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The wall-normal position in pipe and channel flows at which viscous
and turbulent shear stresses are equal
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The Reynolds number dependence is estimated for the wall-normal position at which the turbulent
and viscous shear stresses are equal. For large Reynolds numbers, this position coincides with the
peak location of the mean momentum transport terms due to turbulent and viscous action.
Experimental data are used to corroborate the results and assess some quantitative details. ©1999
American Institute of Physics.@S1070-6631~99!02410-1#
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In wall-bounded turbulent flows, it is believed that th
statistics of turbulence very close to the wall scale on w
variables alone, independent of the bulk Reynolds numbe
the flow. The wall variables are the friction velocityU*
([Atw /r, wheretw is the wall shear stress andr is the
fluid density! and the kinematic viscosityn. Empirical
evidence1,2 suggests that this is indeed true as a first appro
mation. However, a closer inspection of the data3 reveals that
even quantities measured very near the wall show some R
nolds number dependence. It is important to understand s
dependencies because they offer clues to the inner–oute
teraction, which is the key feature of wall-flows.4 We exam-
ine here the Reynolds number dependence of the w
normal position at which the turbulent shear stress equals
viscous stress, and relate it to those positions at which
bulence production and momentum transport attain their
spective maxima. We shall restrict attention to fully dev
oped channel and pipe flows.

All the quantities to be used here are normalized by w
variables, so we dispense with the conventional notation
using the suffix ‘‘1’’ to identify them. The wall-normal co-
ordinate isy. The mean momentum equation is then exac

t t~y,R* !1tv~y,R* !512y/R* , ~1!

wheret t andtv are the turbulent and viscous shear stres
and R* [U* h/n, h being the channel half-height or pip
radius. If we denote the position wheret t5tv as ỹ and the
common stress value there ast̃, then we have from~1!

t̃5 1
2 ~12 ỹ/R* !. ~2!

The limiting value of t̃ is, of course, 1
2. Let ỹ`

5 limR ˜` ỹ. The boundedness ofỹ follows from the em-
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pirical fact that in channel and pipe flows the viscous str
decreases monotonically withy and has significant suppor
only in a thin layer adjacent to the wall. It then follows th

ỹ5 ỹ`1 f ~R* !, ~3!

where f (R* ) is an unknown function of R* with
limR

*
˜` f (R* )50.

Before discussing the nature off (R* ), we may relateỹ
to the position of the peak turbulence production locatio
yp . The product of the turbulent and viscous stressesP
5t ttv) is the production of turbulent energy by way of i
extraction from the mean flow. On differentiatingP with
respect toy ~the derivatives being denoted by the overs
dot! and using Eq.~1!, we have, at the position of pea
production,

t t

tv
52

ṫ t

ṫv

511
1

R* ṫv

. ~4!

Because the viscous stress decays monotonically with
distance from the wall,ṫv is negative definite, and it follows
from Eq. ~4! that t t<tv at yp . In turn, this implies, again
because of the monotonic decay oftv , that yp< ỹ. That is,
the peak of the production occurs no further from the w
than the point where the turbulent and viscous stresses
equal. In the limitR*˜`, yp will trivially coincide with ỹ
@from the property of the functionx(12x)].

Let us now consider the positions of extrema of the t
transport terms,ṫ t and ṫv . Their sum is constant iny, equal
to the mean pressure gradient driving the flow. This follo
from differentiating~1! with respect toy. The constancy of
the sum of the transport terms implies that their extrema w
6 © 1999 American Institute of Physics
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coincide, say atym . The limiting behavior ofyp in conjunc-
tion with Eq. ~4! implies thatym will coincide with yp for
largeR* .

We now turn to experimental data to assess the num
cal value ofỹ` and the functional form off (R* ). First, we
should note that accurate measurements near the wal
hard to make, and so a consistency check would be desir
Experimentally,the quantitiesỹ and t̃ are independently
measured quantities, and so can be checked against Eq~2!.
The outcome of this test is quite satisfactory.

The sign off (R* ) can be discerned as follows. Figure
1~a! and 1~b! show, for two different sets of experiments,tv
as a function ofy near the wall in turbulent channel flows
The shape oftv does not seem to change withR* for the low
Reynolds number data@Fig. 1~a!#, but shows a modest shif
towards the wall in the high Reynolds number data@Fig.
1~b!#. A conservative statement is that the position oftv
50.5 does not move away from the wall asR*˜`. This
fact, in conjunction with the monotonic decay oftv , implies
that f (R* )>0. That is, theỹ approachesy` from above.

To determine the shape off (R* ), we use experiments in
conjunction with Eq.~3! and Eq.~1!, the latter rewritten as

122t̃;
ỹ`

R*
1

f ~R* !

R*
~R*˜`!. ~5!

