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Turbulence velocity measurements have been made in the surface layer of the atmosphere
at Taylor microscale Reynolds numbers between 10,000 and 20,000. Even at these high
Reynolds numbers, the structure functions do not scale unambiguously. It is shown that
the scaling improves significantly by implementing a plausible correction due to the mean
shear. For second and fourth order structure functions, the exponents for the corrected
data are close to those determined by extended self-similarity (ESS). ESS improves scaling
enormously for all orders, and is used to obtain exponents for moment orders between —0.08
and 10. Anomaly prevails even for very low orders. A major qualitative conclusion is that
it is difficult to discuss the scaling effectively without first understanding quantitatively the
effects of finite shear and finite Reynolds numbers.

§1. Introduction

Fully turbulent flows consist of a wide range of coupled scales which are classified,
somewhat loosely, into “large” and “small” scales. The large scales are of the order
of the flow width, contain most of the energy and dominate the transport. The
small scales include the dissipative range and the inertial range; the latter are large
compared to dissipative scales but small compared to the large scales. The notion
of universality is generally associated with Kolmogorov, 1) its principal originator,
and often designated as K41 for short. According to K41, the moments of velocity
increments, or the so-called longitudinal structure functions, obey the relation

(Dup) = C(r(e)™?, (1)

where u is the turbulent velocity fluctuation in the longitudinal direction z, Au, =
u(z + r) — u(x), r is the separation distance in the direction z, (e) is the mean
rate of energy dissipation, n is a positive integer and C, are universal constants. A
similar equation can be written for velocity increments with the separation distance
transverse to the direction of the velocity component.

Of these structure function relations, an exact relation is known only for the
third order.? This so-called Kolmogorov %—ths law is given for the inertial range by

(Aud) = ~r(e). (2)

Kolmogorov derived this result for globally homogeneous and isotropic turbulence.
Since the equation involves only velocity differences, it is thought that it might be
exact for all types of flows if only local homogeneity and isotropy holds. The demands
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on global isotropy can be relaxed, 3 but not, apparently, the assumption of global
homogeneity.

It is now believed*) that Eq. (1), and thus the K41 universality, does not hold.
It is thought, instead, that

(Aup) ~ 7, 3)

where it is presumed that the {,, are universal but the unspecified prefactors are
non-universal. Many experimental studies have been made purporting to show that
the ¢, in Eq. (3) are different from /3 and are anomalous (that is, (on # 2 X ().

Unfortunately, the experimental determination of ¢, is not fully satisfactory. The
first and obvious requirement for obtaining exponents unambiguously is the presence
of a wide scaling range. It is generally thought that the extent of the scaling range
increases as a power of the Reynolds number. However, the scaling range depends,
besides the Reynolds number, quite strongly on the nature and strength of forcing. ®)
It appears that the cleanest flow to study from the perspective of scaling is one in
which the forcing is mild and occurs in a very narrow scale range. Given that many
experiments do not satisfy this criterion and show ambiguous scaling, various self-
consistent -— but debatable — schemes have been used to determine the exponents.

One procedure is to plot the Kolmogorov function K(r) = (Aud)/r(e) as a
function or r and fix the scaling range as that over which K(r) = %. First, for K
to reach this value, one requires a Taylor microscale Reynolds number of the order
of a few hundreds.® Even then, unless the Reynolds number is truly large, there is
no scale range for which K is strictly flat. Its typical shape is shown in Fig. 1; also
shown is the presumed scaling range. This is then fixed for structure functions of
all orders, and exponents are obtained by least-square fits to the data within that
range. This procedure was first employed in Ref. 6), and later by others as well.
Even in the high-Reynolds-number helium experiments of Ref. 7), the situation is
not far better.

All measurements using this procedure have yielded a set of numbers for the
exponents which differ from n/3. Different flows seem to yield slightly different
numbers, but the uncertainties in the determination of the scaling range, the least-
square errors, and so forth, are large enough that one cannot be certain that the
differences among the flows are genuine. One thus clings to the notion of universal
exponents.

