
PHYSICAL REVIEW E AUGUST 2000VOLUME 62, NUMBER 2
Anisotropic scaling contributions to high-order structure functions
in high-Reynolds-number turbulence

Susan Kurien and Katepalli R. Sreenivasan
Mason Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520

~Received 3 April 2000!

We make an attempt at obtaining the scaling exponents for the anisotropic components of structure functions
of order 2 through 6. We avoid mixing these components with their isotropic counterparts for each order by
using tensor components that are entirely anisotropic. We do this by considering terms of the isotropic sector
corresponding toj 50 in the SO~3! decomposition of each tensor, and then constructing components that are
explicitly zero in the isotropic sector. We use an interpolation formula to compensate for the large-scale
encroachment of inertial-range scales. This allows us to examine the lowest order anisotropic scaling behavior.
The resulting anisotropic exponents for a given tensorial order are larger than those known for the correspond-
ing isotropic part. One conclusion that emerges is that the anisotropy effects diminish with decreasing scale,
although much more slowly than previously thought.

PACS number~s!: 47.27.Gs, 47.27.Jv, 05.40.2a
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I. INTRODUCTION

It has recently been recognized@1–3# that finite shear can
have a profound effect on the scaling of structure functio
At least two attempts have been made to understand t
quantitatively. The attempt made in Ref.@1# used conditional
statistics to guide the extraction of shear-free scaling,
conditioning variable being a large-scale velocity represe
tive of shear effects. In Refs.@2# and @3#, we considered a
more formal—and potentially more powerful— approach.
this approach, the experimentally measured structure fu
tions were considered to be mixtures of the isotropic p
and higher-order anisotropic parts. The isotropic part w
extracted by projecting the measured structure functions o
the isotropic sector of the SO~3! decomposition.

Specifically, we considered the well-known second-or
structure function tensor

Sab~R!5^~ua~x1R!2ua~x!!~ub~x1R!2ub~x!!&,
~1!

whereua represents the velocity component in the direct
a andR is the separation distance between the two positi
whereua andub are measured. In this expression, we sh
represent the vertical axis as direction 1 and the horizo
streamwise direction as 3, in contrast to the usual conv
tion. If the separation vectorR is in the streamwise direction
represented bya5b53, we recover the longitudinal struc
ture function. Purely transverse components result whea
5b51 with R along the direction 3, or whena5b53 and
R is along direction 1. Longitudinal as well as certain tran
verse components of the structure function were previou
studied @1–3# in order to extract their anisotropic scalin
behaviors. In general, these functions display a mixture
j 50 ~isotropic! and higher-orderj ~anisotropic! components
of the SO~3! decomposition with a corresponding mixing
the scaling behavior of the different sectors. Our proced
involved fixing the known isotropic exponentz2 and varying
the fit parameters to solve for the unknown lowest-order
isotropic scaling exponent,z2

(2) , from the j 52 sector. We
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thus determined, for the second-order structure function,
scaling behavior of the anisotropic parts in addition to that
the isotropic part. The conclusion was that the anisotro
parts for the second-order had a larger exponent, imply
that anisotropy decreases with scale size. These estim
were consistent with classical expectations from dimensio
grounds@4#.

Though this procedure was successful, it was somew
unsatisfactory because the unavoidable mixing of the iso
pic and anisotropic contributions and the number of variab
for which least-square fits had to be performed. The imp
mentation of the procedure became increasingly cumb
some for high-order tensors. In this article we take a new
more direct approach for extracting anisotropic exponents
considering only those tensor components that are explic
zero in the isotropic sector, so that whatever is measu
derives its contributionentirely from the anisotropic sector
We can use the present method in principle to examine
anisotropic contribution of tensors ofany order without re-
quiring the knowledge of the particular mathematical form
the anisotropic sectors of these tensors. This is a consider
advantage theoretically because the high-order tensors
nontrivial to compute; it is an advantage experimentally b
cause, unlike in numerical simulations, one can measure
some components for simple geometric arrangeme
of probes.

There is also an urgent reason for our interest in the s
ing exponents of the anisotropic components. As we h
already indicated, a point of interest in turbulence theory
the rapidity with which anisotropic effects of shear dec
with decreasing scale size. These effects for passive sc
do not seem to vanish at small scales no matter how high
Reynolds number@5#, but it has been generally thought@6#
that they vanish for velocity fields in conformity with dimen
sional expectations. Recent indications from high-order s
tistics of certain transverse components@7# have cast doubt
on this outlook; they suggest that the anisotropic effects
not diminish at any scale for certain high-order momen
even at sufficiently high Reynolds numbers. To explore t
issue further, it is necessary to measure scaling expon
2206 ©2000 The American Physical Society



e

PRE 62 2207ANISOTROPIC SCALING CONTRIBUTIONS TO HIGH- . . .
TABLE I. Measured parameters of data sets. The large scaleL is considered to be of the order of th
height from the ground.

