
PHYSICS OF FLUIDS VOLUME 12, NUMBER 6 JUNE 2000
Statistics of wind direction and its increments
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We study some elementary statistics of wind direction fluctuations in the atmosphere for a wide
range of time scales~1024 sec to 1 h!, and in both vertical and horizontal planes. In the plane
parallel to the ground surface, the direction time series consists of two parts: a constant drift due to
large weather systems moving with the mean wind speed, and fluctuations about this drift. The
statistics of the direction fluctuations show a rough similarity to Brownian motion but depend, in
detail, on the wind speed. This dependence manifests itself quite clearly in the statistics of
wind-direction increments over various intervals of time. These increments are intermittent during
periods of low wind speeds but Gaussian-like during periods of high wind speeds. ©2000
American Institute of Physics.@S1070-6631~00!02506-X#
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I. INTRODUCTION

The turbulence community has invested considerable
fort in the study of velocity components. In particular, t
increments of velocity over inertial-range distances—in b
longitudinal and transverse directions—have been the ob
of extensive studies.1–5 Velocity fluctuations on larger scale
in the atmosphere have also received considerable atte
from the geophysical fluid dynamics community.6–8 How-
ever, the relationbetweenthe different components, i.e., th
direction of the velocity vector, has received far less att
tion. This is somewhat surprising, considering that the sta
tics of wind direction and of thechangesin wind direction
play an important role in a variety of circumstances. F
instance, in the case of modelling pollutant dispersion,
would like to know the likelihood of a sudden change in t
wind direction when an incinerator operates close to resid
tial areas. Other applications may include managing runw
at airports, where the changing wind direction is one of
determining factors of runway availability. The role of dire
tion changes is significant also in climatological models.

The earlier work on wind direction has generally been
part of meteorological studies. Those studies are quite
cific to the context considered, and do not emphasize
general nature of wind direction and wind direction chang
Breckling9 focused on the analysis of directional time seri
and used as working example a record of hourly samp
wind directions over several years. His work consisted
two parts. The first part studied regularities in the wind
rection records and related them to general weather patt
as well as to their daily and seasonal variations. After
removal of these regularities from the data, a residual se
of short-term fluctuations remained, which were then m
eled by two autoregressive models. To our knowledge, th
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has been no comprehensive study of the statistics of w
directionchangesor increments.

In this paper, we study the statistics of wind direction
well as of thechangesin wind direction. In the spirit of Ref.
9, we find that the wind direction can be split into a larg
scale drift and small-scale fluctuations around it. We find
simpler, perhaps more transparent, description of the di
tion time series. We shall then consider the properties
changesin the wind direction and show that they can b
regarded as intermittent or Gaussian-like, depending on
magnitude of the wind speed.

In the next section, we describe briefly the three data s
of two-component atmospheric velocity from which the tim
series of wind direction are extracted. In Sec. III, we addr
the problems caused by the periodic nature of directio
data, and propose a correction scheme. We show th
simple description of directional time series emerges o
the correction scheme is implemented. In Sec. IV, we c
sider the properties of the wind direction changes, and c
clude the paper with Sec. V.

II. EXPERIMENTAL DATA

In order to examine a wide range of scales in the atm
sphere, we compare three different data sets of direction
sus time, each obtained by different methods and at diffe
sampling rates~Table I!. The data sets are named BNL-fas
BNL-slow, and NOAA ~BNL5Brookhaven National Labo-
ratory, NOAA5National Oceanographic and Atmospher
Agency!.

The BNL-fast data were obtained by measuring tw
component velocity by a hot-wire in the x-configuratio
sampled at 104 Hz per channel. Theu-component was paral
lel to the ground in the direction of the mean wind, and t
v-component perpendicular to the ground. The data w
taken on a meteorological tower at a height of 35 m. F
more details see Ref. 5.
9 © 2000 American Institute of Physics
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Downloaded 10 Ma
TABLE I. Three records of wind direction. The orientation of the velocity plane is normal to the surface fo
BNL-fast data, and parallel to the surface for the other two. The BNL-fast data were taken at Brook
National Laboratory at a height of 35 m above the ground. The BNL-slow data were taken at the same
a height of 88 m. The NOAA data was taken of the coast of Florida with buoy-mounted equipment. F
NOAA and BNL data, the large-scaleL was determined from the slope ofUc versus time, as discussed in th
text ~Sec. III!. For BNL-fast, the large scale was determined from the correlation time of the velocity signatc ,
L'tc3U, whereU is the mean speed.