There is no rationale for keeping the scaling range unchanged for all orders
of structure functions. Its chief merit is its self-consistency. Other self-consistent
procedures can be rationalized. For example, one could require that the inner cut-
off for the n-th order structure function be set at a scale 7, such that the Reynolds
number

Ry = (| Au, ") v = (Aud) g v, (4)

where 7, is the lower cut-off for the n-th order structure function, and 73 is de-
termined as above. The thinking here is that the inertial range begins at a scale
for which R; assumes the value determined from the third-order — not at a fixed
multiple of the Kolmogorov scale for all moment orders, as implied previously. This
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Fig. 1. A typical plot of the Kolmogorov function K in the jet experiments of Ref. 6); Ry = 852. K
is not strictly flat anywhere, so the scaling region is thought to correspond to the part where the
deviations from constancy are “not too large”. The vertical lines are chosen to be those limits.
These limits are fixed to be the same for all high-order structure functions. The procedure has
been followed by a number of researchers since then. For reference, the Taylor microscale X is
shown by the single arrow; the double arrow indicates iL, where L is a suitably defined integral
scale.

moves the inner cut-off to slightly lower values for higher order moments. A corre-
sponding rationale for setting the upper cut-off is unclear, but one may set it at the
same fraction of the integral scale as for the third-order structure function. The net
outcome is that the exponents become marginally bigger. However, unless the flow
Reynolds number is immense, the modifications are well within the uncertainty of
measurements, and so one is again led to the conclusion that the anomaly survives. 8)

A slightly more sophisticated procedure comes from the realization that the
power-law part of the structure functions is only asymptotic, and that the inner and
outer scales will have finite effects at all finite Reynolds numbers. To this end, if
one had a theory for the scaling function -~ by which is meant an analytic form
for structure functions that not only exhibits the asymptotic power-law but also
the trend towards the power-law — one could determine the exponents with greater
confidence. At present, there is no such theory. There is a useful interpolation for-
mula? for second-order statistics, which has been extended to high-order moments
in Ref. 10). These formulae apply down to the smallest scales, thus increasing the
range of scales available for least-square fits. Firmer values for the exponents can
thus be obtained. They are anomalous as well, 10) quite close to those obtained by
earlier methods. However, the “scaling function” is not based on a formal theory, so
the method is not exact.

Yet another intriguing procedure V) is as follows. Inserting Eq. (2) in Eq. (3),
one may write

(Aup) ~ (Aud)ér. (5)

Since all structure functions have roughly the same shape, plotting one against the
other generally yields a somewhat more extensive scaling range and allows a more
confident determination of the exponents. This procedure is called extended self-
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similarity (ESS). In practice, one replaces Eq. (4) by
(Aup) ~ (| Au [Py (6)

without much justification, but it does not seem to produce any qualitative differ-
ences because, empirically, {| Au,|3) ~ (Au3)1% to an excellent approximation. Even
though the procedure works less well for sheared flows, !?) it produces a significant
improvement.

In summary, there exists no measurement until now that displays completely
convincing scaling over an acceptably large scaling range. Thus, one is forced to
invent several self-consistent procedures to estimate the exponents with greater con-
fidence. All such estimates display anomaly. The open question is whether these
estimates are equivalent to the theoretical exponents defined in Eq. (3), or suffer
from systematic and procedure-dependent artifacts.

§2. Experiments

Motivated by these considerations, we have made a series of measurements in
atmospheric turbulence at Taylor microscale Reynolds numbers ranging between
10,000 and 20,000. These Reynolds numbers are comparable to the highest ever used
for studies of the small-scale (e.g., Ref. 13)). The usual procedure of surrogating time
for space (“Taylor’s hypothesis” ) was used, but we have made a few tests to convince
ourselves that this is not a critical factor. The tests involved a few comparisons
with true spatial data obtained simultaneously from two probes separated by known
streamwise distances.

