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The Reynolds number dependence is estimated for the wall-normal position at which the turbulent
and viscous shear stresses are equal. For large Reynolds numbers, this position coincides with the
peak location of the mean momentum transport terms due to turbulent and viscous action.
Experimental data are used to corroborate the results and assess some quantitative det@ig® ©
American Institute of Physic§S1070-663(99)02410-]

In wall-bounded turbulent flows, it is believed that the pirical fact that in channel and pipe flows the viscous stress
statistics of turbulence very close to the wall scale on walldecreases monotonically withand has significant support
variables alone, independent of the bulk Reynolds number adnly in a thin layer adjacent to the wall. It then follows that
the flow. The wall variables are the friction velocity,
(=+V7w/p, wherer,, is the wall shear stress andis the V=V, +f(R,) 3)
fluid density and the kinematic viscosity. Empirical * *o
ewd_encé suggests that th!s is md_eed true as a first approxiwhere f(R,) is an unknown function ofR, with
mation. However, a closer inspection of the datveals that limg . f(R,)=0.
even quantities measured very near the wall show some Rey- *
nolds number dependence. It is important to understand sucih o ) .

. . .10 the position of the peak turbulence production location,
dependencies because they offer clues to the inner—outer in-

teraction, which is the key feature of wall-flof&Ve exam- Yp- The product of the turbulent and viscous stresses (

ine here the Reynolds number dependence of the wall 7t7v) IS the production of turbulent energy by way of its

normal position at which the turbulent shear stress equals theextractlon from the mean flow. On differentiatirig with

viscous stress, and relate it to those positions at which tu'r_espect toy (the derivatives being denoted by the overset

bulence production and momentum transport attain their reC-jOt) and using Eq(1), we have, at the position of peak

Before discussing the nature 6fR, ), we may relatey

spective maxima. We shall restrict attention to fully deveI-prOdUCtlon’
oped channel and pipe flows. _
All the quantities to be used here are normalized by wall 7, Ty
variables, so we dispense with the conventional notation of T_v: - Z: 1 R, 7, (4)

using the suffix “+" to identify them. The wall-normal co-
ordinate isy. The mean momentum equation is then exactlyBecause the viscous stress decays monotonically with the
distance from the wallr, is negative definite, and it follows
(Y, Re) + 1y (Y,Re) =1-Y/IR, (1) from Eq. (4) that <7, aty,. In turn, this implies, again

where 7, and 7, are the turbulent and viscous shear stressetﬂ)?cause of the m°“°t°r?'° decay o, thaty,=<y. That is,
e peak of the production occurs no further from the wall

{r:l;:iuRs*?ljvz hé:nc:lebfk:zg ;Ziioc:?/\r/]r?el half—zigrznzrtﬁépe than the point where the turbulent and viscous stresses are
' P ere= 7y asy equal. In the limitR, —, y, will trivially coincide with y

common stress value there ‘asthen we have fronf1) [from the property of the functiom(1—x)].
Let us now consider the positions of extrema of the two

m=3(1-Yy/R,). (20 transport termsy, and 7, . Their sum is constant iy, equal

- ~ to the mean pressure gradient driving the flow. This follows
The limiting value of 7 is, of course, 7. Let Y.  from differentiating(1) with respect toy. The constancy of
= IimR*_,w y. The boundedness gf follows from the em- the sum of the transport terms implies that their extrema will
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% % FIG. 2. Variation ofy with Reynolds numbeR, . Data from the same
v 8 oa s source are joined by a line. Experimental ddta:] Eckelman(Ref. 5
x (Channel,R, =142, 208; [O] Laufer (Ref. 6 (Channel,R, =522, 1177,
Ty Yt % x N 2279; [X] Kim et al. (Ref. 7) (Channel, DNSR, =180); [O] Comte-
0:5 o Bellot (Ref. 8 (Channel,R, =2117, 4324, 7309 [A] Laufer (Ref. 1)
8 g # (Pipe,R, =1055, 8250, [ V] Zagarola(Ref. 9 (Channel R, =850, 1090.
8 x Although the scatter from different sources mask possible Reynolds number
(b) trend, each set of data shows a decreasing trend with increasing Reynolds
number.