Height
~m!

U 3̄

~ms21!
u38

~ms21!
102^e&
~m2s23!

h
~mm!

l
~cm! Rl

f s ,per
channel~Hz!

# of samples
per channel

0.11 2.67 0.47 6.6 0.47 2.8 870 5000 43106

0.27 3.08 0.48 2.8 0.60 4.4 1400 5000 43106

0.54 3.51 0.50 1.5 0.70 6.2 2100 5000 43106
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associated with anisotropic effects. This is our goal for t
article.

In Sec. II we describe the experimental conditions and
data. Section III discusses the manner in which the cor
tensor components are identified, and summarizes the re
of the analysis. The results obtained in the second-order
in close agreement with the result thatz2

(2)'4/3, obtained
previously.~In this article, we are not seeking the accura
required for obtaining intermittency anomalies in the nume
cal values of the scaling exponents.! The anisotropic scaling
exponents for objects of order 3 through 6 are presen
here. The paper concludes with a summary of results in S
IV. A tentative conclusion is that the effects of anisotropy
vanish with decreasing scale, albeit more slowly than gen
ally believed.

II. EXPERIMENTAL CONDITIONS

Three cross-wire probes were arranged at heights of 0
0.27, and 0.54 m above the ground at the Dugway testing
in the Utah desert. The probes are positioned in the stron
sheared part of the boundary layer, normally thought to
the logarithmic region. The ground was level and smooth
upstream distances of the order of a mile, and the meas
ments, which were made between 6 PM and 9 PM, co
sponded to nearly neutral conditions of the atmosphere.
wind conditions were light but steady in direction. The sit
ation can be considered almost comparable to wind-tun
boundary layers on smooth surfaces. Each probe meas

FIG. 1. Log-log plots of transverse structure functions at 0.54
X denote the second-order, O, the-fourth order, and the solid l
represent the interpolation fit.
s

e
ct
lts
re

-

d
c.

r-

1,
ite
ly
e
r
re-
-

he
-
el
red

the streamwise and vertical components of the velocity.
each of these heights, Table I shows, among other things
mean velocitiesŪ, root-mean-square fluctuationu38 in the
streamwise direction 3, the Reynolds number based on
streamwise Taylor microscale, and the mean dissipation
e based on assumptions of local isotropy and Taylor’s
pothesis, given bye515n(du3 /dx3)2. In all cases, the tur-
bulence intensityu38/Ū,20% which allows us to use Tay
lor’s hypothesis to surrogate time for space, usingR5U3t in
all that follows.

III. METHOD AND RESULTS

A. The second-order structure function

We first consider the second-order tensorSab(R). Isot-
ropy implies that this tensor can be expressed as a lin
combination of two terms,dab andRaRb. As is well known,
both terms give nonzero contributions to longitudinal as w
as transverse components, corresponding toa5b. For a
Þb these two terms are identically zero ifR is taken to be in
the streamwise direction 3. Therefore, we compute the
called mixed structure function

S31~R!5^~u3~x1R!2u3~x!!~u1~x1R!2u1~x!!&, ~2!

where, as already noted, the superscripts 1 and 3 denot
vertical and streamwise components, respectively. This
ject is identically zero in the isotropic sector, and so, a

.
s

FIG. 2. Log–log plot of second-order mixed structure functi
at 0.54 m. X denote data, the solid line is the interpolation fit~not
visible beyond anR of 1021 m because of the closely packed sym
bols!, and O correspond to the large-scale compensated functio
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scaling behavior that it obeys should come solely from
isotropy. By computing Eq.~2! and examining its scaling
we intend to extract the purely anisotropic scaling behav
in the j 52 sector, uncontaminated by any isotropic scali
in contrast to the case of either longitudinal or transve
structure functions.