Dataset Sampling rate Method Plane Mean speed Large scale Dura

BNL-fast 104 Hz hot-wire vertical 5.2~m/sec! '35 m 1 h
BNL-slow 1 min21 vane horizontal 6.0~m/sec! '105 m 1 year
NOAA 1 h21 vane horizontal 6.4~m/sec! '105 m 19 years
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The BNL-slow data differed from the fast-sampled da
in several ways. First, the velocity components measu
were u and w, with w in the plane parallel to the groun
surface. Second,u andw were measured by means of a va
anemometer, with a response time of the order of 0.1
Third, the data were sampled once every minute. Finally,
data were taken at a height of 88 m above the ground sur
~though on the same tower!.

The NOAA data were similar to the BNL-slow data
obtained by means of a buoy-mounted vane anemomete
cated 230 km off the coast of Florida, and sampled o
every hour.10 The measurements were made a few feet ab
the water surface. As for the BNL-slow data, the veloc
components measured areu andw, the latter being parallel to
the ~ocean! surface.

One less obvious difference between BNL-fast and
other two sets of data is the mean velocity. For the BN
slow and the NOAA data, the wind direction varied enou
so that no particular direction was preferred. That is,
meanvelocitywas much smaller than the meanspeed. How-
ever, for the BNL-fast data, the short time span of the d
~;1 h! prevented the direction from varying much; that
the wind speedand velocity are comparable. To make th
comparison between the different data sets sensible, we
tract the mean velocity from all velocity data before calc
lating the wind direction in a plane,U. This latter quantity is
defined as

U5arctanS v
uD ~1!

for BNL-fast and as

U5arctanS w

u D ~2!

for BNL-slow and NOAA data.
For later purposes, it is useful to define here the w

direction increment

DUt5U~ t1t!2U~ t !. ~3!

For convenience of notation, we shall not always explici
write the suffixt in DUt .

III. THE NATURE OF DIRECTIONAL STATISTICS

The principal difference between the velocity compon
data and the directional data in a plane is that the latter
r 2008 to 140.105.16.64. Redistribution subject to AIP
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circular variable. That is, directions in a plane can only sp
2p rad. This circular nature leads to artificial and sudd
changes when the direction changes from2p to p rad or
vice versa. This is illustrated in the wind direction da
shown in Fig. 1~a!. The artificial jumps in the figure compli
cate the calculation of spectra or correlation functions of
rectional data.

One way around this problem is to consider functions
the direction variable which are continuous across@0–2p#,
such as the sine or cosine function.9 However, the interpre-
tation of the spectra or correlation functions computed in t

FIG. 1. A plot over a 200 min stretch of the wind direction for the BNL
slow data: ~a! raw data and~b! corrected data. Note that the raw da
‘‘jumps’’ repeatedly between2p and 1p. The correction scheme is dis
cussed in the text.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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way is unclear. For data that vary little over a sampling u
another approach might be more fruitful. We could exte
the possible range of angles from@2p to p# to @2` to `# by
keeping track of how many times ‘‘around the clock’’ th
direction vector has traversed. We can quantify the ab
notion by inspectingDUs , where the suffixs states that the
signal is sampled at intervals of the sampling time,ts . For a
slowly varying directional time series, we expect the mag
tude of changes of direction between two succeeding s
pling intervals to be bounded by someDUmax<p. That is,

uDUsu<DUmax. ~4!

One way to estimateDUmax is to inspect a scatter plot o
DUs vs U ~Fig. 2!. We observe thatuDUsu!p in most
cases. We can also see that large apparent changes of
tion occur almost exclusively forU close to 0 orp rad.
These large changes correspond to crossings of the 0p
boundary andnot to actual large fluctuations in the win
direction. We can thus map allDU to @2p to p# by replacing
any uDUu.p by the conjugate angle:

;uDU~ts!u.p:DUs→DUs2
DU

uDUu
2p[DUc . ~5!

