T<§2) [([62)]2 - 52) - 2)(n*m” + nfm®)
+2C2(2)( 52) — 2)r~26%(r . n)(r - m)
~67(67 — 2 ¥ m” 4 ) ()
+(r*n® + rPn*)(r - m)]}

S (1) = agaar (G712 458 + 6)(np” +n"p7)

+267(G” — 2 n)(r - p)
~G7 @+ + ) (e m)
+(rn +r7n®)(x - p)]|
raraar” [P = ¢ - (P + np)
+26,7(67 ~2)r 26" (x - n)(x - p)
~67(67 =2 + ) (e m)
+(r*n? + rPn®)(r - p)]]

S n(0) = ana ar [P 4567 + 6)(mep® + mpe)

+2657 (¢ = 2)r 40P (r - p)(x - m)
~26 2+ G [p° +r%p) (r - m)
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+rom® + rﬁm")(r )]

+ayz, or [2([§(2)] ;2)_

2)(mp? + mPp®)

+202(¢SP — 2)r28° (r - m)(r - p)
262 = 272 [(rop® + 1P p)(r - m)
+(r® mP +r m“)(r . p)}}

S, ha(r) =

ag,9.27°2 {(K(z)] +5C

+6)(m*m” — pp®)

+267(¢5" = 2~ *rr?(x - m)? — (v p)?]
—27 2+ 72 (o m? + ) (x - m)
—(rp” +p)(x - )]
tar2ar%” (2671 = ¢ = 2)(mm? — p7p)
+2¢7(Gy" = 2)r?8°7[(x - m)? ~ (v p)?]
—QC(Q)( — 2 2(r m? +rPm®)(r - m)

—(rp? +rPp) (- P (A.10)

Now we wish to use this form to fit for the scaling exponent (52) in the
structure function $33(r) from data set I where a = 3 = 3 and the azimuthal
angle of r in the geometry is ¢ = 7 /2.:

5P ke 1 (r 0,0 =7/2)
S?iQ,kzl(ra 0,6 =m/2)

Sin k:72(7‘797¢: 7'('/2)
53 =2, k= o(r, 0,6 = 7/2)

0
a9 217 5 [ 2((2 < (2) + 2)sin 6 cos

+2C2 ( 2(2) — 2) cos® G sin 0]

0

ag 2,972 [ 2(2 ( (%) _ 2 cos? 0 sin2 6]
ta100r [~2¢82 (P — 2)sin 0], (A1)

We see that choosing a particular geometry eliminates certain tensor con-
tributions. In the case of set I we are left with 3 independent coefficients
for m # 0, the 2 coefficients from the m = 0 contribution (Eq. (A.2)), and
the single coeflicient from the isotropic sector (A.1), giving a total of 6 fit
parameters. The general forms in (A.10) can be used along with the k =0
(axisymmetric) contribution (A.1) to fit to any second order tensor object.
For convenience, Table 6 shows the number of independent coefficients that
a few different experimental geometries we have will allow in the j = 2
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Table 6. The number of free coefficients in the j = 2 sector for homogeneous
turbulence and for different geometries.

o=n/2,a=8=3|¢=0a=F=3|¢=0a=F=1|¢=0,aa=3,=1
k [8F0] 6=0 T[0#£0] 0=0 |6£0] 6=0 [6Z£0] 6=0
0 2 2 2 2 2 2 2 0
-1 0 0 1 0 1 0 2 2
1 1 0 0 0 0 0 0 0
-2 0 0 0 0 0 0 0 0
2 2 0 2 0 2 2 2 0
[Total [ 5 [ 2 [ 5 [ 2 [ 5 [ 4 [ 6] 2 |

sector. It must be kept in mind that these forms are to be used only when
homogeneity is known to exist. If there is inhomogeneity, the incompress-
ibility condition cannot be used to provide constraints in the various parity
and symmetry sectors, and we must in general mix different parity objects
using only the geometry of the experiment itself to eliminate any terms.