This statement provides us the motivation for examin
the measured structure functionsS31(R) at each height.
However, as we shall see shortly, apart from the expectedR2

behavior in the dissipative range and saturation at some l
scale, there appears to be no distinct inertial range sca
We suspect that this happens because there is poor
separation, since the probes are fairly close to the ground
fact, the large scales~which we expect to be of the order o
the height of the probe from the ground and larger@3#! may
be encroaching significantly into the inertial range. W
would be aided materially in our search for scaling if, som
how, the large-scale effects can be separated. One wa
doing this is to write down an interpolation function th
models the entire structure function in its three different sc
ing regions—a dissipative range that scales likeR2 whenR is
of the order of the Kolmogorov scaleh, a large-scale behav
ior that tends to saturate~indicating decorrelation! asR gets
to be larger thanL, and the intermediate inertial range fo
h!R@L which may exhibit scaling. Through the use of th
interpolation formula, one can extract the scaling part in
natural way. This is described below.

A suitable form of the interpolation function is given i

TABLE II. Structure function calculated and the anisotrop
scaling exponents for the data at 0.54 m.

Order
n Tensor An Bn Cn Dn zn

(2)5n22Cn zn

2 S31 3.9 0.014 0.39 0.67 1.22 0.7
3 S111 2400 0.010 0.93 2.28 1.14 1
4 S3331 5200 0.014 1.21 0.27 1.58 1.2
5 S11111 1.223107 0.029 1.59 3.09 1.82 1.56
6 S333111 3.753107 0.041 1.93 0.50 2.14 1.71

FIG. 3. Log-log plot of second-order mixed structure function
0.27 m. The legend is the same as for Fig. 2.
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Ref. @8# for structure functions of arbitrary order. It has th
form

Sa1a2•••an~R!5
Anhn~R/h!n

~11Bn~R/h!2!Cn
~11Dn~R/L !!2Cn2n,

~3!

where An , Bn , Cn , and Dn are variable parameters. Th
formula is an extension of that given in Ref.@9# and includes
a large-scale term. Such extensions have been attempted
lier ~e.g., Ref. @10#!, but Dhruva @8# has shown that the
present interpolation formula works extremely well for lo
gitudinal structure functions of order 2, 4, and 6. To re
force this point, we test its performance by comparing it
the measured transverse structure function,a5b51, R in
the direction 3. For each data set, the height of the prob
assumed to be the large-scaleL. The fit is shown for the
transverse structure function of orders 2 and 4 at the 0.5
probe in Fig. 1. The comparison between the formula and
data is excellent. Taken together with similar conclusions
@8# for longitudinal structure functions, we conclude that t
interpolation formula describes the familiar structure fun
tions very well. For this pragmatic reason, we shall adop
for our purposes here, and test the robustness of the re
obtained in the appendix.

In the formula~3!, the large-scale behavior is given by th
factor (11D2(R/L))2C222. If the measured structure func
tion is divided by this factor, we should recover the cont

TABLE III. Structure function calculated and the anisotrop
scaling exponents for the data at 0.27 m.

Order
n Tensor An Bn Cn Dn zn

(2)5n22Cn zn

2 S31 9.4 0.005 0.44 0.52 1.12 0.7
3 S111 6940 0.015 0.89 2.78 1.21 1
4 S3331 2.13104 0.014 1.23 0.23 1.54 1.26
5 S11111 5.93107 0.028 1.58 3.52 1.84 1.56
6 S333111 2.73108 0.038 2.00 0.34 2.00 1.71

t

FIG. 4. Log-log plot of third-order transverse structure functi
at 0.54 m. The legend is the same as for Fig. 2.
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bution of the remaining parts—in particular the inertial ran
part, with the leading order scaling exponent given by
22C2.

Figures 2 and 3 display a second-order anisotropic st
ture function for two heights above the ground. Presuma
because of the finiteness of the Reynolds number and
relatively large shear effect, the scaling in the intermedi
rangeh,,R,,L is not apparent. However, by dividin
out the large-scale contribution as described above, we
two distinct regions of scaling; the dissipative range of;R2

and the extended midrange which scales with exponent
tween 1.22 and 1.12. The advantage of the scaling functio
thus evident: it has allowed us to unequivocally extrac
scaling exponent that is most likely to be due to anisotro
The values of the fitted parameters and the correspon
z2

(2) are given in Tables II and III for the probes at 0.54 a
at 0.27 m, respectively. The error on the measurement oC2
at 0.54 m is about 0.05 while at 0.27 m it is about 0.08. T
gives an error on the estimates ofz2

(2) of 0.07 and 0.11,

FIG. 5. Log-log plot of third-order transverse structure functi
at 0.27 m. The legend is the same as for Fig. 2.