The velocity data were acquired by means of single-wire and x-wire probes
mounted at a height of about 35 m above the ground on a meteorological tower at the
Brookhaven National Laboratory. The hot-wires were about 0.7 mm in length and
6 pm in diameter. They were calibrated just prior to mounting them on the tower
(and checked immediately after dismounting), and operated on DISA 55M01 constant-
temperature anemometers. The frequency response of the hot-wires was typically
good up to 20 kHz. The voltages from the anemometers were low-pass filtered and
digitized. The low-pass cut-off was never more than half the sampling frequency,
fs. The voltages were constantly monitored on an oscilloscope to ensure that they
did not exceed the digitizer limits. Also monitored were on-line spectra from an HP
3561 A Dynamic Signal Analyzer. The wind speed and direction were independently
monitored by a vane anemometer mounted close to the tower. The voltages were
converted to velocities in a standard way through the calibration procedure. The
mean wind velocities, roughly constant over the duration of a given data set, ranged
between 5 and 10 ms~! in the experiment series. The Kolmogorov scale, 7, varied
between 0.44 and 0.64 mm among the various data sets. The real-time duration of
data records was typically of the order 2500 sec. Table I lists a few relevant facts for
the data records analyzed here.

Figure 2 shows the spectral density, E11(k1), for the velocity fluctuation, plotted
against the wavenumber k; (obtained via Taylor’s hypothesis, using the mean veloc-

ity U). The spectra are computed by splitting the long signal into smaller segments,
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Table I. Basic information about the data records analyzed in this paper. Here, the various symbols
have the following meanings: U = local mean velocity, u' = root-mean-square velocity, (e) =
energy dissipation obtained by the assumption of local isotropy and Taylor’s hypothesis, n and
A are the Kolmogorov and Taylor length scales, respectively, the microscale Reynolds number
R, =u'\/v, and f; is the sampling frequency.

U u {e) n A R fs, per number
ms™! | ms™? m?s™% | mm cm channel, Hz | of samples
7.6 1.36 32x107? | 0.57 | 114 10,340 5,000 | 107
4.8 1.45 20x10°% | 064 | 154 14,860 2,000 5 x 10°
8.3 2.30 78x 1072 | 0.45 | 13.0 19,500 5,000 4% 107
5.2 ] 1.80 | 0.92x107% [ 0.44 | 8.9 | 10,670 5,000 4x107
10°
10°
107
E, k) 107
10°
10°
107
10

Fig. 2. The longitudinal spectral density, E11(k1), as a function of the longitudinal component of
The first data set in Table I has been used. Taylor’s hypothesis has
been used for converting frequency to wavenumber. The inset shows the compensated spectrum
according to K41.

the wavenumber, k.

which are processed through a standard FFT routine and ensemble averaged. The
lowest wavenumber shown on the spectra is limited by the length of the segments
used for FFT, not by the length of the record. Spectral scaling appears to exist
for over three decades. The inset shows n?/ 3E11(/€1), which is the spectral density
compensated according to K41.
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§3. Two concerns

Figure 3 shows the Kolmogorov function K = (Au3)/r(e) as a function of spatial
separation distance r (normalized by ). The flat part of K is not far from 0.8, as
expected from the %-ths law. Loosely speaking, a scaling region for about two decades
could be inferred. It appears measurably smaller than that inferred from the spectral
density. Similarly, if one plots the second and fourth order structure functions against
the scale separation r, regions of plausible scaling do appear (Figs. 4(a) and (b)).

However, one runs into difficulties if one attempts to define the scaling range
more precisely by computing the local slopes of K and other structure functions.
For the former, one finds — at best — a small region about half-a-decade or so in
extent (inset to Fig. 3). This is not large enough for a precise evaluation of the
exponents. For second and fourth order exponents, insets to Figs. 4(a) and (b) show
that there are no clean scaling regions. If the situation is only this good at Ry of
19, 500, what can be said of turbulence at much smaller Ry7 How can one say with
any confidence there is scaling in turbulence, let alone determine the exponents with
certainty?

A second concern is the following. For universal exponents to exist, all inertial
range statistics obtained by conditioning on the large scale must be independent of
the large scale; or, if a dependence were to be observed, it should occur in some
universal way. In Ref. 15}, it was shown that the inertial-range conditional statistics

0
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Fig. 3. The Kolmogorov function K for the present atmospheric data (for the first data set in Table
I). It appears that the scaling range is quite extensive (although substantially smaller than in
Fig. 2). The inset indicates the local slope, obtained by finite difference approximation of K.
Interpreted blindly, the inset suggests that the scaling range is no more than half-an-order of
magnitude in extent, corresponding to the region where the local slope is close to zero.
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(Au:) fu?