The function f could decay withR* like R
*
2a , where a

.0, or like 1/lnR* , or take a more complex form. It i
prudent to consider the two simplest situations just m

FIG. 1. Viscous stresstv near the wall in turbulent channel flows. The da
in ~a!, from Eckelmann~Ref. 5! for @1# R* 5142 and@3# R* 5208, were
obtained directly from the published plot of the turbulent shear stresst t .
The data in~b!, from Laufer~Ref. 6! for @1# R* 5522,@3# R* 51177, and
@h# R* 52275, were obtained by differentiating~using center difference!
the mean velocity data.
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tioned; upon testing them both, we lean towards the pow
law behavior—this being consistent with the tradition in t
asymptotic analyses of turbulent flows.

Figure 2 shows a plot ofỹ with 1/R* for various channel
and pipe flows. Clearly, no universal curve of the form~3!
can be fitted to all the data, and systematic errors may in
account for the observed differences among the various
periments. One also has to allow for the possibility thatỹ` is
different for pipes and channel flows. In spite of these unc
tainties, one trend that seems to stand out in the plot is t
within a given set of experiments~represented by the sam
symbols and joined by lines for clarity!, ỹ does decrease with
increasingR* . This is consistent withf being nonnegative
definite. The scatter in the data does not allow us to spe
ỹ` to better accuracy than between 10 to 12; we pick
average value of 11~and make no distinction between cha
nel and pipe flows!.

By subtractingỹ` /R* from 122t̃, we should have the
functional form of f (R* )/R* . This quantity is plotted in
Fig. 3 against 1/R* . Motivated by the prejudice for powe
laws, we have attempted various fits of the formf (R* )
5a/R

*
m2b/R

*
2m to the data. The one with the least err

FIG. 2. Variation of ỹ with Reynolds numberR* . Data from the same
source are joined by a line. Experimental data:@1# Eckelman~Ref. 5!
~Channel,R* 5142, 208!; @h# Laufer ~Ref. 6! ~Channel,R* 5522, 1177,
2275!; @3# Kim et al. ~Ref. 7! ~Channel, DNS,R* 5180!; @s# Comte-
Bellot ~Ref. 8! ~Channel,R* 52117, 4324, 7309!; @n# Laufer ~Ref. 1!
~Pipe,R* 51055, 8250!; @,# Zagarola~Ref. 9! ~Channel,R* 5850, 1090!.
Although the scatter from different sources mask possible Reynolds num
trend, each set of data shows a decreasing trend with increasing Rey
number.

FIG. 3. Variation of f (R* )/R* with 1/R* , as described in the text. The
symbol key is the same as in Fig. 2.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp



e
no
n-
de
th

e

o
n

ach
ni-

gn,
adi-

s

o-

ven
of

ch-

ith
.

he

ent

,’’

ed

’’
969

s,
iver-

ra
ea
s
th

rm

3188 Phys. Fluids, Vol. 11, No. 10, October 1999 A. Sahay and K. R. Sreenivasan
corresponds tom5 1
4. This fit, shown in Fig. 3, appears to b

an adequate representation of the data. Note that this
monotonic behavior off (R* ) arises because we have co
sidered both low and high Reynolds number data; consi
ation of only the high Reynolds number data yields just
first term ~or a slight modification of it!.

Another useful observation, ensuing from the limit ofyp

and from ~4!, relates to the ratio of the magnitude of th
viscous transport term to the mean pressure gradient (R* ṫv).
This ratio will increase without bounds asR*˜`. It is in-
teresting to note that although the sum ofR* ṫv andR* ṫ t is
unity throughout the channel~or pipe!, both transport terms
change rapidly near the wall, achieving peak values
O(R* ). Figure 4 shows the balance of the momentum tra
port terms at a low Reynolds number (R 5180! for a turbu-

FIG. 4. Mean momentum transport normalized by the mean pressure g
ent. Calculation of the transport terms involved differentiating the m
velocity data twice. Thus, the location of the peaks and the magnitude
the transport terms may be uncertain. The figure shows unmistakably
the balance near the wall involves the difference between two large te
The data are from Kimet al. ~Ref. 7! at R* 5180.
*
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lent channel flow. Near the wall the transport terms are e
large ~up to 10 times the mean pressure gradient in mag
tude! but of opposite sign. The net transport~of order unity!
is thus the difference of two large terms~of orderR* ). Away
from the wall both transport terms are of the same si
having magnitudes of the order of the mean pressure gr
ent.

The main qualitative conclusion is thatỹ depends on
R* . In the limit of large Reynolds numbers, it coincide
with the peak location of the turbulence production~trivi-
ally!, and with the location of the extrema of the mean m
mentum transport~both turbulent and viscous!. The results
indicate that there are slow Reynolds number changes, e
very close to the wall, in the mean and fluctuating parts
the flow.
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