FIG. 3. The same as Fig 2, after applying the correction scheme. Note
there is no artificial dependence ofDUc(ts) on U.

FIG. 2. Scatter plot ofDU(ts) vs U for BNL-slow, wherets is the sam-
pling time. Note that the vast majority ofuDU(ts)u.p occur for uUu'p.
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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To demonstrate the effectiveness of the correct

scheme, we plot in Fig. 1~b! the corrected angles for th
same BNL-slow data shown in Fig. 1~a!. Note that we have
eliminated the large—and apparently spurious—change
the wind direction through the simple transformation of E
~5!. As a result,DUc has no artificial dependence onU. This
can be seen in Fig. 3, which is a scatter plot ofDUc vs U.

at

FIG. 4. Corrected direction versus time. Top: BNL-slow. Bottom: NOA
The dotted lines denote linear fits to the data. The slope is 1.6°/h for B
slow, and 2.4°/h for NOAA.

FIG. 5. Schematic of a weather system passing the observer.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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Next, we construct the corrected angleUc by summing
the appropriate increments,

Uc~nts!5U~0!1(
j 51

n

DUc~ j ts!. ~6!

In Fig. 4, we show the corrected angle versus time for
BNL-slow and NOAA data sets. For both data sets,Uc is a
nonstationary time series, and changes, on the average
early with time. We can estimate the rate associated with
linear trend by least-square fits. On the average,Uc turns
anti-clockwise by about 2°/h.

A plausible explanation for this global linear trend is t
passing of weather systems. As idealized in Fig. 5, we s
ply take a weather system to consist of a low-pressure/h
pressure vortical system of sizeL, with the axis of rotation
perpendicular to the ground surface. As the system mo
along with the mean wind speed and passes the observe
observed wind direction changes by about 360°. Accord
to the average slope ofUc versus time, plotted in Fig. 4, thi

FIG. 6. Power spectral density of direction for the BNL-slow data. A 1f 2

power law, expected for Brownian motion, is plotted for comparison.

FIG. 7. Probability density function ofuc . The crosses are for the BNL
slow data and the solid line represents the Gaussian distribution.
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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direction change would take about 180 h. For a typical me
speed of 6 m/sec,L would correspond to 2000 km, which i
comparable to values found in Ref. 11 for the typical size
weather systems.

For the BNL-slow and NOAA data, we can now remov
the linear trend fromUc(t): uc(t)5Uc(t)2a•t, where a
'2°/h, asfound from the least-square fits mentioned abo
The remaining stationary signaluc(t) contains the dynamics
of the wind direction within the weather system. The go
now is to understand these dynamics by describinguc(t)
from a statistical perspective.

To this end, we first plot the spectrum ofuc(t) for BNL-
slow in Fig. 6. It exhibits more or less a power-law roll-o
which is consistent with 1/f 2 spectrum of Brownian motion
The probability density function~pdf! of uc(t) is close to a
Gaussian, as seen in Fig. 7. Similar behaviors were found
the other two data sets. Thus,uc(t) is very similar to classi-
cal Brownian motion.

We may pursue this analogy by examining the varian
^Duc

2& as a function of the time incrementt. For classical
Brownian motion, the variance scales linearly witht, as ap-

FIG. 8. The variance of direction fluctuations. The dotted line has un
slope and denotes a familiar result for Brownian motion.

FIG. 9. Correlation functions of direction changes over one sample ti
Note that the correlation decays nearly to zero within two sampling tim
indicating that subsequent direction changes are nearly independent.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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1533Phys. Fluids, Vol. 12, No. 6, June 2000 Statistics of wind direction and its increments
pears to be the case for the data~see Fig. 8!. For all three
data setŝDuc

2&}ta, with a close to unity: From least-squar
fits to log–log plots, we finda to be 1.03 for the BNL-slow
data, 0.92 for the NOAA data, and 0.87 for BNL-fast dat

FIG. 10. Probability density function ofDuc for all three data sets, wher
Duc is the change inuc over one sampling interval. Note the departure fro
Gaussianity which suggests intermittency in the signal foruc .