Fig. 4. (a) The second-order structure function (normalized by the mean square velocity) as a
function of . At first sight, it would appear that there is an ample scaling region (shown by a
line of constant slope of 0.71), but the local slope (see inset) reveals that this is not the case.
(b) shows similar data for the fourth-order structure function. The conclusions are also similar.
The line has a slope of 1.28. The third set of data of Table I has been used.
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Fig. 5. The conditional expectation of AuZ, conditioned on the large-scale velocity u,, plotted as
a function of u,. Each symbol corresponds to a different separation distance r (defined by the
time interval At = —(jlu ). Here and in other figures, u, is taken as the velocity at the middle of

the interval (z, z + r), but other definitions of u, (for instance, as the average of the velocity at
the endpoints of the interval) make little difference. The first and second sets of data have been
combined. The lines are the least-square fits of Eq. (7) to the data between —2 and +2 standard
deviations. Similar conditional statistics for the fourth-order structure function reveal the same
qualitative behavior, and can also be approximated by Eq. (7) with a different set of coefficients.
In the second reference cited in Ref. 15), it has been shown that the energy dissipation, when
conditioned on the large scale, shows a qualitatively similar dependence.

do depend on the large-scale. Figure 5 illustrates this feature: the quantity (Au?|u =
u,) shows a strong dependence on the large-scale velocity u,, when u, is large. On the
other hand, the situation for homogeneous and isotropic turbulence is quite different,
as can be seen for the DNS data'?) (see Fig. 6(a)) and for the grid turbulence data
obtained using a standard set-up in the wind tunnel (see Fig. 6(b)). It is true
that the Reynolds numbers in these latter two cases are small in comparison to
the atmospheric data. However, if the large-scale effect did persist in the isotropic
case, it would have been stronger at these low Reynolds numbers. We may therefore
conclude that the inertial-range quantities show no dependence on the large scale in
isotropic turbulence. The fact that the large-scale effects are present in shear flows
(and are not universal), and that they are non-existent in shear-free isotropic case,
demands that one will have to understand the effects of shear on scaling.
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Fig. 6. (a) The same conditional statistics as in Fig. 5, for the DNS data for isotropic turbulence in a
periodic box. *) The Taylor microscale Reynolds number Rx = 210. Different curves correspond
to different values of the (true spatial) separation distance r, marked in units of the mesh length.
(b) shows the same quantities for the grid-turbulence data. These were obtained at a streamwise
distance of 52 cm behind a square mesh grid of mesh size 1.27 cm. The mean velocity was 12
ms™!, Ry = 60. In both (a) and (b), unlike in Fig. 5, the inertial range conditional statistics do
not show a perceptible dependence on the large scale velocity. Taylor’s hypothesis was used in

(b).
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§4. Effects of shear and viscous cut-off

It is worth stressing that Eq. (2) is an asymptotic expectation and that, at any
finite Reynolds number, the effects of the viscous scales and the large scales might
be felt in the inertial range. Without understanding these ‘corrupting’ effects on
scaling, the insistence on computing the local slopes is a misplaced delusion. The
extent of these corrupting influences is not known theoretically. Here, we discuss
them at a certain semi-empirical level.

For this purpose, let us return to Fig. 5 where the conditional variance of Au,
for fixed u, is given as a function of u, for several values of r. It is useful to fit the
data of Fig. 5 roughly by second-order parabola

(Au?’u == uo> = a2 + b2uo + 02u¢2)a (7)

where the dependence of the constants ay, by and ¢y on the separation distance r
is suppressed for simplicity. The quality of fits is less than perfect for large u,, but
can be improved by using a higher-order polynomial in u,. This does not change the
situation much, and the issue can be illustrated quite adequately by the second-order
fit. Similar fits have been obtained for the fourth-order conditional average.