Y tioned; upon testing them both, we lean towards the power-

law behavior—this being consistent with the tradition in the
FIG. 1. Viscous stress, near the wall in turbulent channel flows. The data asymptotic ana'yses of turbulent flows.
in (), from EckelmannRef. 5 for [ +] R, =142 and[ X ] R, =208, were . ~ . .
obtained directly from the published plot of the turbulent shear stress F'Qure 2 shows a pIOt Qf W't_h 1/R* for various channel
The data in(b), from Laufer(Ref. 6 for [ +] R, =522,[ x] R, =1177,and  and pipe flows. Clearly, no universal curve of the fo(&
[O] R, =2275, were obtained by differentiatingsing center differenge  can be fitted to all the data, and systematic errors may in fact

the mean velocity data. account for the observed differences among the various ex-

periments. One also has to allow for the possibility $hats
. it ' olies th il coincide with v f different for pipes and channel flows. In spite of these uncer-
tion with Eq. (4) implies thaty, will coincide with y, for  aindies one trend that seems to stand out in the plot is that,

largeR, . , within a given set of experimentsepresented by the same
We now turn to experimental data to assess the numeri- - . ~ .
~ . . symbols and joined by lines for clarityy does decrease with

cal value ofy,, and the functional form of (R, ). First, we

increasingR, . This is consistent with being nonnegative

should note that accurate measurements near the wall afRinite The scatter in the data does not allow us to specify
hard to make, and so a consistency check would be desirable. ) .

) L~ ~ ) Y. to better accuracy than between 10 to 12; we pick the
Experimentally,the quantitiesy and = are independently

" ) average value of 1land make no distinction between chan-
measured quantities, and so can be checked againg2Eq. nel and pipe flows

The outcome of this test is quite satisfactory.
The sign off (R, ) can be discerned as follows. Figures
1(a) and 1b) show, for two different sets of experiments,
as a function ofy near the wall in turbulent channel flows.
The shape of, does not seem to change wiy for the low
Reynolds number dafdig. 1(a)], but shows a modest shift
towards the wall in the high Reynolds number dfffg. 0.03
1(b)]. A conservative statement is that the position 7Qf
=0.5 does not move away from the wall B3 —~. This
fact, in conjunction with the monotonic decay gf, implies 002 ° J— <
thatf(R,)=0. That is, they approachey.. from above. f(R.) .
To determine the shape &R, ), we use experimentsin R oo} 2 °
conjunction with Eq.3) and Eq.(1), the latter rewritten as e

coincide, say ay,,. The limiting behavior ofy, in conjunc-

By subtractingy.. /R, from 1—27, we should have the
functional form of f(R,)/R, . This quantity is plotted in
Fig. 3 against R, . Motivated by the prejudice for power
laws, we have attempted various fits of the foffR,)
=a/RT—b/R2™ to the data. The one with the least error

130 445
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2

8
=

-~ y. f(R
1—27~y—+ (Ry) (Ry—»). (5 : .
R, R, 1 2 8 4 5 6 7 8
E(xlO:’)

The functionf could decay withR, like R, *, where «

>0, or like 1/|an' or take a more cor_nple_x form- It IS FiG. 3. variation off(R,)/R, with 1R, , as described in the text. The
prudent to consider the two simplest situations just mensymbol key is the same as in Fig. 2.
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w0l ' T lent channel flow. Near the wall the transport terms are each
R.; o °°°°o% ﬁ%m +Ry7y = —1 large (up to 10 times the mean pressure gradient in magni-
st T % tude but of opposite sign. The net transp@of order unity
o . ° is thus the difference of two large terr(af orderR, ). Away
oﬁi ol from the wall both transport terms are of the same sign,
© having magnitudes of the order of the mean pressure gradi-
~ * ent
5 F +, ' ~
Ruty s . o mean pressure ——--- The mairj qualitative conclusion is that depeno!s on
0| e gradient . R, . In the limit of large Reynolds numbers, it coincides

] 1o 00 with the peak location of the turbulence productignivi-

ally), and with the location of the extrema of the mean mo-
mentum transportboth turbulent and viscousThe results
FIG. 4. Mean momentum transport normalized by the mean pressure gradindicate that there are slow Reynolds number changes, even

ent. Calculation of the transport terms involved differentiating the meanyery close to the wall, in the mean and fluctuating parts of
velocity data twice. Thus, the location of the peaks and the magnitudes (;E e flow
the transport terms may be uncertain. The figure shows unmistakably th p ’
the balance near the wall involves the difference between two large terms.
The data are from Kinet al. (Ref. 7 atR, =180. 1J. Laufer, The structure of turbulence in fully developed pipe flow, Tech-
1 o ) ) nical Report No. NACA-1174, 1954.
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