FIG. 6. Log-log plot of fourth-order mixed structure function
0.54 m. The legend is the same as for Fig. 2.
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respectively. This places the theoretically expected value
'4/3 within 1.5 to 2 standard deviations of the prese
value. This result is consistent with general expectations@4#
and the findings of Ref.@2#.

B. Higher-order structure functions

In general, the tensor forms contributing to thej 50 sec-
tor for tensors ofany rank n are composed of linear comb
nations of the Kronecker-d and the components ofR along
the tensor indices. The following is a list of isotropic tens
contributions for rank 3 through 6:

~i! n53: dabRg 1 permutations, andRaRbRg;
~ii ! n54: dabdgd 1 permutations,dabRgRd 1 permuta-

tions, andRaRbRgRd;
~iii ! n55: dabdgdRm 1 permutations, dabRgRdRm

1 permutations, andRaRbRgRdRm;

FIG. 7. Log-log plot of fourth-order mixed structure function
0.27 m. The legend is the same as for Fig. 2.

FIG. 8. Log-log plot of fifth-order transverse structure functio
at 0.54 m. The legend is the same as for Fig. 2.
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2210 PRE 62SUSAN KURIEN AND KATEPALLI R. SREENIVASAN
~iv! n56: dabdgddmn 1 permutations,dabdgdRmRn

1 permutations, dabRgRdRmRn 1 permutations, and
RaRbRgRdRmRn.

Based on the above considerations, it can be expected
the structure function components that are zero in thej 50
sector are:

~i! n53: S111 ~ transverse!, S331;

~ii ! n54: S3331,S3111;

~iii ! n55: S11111 ~ transverse!, S33111,S33331;

~iv! n56: S333111,S311111,S333331

.

Note that the odd-order transverse structure function isal-
wayszero in the isotropic sector. The functions we shall n
consider are given in the second column of Tables II and
For the case of the third- and fifth-order transverse struc

FIG. 9. Log-log plot of fifth-order transverse structure functi
at 0.27 m. The legend is the same as for Fig. 2.

FIG. 10. Log-log plot of sixth-order mixed structure function
0.54 m. The legend is the same as for Fig. 2.
hat

I.
re

functions we use the moments of theabsolute valueof the
velocity differences in order to obtain better convergence
using the interpolation function we assume that the iner
range scaling of these anisotropic components is given b
single exponentzn

( j ) where the superscript denotes an isot
pic exponent without reference to the precisej-sector. The
compensated functions~with large-scale effects removed! are
shown in Figs. 4–11. The errors on the value ofzn

(2) obtained
are about 7% at 0.54 m and about 9% at 0.27 m. For co
parison, the last column in Tables II and III gives the isotr
pic scaling exponent of the same order@8#. The entries in this
column are measurably smaller than the correspond
nonisotropic exponents. This suggests that the isotropic c
ponent alone survives at very small scales.

IV. SUMMARY AND CONCLUSIONS

We have presented a method of extraction of anisotro
exponents that avoids mixing with the isotropic sector. W

FIG. 11. Log-log plot of sixth-order mixed structure function
0.27 m. The legend is the same as for Fig. 2.

FIG. 12. Log-log plot of the shear-stress cospectrumE13(k3)
computed at 0.54 m. The inset shows a log–log plot ofk3

2.1E13(k3)
vs. k3. The flat region indicates a region of scaling with expone
22.1.
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do this by explicitly constructing the tensors that are zero
the isotropic sector. An operational step in the extraction
the scaling exponents is the use of an interpolation form
in the spirit of a ‘‘scaling function.’’ This method has a
lowed us to examine anisotropic effects in structure funct
tensors of order greater than 2 for the first time. The resul
anisotropic exponents are consistently larger than th
known for isotropic parts at all orders. This strongly sugge
that anisotropy effects decrease with decreasing scale. H
ever, the rate of decrease is much slower than expected
dimensional arguments~which yield 4/3, 5/3, 2, 7/3, and 8/3
for orders 2 through 6!.

Our conclusions are based on the use of the interpola
formula, Eq.~3!. However, we have shown that the formu
works very well in describing the measured structure fu
tions. We have also performed tests of the robustness o
formula by fitting it to smaller sections of the data in order
detect changes in the exponent. A discussion of these ch
and their results are presented in the Appendix. To the low
order, the results are independent of theR-segment to which
the formula is fitted~except, perhaps, when the fit is entire
for the dissipation range or the large-scale range!. Any other
formula that works equally well will yield similar results
Even so, the formula is empirical, which is why we have n
paid much attention to the fact that the scaling expone
obtained for the two probe positions are slightly differe
and that the second-order exponent for 0.54 m is sligh
larger than that obtained for the third-order. On the who
the trend is that the exponents become larger for larger
ders of the structure function.