We now make use of the identity

() = [~ (Auru = uo)pluo)duo ®

—O0Q
where n is either 2 or 4, and p(u,) is the probability density function of the large-scale
velocity u,. Combining Egs. (7) and (8), one obtains

(Au?) = an(r) + cn(r){ug). (9)

The by, terms drop out because the mean of u, is zero; in any case, p(u,) is symmetric
(see Fig. 7) which will render all odd-order terms zero in any high-order polynomial
fit to conditional statistics. The second term in the above equation would be absent
if the dependence on u, were absent; we would then be left with just the part
that is independent of the large scale. The large-scale dependence can be expressed
explicitly as a shear effect by rewriting the second term in Eq. (9) as

|0
" (e) ldyl’

where dU/dy is the shear (gradient of the mean velocity) and the prefactor ¢, is
redefined suitably. The rationale for introducing the shear is that the second term
would be zero without the mean shear; the rationale for introducing the absolute
value of the shear is the experience that the sign of the shear makes no difference to
the large-scale dependence.

We can thus separate the r dependence of structure functions in a shear flow
into two parts; the first term in Eq. (9) is the shear-free part and the second term
is due to the shear. It is useful to examine the scaling of the two terms separately.
Figure 8(a) shows a2 and a4 as functions of r for the atmospheric data. The inset
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Fig. 7. The probability density function (pdf), p(u,), of the large-scale velocity u,, plotted
in the logarithmic coordinate. The crosses correspond to the definition of u, as the
velocity at the mid-point of the separation interval (that is, the pdf is the same as that
of the velocity fluctuation). Other symbols correspond to the cases where u, is defined
as the average velocity between the endpoints of the separation interval. The different
definitions do not produce any perceptible difference in the pdf. The pdf is symmetric
(the skewness is —0.03) but not strictly Gaussian (the flatness factor is 2.66). The first
and second sets of data from Table I have been combined. The full line is Gaussian with
zero mean and unity standard deviation.

shows the local slopes. It is clear, in comparison with the local slopes of Figs. 4(a)
and (b), that a qualitative improvement has been achieved. This now enables scaling
exponents to be obtained with less ambiguity.

Let us now plot the ratios cz/az as well as cs/a4 as functions of 7. Figure 8(b)
shows that two ratios are small compared to unity. To a rough approximation, they
are constants in 7. These two facts suggest, first, that the effects of the large-scale on
the scaling properties are small and, second, that the shear does not affect the scaling
exponent itself (because ¢, scales roughly the same way as a,,). The dominant effect
of the shear occurs in the prefactor. We may then conclude that the expectation of
universal exponents is justified to a good approximation, but that the prefactors are
large-scale dependent. However, a closer look suggests that the ratios c /an, are not
exactly constants, so that some degree of corruption of scaling due to the ¢, term
is expected. It is this feature that improves scaling when the ¢, term is removed.
The scaling exponents determined from the a,, are indeed anomalous (¢2=10.71 and
¢4 = 1.28).
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Fig. 8.  (a) The scaling behavior of the shear-free parts a; and a4. The local slopes are
clearly suggestive of scaling. {2 ~ 0.71 and {4 ~ 1.28. (b) shows the ratios cy/as and
c4/a4. The first and second sets of data from Table I have been combined.
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1]

Fig. 9. The Kolmogorov function, K (crosses), and K after viscous corrections have been applied,
according to Eq. (10) (circles). The local slope of the corrected form, plotted also as circles in
the inset, shows a more extensive region where the Kolmogorov function is a constant.

An equally important effect is-that of the viscous scale propagating into the
inertial range. Let us examine this issue in the context of the third-order structure
function, for which — at least for homogeneous turbulence — we know the full
equation to be?

(a8 - 68O — )y (10)

where the second term on the left side is the viscous correction. When the viscous
correction is implemented, it is clear from Fig. 9 that better scaling than that of Fig. 3
is observed. Corrections expected from the large scales, not included in Eq. (10),
can be accommodated somewhat similarly to those for the second and fourth order
structure functions, but this will not be attempted here.

On the whole, these considerations show that the shear effects and cut-off effects
corrupt scaling to various degrees. If these ‘corrections’ can be identified and ex-
tracted, as illustrated for a few cases here, it appears that an extensive scaling region
could be observed for structure functions. Unfortunately, one does not quite know
how to account for the effects formally correctly (except the viscous-scale effects for
the third-order); the present work (see also Ref. 10)) constitutes no more than a
useful beginning.