FIG. 11. Magnitude of corrected direction changes versus speed.Du is the
change inu over one sampling interval. Top: BNL-slow. Bottom: NOAA
Data for BNL-fast is similar. For small speeds, large direction changes
much more likely.
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
Finally, in Fig. 9, we plot the auto-correlation function
of Duc versus time in sampling units. As the correlatio
functions decay to zero within two sampling times for a
three data sets, we conclude that successive wind direc
changes are nearly independent. This essential independ
was also found by Breckling9 of hourly sampled wind direc-
tions. Of course, for Brownian motion, successive chan
are strictly independent.

Through all this, it is worth keeping in mind that th
resolved length and time scales in these three measurem
are vastly different. Furthermore, as already noted, the BN
slow and NOAA data measure direction in the horizon
plane and the BNL-fast data measure direction in the vert
plane. Despite these major differences in the three meas
ments, the behavior of the directional increment is roug
the same. Indeed, it would appear that the more thi
change, the more they stay the same.

One concern that may be raised is that the correc
scheme of Eq.~5! introduces errors toDU so that, when

re

FIG. 12. Probability density functions ofDuc conditioned on wind speed for
BNL-slow data, whereDuc is the change inuc over one sampling interval.
Note that for wind speeds comparable to the mean, the pdf’s exhibit st
non-Gaussian features. For wind speeds several times the mean, the p
Duc50 is less pronounced and the pdf’s approach Gaussianity with incr
ing wind speed. Top: linear plot. Bottom: semilog plot.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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added up, they would lead to a Brownian-motion behav
for the direction. However, the following two factors appe
to be reassuring. First, only a very small fraction of the d
is affected by the correction scheme~1.1% for BNL-slow!.
Second, we repeated the calculations of the variance and
correlation function for segments of raw data between c
rections, and found results consistent with those for the
tire data set. Therefore, it appears that the Brownian-
features of the data are genuine.

IV. STATISTICS OF THE INCREMENTS OF WIND
DIRECTION FLUCTUATIONS

The results so far suggest that the direction is roug
Brownian in character. However, when we plot the pdf
Duc , as we do for all three data sets in Fig. 10, we find la
deviations from Gaussianity. This non-Gaussianity sugg
that the wind direction increments are highly intermitte
similar to velocity increments.3,5 A scatter plot ofuDuu versus
speed, shown in Fig. 11, reveals that large excursions inuDuu
occur primarily during periods of low speeds. This is a kin
matic effect; the direction of motion of a volume of air
more readily changed when the speed of the volume is l
This appears to be important, for example, in model
pressure-rate-of-strain correlations. From the scatter plo
Fig. 11 it is clear that the standard deviation,sDuc

, is a
strong function of wind speed.

We can further study the dependence of the statistic
Duc on the wind speed by conditioningDuc on wind speed.
In Fig. 12, we plot the pdf’s ofDuc conditioned on the spee
in linear and logarithmic coordinates. We find that for sm
wind speeds~around the mean!, p(Duc) is highly non-
Gaussian, much like the unconditioned pdf. However,
large wind speeds~several times the mean!, p(Duc) de-
scribes a much less intermittent process and approach
Gaussian with increasing speed. The latter means tha
large wind speeds, the changing wind direction constitute
nearly Gaussian process.

V. CONCLUSIONS

In this paper we have studied some elementary asp
of direction changes of the wind over a very large range
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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time scales. We believe this is the first study of its kind.
the plane parallel to the ground, directional changes can
described as the sum of two parts, drift and fluctuations. T
first part constitutes a steady drift of about 2°/h, an
clockwise, on the average. We interpret this drift in terms
large-scale weather systems moving along with a m
speed. The second part~fluctuations! describes direction
changes within these weather systems. Simple tests suc
power spectra, pdf’s, and the variance of the increments
veal that the direction fluctuations have some characteris
of Brownian motion. However, a closer look reveals that t
statistics of the fluctuations depend strongly on wind spe
For wind speeds comparable to the mean, the fluctuations
strongly intermittent. For wind speeds significantly aw
from the mean, however, the fluctuations are much less
termittent and resemble classical Brownian motion.
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