B The j = 1 component in the inhomogeneous case

B.1 Antisymmetric contribution

We consider the tensor
T°%(r) = (u®(x + 1) — u*(x)) (v’ (x + r) + u”(x)))- (B.1)

This object is trivially zero for a = 8. In our experimental setup, we mea-
sure at points separated in the shear direction and therefore have inhomo-
geneity which makes the object of mixed parity and symmetry. We cannot
apply the incompressibility condition in same parity/symmetry sectors as
before to provide constraints. We must in general use all 7 irreducible ten-
sor forms. This would mean fitting for 7 x 3 = 21 independent coefficients
plus 1 exponent Cél) in the anisotropic sector, together with 2 coefficients
in the isotropic sector. In order to pare down the number of parameters we
are fitting for, we look at the antisymmetric part of T%%(r),

_ T8(r) — TP(r)
2

T (r) = (u®(x)u’ (x + 1)) — (W (x)u® (x + 1)), (B.2)

which will only have contributions from the antisymmetric j = 1 basis
tensors. These are:

o Antisymmetric, odd parity

By . =17 0% — 1P0° Y1 (£). (B.3)
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o Antisymmetric, even parity

8
BZl,m

af
BZ,I,m

= 7"72606[3#7‘1//‘}/1’7”(?)

1 2P, 1Y (B).

(B.4)

As with the j = 2 case we form a real basis 1Y) ,(£) from the (in general)

complex 7Y} () in order to obtain real coefficients in our fits:

Y1 k=0 (F)

7‘}7171@:1(1*’)

Y pe 1 ()

And the final forms are

2i

= rsinfsing = ry

TY1,71(1A‘) —Y11(

=

)

2

= rsinfcosop =1y

= r r*nf —rPne]

r~ 2Py, (r.n)
= 7“_26‘13‘%“

— r~1[7_ap,3 . T,Bpa

= r'Qeaﬁ“r,l(r.p)

-2 o
r e 5ltp“

= 7 iromP - rPme]

= 7729y (r.m)

= 7’_2e“ﬁ“mﬂ.

]

(B.6)

We now have 9 independent terms and cannot apply incompressibility in
order to reduce them further. Instead, we use the geometrical constraints

of the experiment to do this:

e ¢ = 0 (vertical separation), a = 3,3 =1

Bg,ll,(l(ra 0,6 =0)=—sind
Bg,ll,l(rv 97 ¢ = 0) =1
Bg,ll,—l(rv 8,¢ =0) = cosb.
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There are no contributions from the reflection-symmetric terms in the 7 = 0
isotropic sector since these are symmetric in the indices. The helicity term
in j = 0 also does not contribute because of the geometry. So, to lowest
order, we have

T(r) = T¥,(r)
) . el &)
= a3,1,0r<2 (—sin8) + a2’1717'421 + a3,1,,1rc2 cosf. (B.8)

As always, we have written the scale dependent prefactors aqjm, (1) as hav-

. (1) .
ing a power law dependence aqjmrc21 . We have 3 unknown independent
coeflicients and 1 unknown exponent to fit for in the data.

B.2 Symmetric contribution
We consider the structure function
§0(r) = ((u*(x + 1) — u*(x)) (v’ (x + 1) — v (x))) (B.9)

in the case where we have homogeneous flow. This object is symmetric in
the indices by construction. It is easily seen that homogeneity implies even
parity in r:
S(r) §7%(x)
S (—ry = 8§%(r). (B.10)

We reason that this object cannot exhibit a j = 1 contribution from the
SO(3) representation in the following. Homogeneity allows us to use the
incompressibility condition

9a5%7 =
DpS™ = 0 (B.11)

separately on the basis tensors of a given parity and symmetry in order to
give relationships between their coefficients. For even parity, symmetric case
we have for general j > 2 just two basis tensors and they must occur in some
linear combination with incompressibility providing a constraint between
the two coefficients. However, for j = 1 we only have one such tensor in the
even parity, symmetric group. Therefore, by incompressibility, its coefficient
must vanish. Consequently, we cannot have a j = 1 contribution for the
even parity (homogeneous), symmetric structure function.

Now, we consider the case of an experiment when r has some component
in the inhomogeneous direction. Now, it is no longer true that S*?(r) is of
even parity. Moreover it is not possible to use incompressibility as above to
exclude the existence of a j = 1 contribution. We must look at all j = 1
basis tensors that are symmetric, but not confined to even parity.
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These are:

e Odd parity, symmetric

Bi?,k(f') = 150y (E)
By #) = 07 4170 Yan(R)
Bgh u(®) = r v
B?[fk(f') = 10”9 rYie(¥) = 0. (B.12)
e Even parity, symmetric
ng,k(f) = 2,0, + 17 e r, 0, )rY k(1)
B @) = [*7,0,00 + €#7,0,05)rY1k(2) = 0. (B.13)