The most interesting conclusion of the present work
that the anisotropy effects vanish with decreasing scale m
slowly than expected. That anisotropy effects persist at sm
scales can be seen already at the level of second-order
tistics. To illustrate this point, we consider the on
dimensional cospectral density~or shear-stress cospectrum!
E13(k3), which is zero in the case of isotropy. From dime
sional considerations, the scaling exponent for this objec
27/3 ~see Ref.@4#!. Figure 12 shows the cospectrum com
puted for 0.54 m. The inset shows that the cospectrum c
pensated with a scaling exponent of22.1 is flat. To the
extent that this is numerically smaller than 7/3, the decay
anisotropy is slower than expected, even for second-o
quantities. The same conclusion can be drawn from the
relation coefficient spectrum defined by

R13~k3!5
2E13~k3!

@E11~k3!E33~k3!#1/2
. ~4!

TABLE IV. Second-order:z2
(2)51.2560.05.

C2 0.3560.1 0.3560.05 0.3960.02 0.3860.05 0.3860.07
z2

(2) 1.3160.2 1.3060.10 1.2160.04 1.2460.10 1.2360.14

TABLE V. Third-order:z3
(2)51.1460.11.

C3 0.9960.03 0.9560.04 0.8860.07 0.9160.04 0.9660.08
z3

(2) 1.0160.06 1.1060.08 1.360.14 1.260.08 1.160.16
n
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To avoid duplication, we simply state the result that th
correlation coefficient rolls off at the rate of'21/2 instead
of the expected22/3. It must be recalled that the dimen
sional analysis assumes Kolmorogov@11# scaling and there-
fore does not account for possible intermittency correctio
in the anisotropic sectors.

The expectation in the light of the SO~3! formalism is that
a hierarchy of increasingly larger exponents, correspond
to increasingly higher-order anisotropic sectors@12#, would
exist. This expectation appears to have been true in the
of the passively advected vector field@13# where a discrete
spectrum of anisotropic scaling exponents is obtained th
retically for all anisotropic sectors. In the present expe
ments, the fact that the anisotropic effects can be fitted
sonably well by power laws~as seen from Figs. 2–11!
suggests that the high-order effects may be small. It is p
haps true, however, that the power laws described here
contain high-order corrections, and that the exponents
duced for the behavior of anisotropy may indeed unde
some revision when contributions from the other sectors
the SO~3! decomposition are also considered. In spite of t
possibility, we wish to emphasize that the anisotropy effe
for each order of the structure function appear to be w
described by something close to a power law with a sin
exponent. This observation requires further investigati
both theoretically and experimentally. Our main conclusi
is that the magnitude of the anisotropic exponents in e
order indicate that the falloff from isotropy happens le
sharply than previously thought, but that they fall off neve
theless. The higher-order objects considered here have
been studied extensively in the light of anisotropy. We ho
that the present experimental results will provide an impe
in this direction.
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APPENDIX: TESTS OF THE ROBUSTNESS OF RESULTS

In order to test the robustness of the interpolation formu
we performed the following additional calculations. We co
sidered the data from the probe at the height of 0.54 m.
each ordern of the structure function, we defined a ‘‘win
dow’’ of data extending over two decades of the separat
scale,R. We first placed the lower edge of the window we
inside the dissipation range and fit the interpolation form
to the data in the first window. We then moved the low
edge of the window by half a decade and fit the formula
the data in the next window. In this manner, we proceed
until the upper edge of the last window corresponded to
largest value ofR. The entire range ofR yields five windows.
We thus obtained five values of the parameterCn and calcu-
late the scaling exponentzn

(2)5n22Cn in each case, giving

TABLE VI. Fourth-order:z4
(2)51.6160.13.

C4 1.2160.07 1.1260.09 1.1560.03 1.2960.1 1.2160.08
z4

(2) 1.5860.14 1.7660.18 1.760.06 1.4260.2 1.5860.16
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some indication of the robustness of our result.
Tables IV–VI present the results of performing the

checks on structure functions of the second-, third-, a
fourth-order. The mean and standard deviation of the ex
nent values are given in the caption for each table.
pp

d

n

d
o-

It is found that the mean value in each case is in clo
agreement to the value of the exponents presented in
main text which were obtained by a fit to the entire range
data. This gives us some confidence in the use of the in
polation formula.
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