We use the real basis of r’lfflk(f') which are formed from the r=1Y7,, (£).
Both Bg?k(f') and By ?k(f‘) vanish because of the taking of the double
derivative of an object of single power in r. We thus have 4 different
contributions to symmetric 7 = 1 and each of these is of 3 dimensions

(k=-1,0,1) giving in general 12 terms in all:

_ rfl[rup +7,ﬁpa]

Bf‘gﬁo #) = 7 16%(r-n)
B?’fio #) = rronf 4+ rfn2
BgYy®) = r7%rr?(r-n)
B o®) = r72[(r*m? 4 Pm)(x - p) - (r°p” +7p")(r - m)]
BY,(#) = r'6*’(r-p)
)
)

= 38 (r.p)

r2[r*m? 4 rPm®)(ron) — (0 + 70 (r - m))]

oy
>
-
k=

-
~

il

Bi[f,q ) = r15%(r.m)
B?ffﬁl #) = rr*mP 4 rPm2
;’?)‘1 #) = r 3P (r-m) (B.14)
BgY 1) = 00”4 rPp) (e m) = (0 0t p)l.
These are all the possible j = 1 contributions to the symmetric, mixed

parity (inhomogeneous) structure function.
For our experimental setup II, we want to analyze the inhomogencous
structure function in the case @ = 3 = 3, and azimuthal angle ¢ = 0
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Table 7. The number of free coeflicients in the symmetric j = 1 sector for inho-
mogeneous turbulence and for different geometries.

$=0,a=0=3[¢=00==1]¢=0,a=3,4=1
k [6#0] =0 |A#0] =0 [6#0] 6=0
0 3 3 2 1 2 0
1 1 0 1 0 0 0
-1 2 0 3 0 2 1
[Total | 6 | 3 | 6 | 1 [ 4 | 1 ]

(which corresponds to vertical separation). For that case, we obtain the
basis tensors to be

B%?l,o(e) = cosf
B:73,31,0(9) = 2cosb
Bg% o(8) = cos’d
33?171(0) = —2cosfsind
BY _,(6) = sinf
BS?I _1(8) = cos? @sin b, (B.15)

Table 7 gives the number of free coefficients in the symmetric j = 1 sector
in the fit to the inhomogeneous structure function for various geometrical
configurations.

C Tests of the robustness of the interpolation formula

In order to test the robustness of the interpolation formula equation (6.2),
we performed the following additional calculations. We considered the data
from the probe at the height of 0.54 m. For each order n of the structure
function, we defined a “window” of data extending over two decades of the
separation scale, r. We first placed the lower edge of the window well inside
the dissipation range and fit the interpolation formula to the data in the first
window. We then moved the lower edge of the window by half a decade and
fit the formula to the data in the next window. In this manner, we proceeded
until the upper edge of the last window corresponded to the largest value
of r. The entire range of r yields five windows. We thus obtained five values
of the parameter C),, and calculate the scaling exponent (7(12) =n—2C, in
each case, giving some indication of the robustness of our result.

Tables 810 present the results of performing these checks on structure
functions of the second, third and fourth order. The mean and standard
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Table 8. Second order: Céz) = 1.25 £ 0.05.

C, [0.35+0.1 ] 0.35+0.05 ] 0.39+0.02 ] 0.38L0.05 | 0.38 =0.07
2 1131402 1.304£0.10 | 1.214£0.04 | 1.24+0.10 | 1.23+0.14
Table 9. Third order: ¢{* = 1.14 +0.11.

Cs ] 0.99+0.03 ] 0.95+0.04 | 0.88+0.07 | 0.91 % 0.04 | 0.96 = 0.08
@ 11014006 | 1.10+0.08 | 1.3+0.14 | 1.24008 | 1.1+0.16
Table 10. Fourth order: Cf) =1.61+0.13.

Ci | 1.21£0.07 [ 1.12+0.09 | 1.15+£0.03 | 1.20 £ 0.1 | L.2L +0.08
¢? | 1584014 | 1764018 | 1.7£0.06 | 1.42+£0.2 | 1.58+0.16

deviation of the exponent values are given in the caption for each table. It
is found that the mean value in each case is in close agreement to the value
of the exponents presented in the main text which were obtained by a fit to
the entire range of data. This gives us greater confidence in the use of the
interpolation formula.
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