116 K. R. Sreenivasan and B. Dhruva
§5. Scaling exponents from ESS

The exponents determined in the previous section for the second and fourth-
order structure functions, after removing the shear effects, are very close to those
determined by the ESS method. Exactly why the ESS method works is not fully
understood (see, for example, Ref. 16)), but there is no doubt that the scaling
improves measurably. This can be seen in Fig. 10 where the local slopes from ESS
have been plotted for the second and fourth order structure functions. There is little
ambiguity in obtaining the scaling exponents from here. It is possible that these
exponents could differ from the ¢, of Eq. (3). We have already mentioned that (;
and (4, determined after shear effects were removed, agree well with the ESS data.
We thus tend to think that all other ESS exponents may be similarly close to the
Cn. For this reason, we have made a systematic study of the ESS exponents. Table
IT lists these exponents. Figure 11 compares them with K41. It is clear that the
exponents are anomalous, as has been believed since the pioneering measurements
of Ref. 6).

One result to which attention should be drawn is that even the very low-order
exponents are anomalous (see inset to Fig. 11). This has already been noted in Ref.
18). (Note that for all non-integer orders of structure functions, we use the absolute

Fig. 10. Local slopes in the ESS plots for the second and fourth order structure functions. Both
(Au2) and (Au?) were plotted against (|Au.|*) and the local slopes "UZ'JT‘ were obtained.

These slopes were converted to ZM_“Q using the unique relation between (|Au,|3) and r. The

first set of data in Table I was used
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Fig. 11. ESS exponents for moment orders up to 10. Moment orders up to 6 converged well, but
the numbers for higher orders are somewhat uncertain. Inset shows the exponents for low-order
moments. The error bars for the numerical data are small and can be found in Ref. 17), from
where they have been taken.

values of velocity increments.)
§6. Concluding remarks

We have made a case that, despite some problems due to finite Reynolds num-
_ bers and finite shear, inertial range scaling does exist in high-Reynolds-number tur-
bulence. To be able to see the scaling clearly, one has to understand these effects
well. We have made a beginning for understanding the shear effects. Their removal
allows the scaling exponents to be determined with greater certainty. We have not
followed this through for exponents of all orders (because obtaining converged con-
ditional data for high-order moments is rather difficult) but, on the basis of what
we have studied, argue that the ESS exponents are close to the true exponents. We
have obtained the former quite reliably.

Two further points need to be made. First, one of the advantages of ESS is that
it can be applied to low Reynolds number data as well. This allows the determination
of the Reynolds-number effects on ESS exponents. As an example, Fig. 12 plots the
sixth-order exponent. This quantity decreases from a high value of about 2 to about
1.72, which appears to be the asymptotic value of (¢. It might at first seem surprising
that the value attained at the low-Reynolds-number end is close to K41. This may
partly be an artifact of the ESS method because, at low Reynolds numbers, the
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Table II.  Scaling exponents from ESS (R = 10, 340) compared with those for isotropic turbulence
from the DNS data. Typical experimental error bars are shown on Fig. 11. The error bars on
the DNS data can be found in Ref. 17) from where the exponents have been taken. They are
quite small.

order of DNS present
moment | exponents | exponents
—0.80 —-0.317 -0.313
—0.20 —-0.077 -0.078
0.10 0.036 0.039
0.20 0.073 0.076
0.30 0.112 0.113
0.40 0.150 0.150
0.50 0.187 0.190
0.60 0.223 0.221
0.70 0.260 0.265
0.80 0.296 0.292
0.90 0.332 0.333
1 0.366 0.372

1.25 0.452 0.458
1.50 0.536 0.542
1.75 0.619 0.628
2 0.699 0.708

3 1 1

4 1.279 1.26

5 1.536 1.56

6 1.772 1.71

7 1.989 1.97

8 2.188 2.05

9 2.320 2.20

10 2.451 2.38

scaling in ESS subsumes part of the dissipation region as well. For the latter, the
exponents are higher than for the inertial range. It is difficult to say whether the
asymptotic value at high Reynolds numbers is the same for shear flows and isotropic
turbulence, but such differences as might exist are not large. Finally, according to the
refined similarity hypothesis, ¥ the difference 2 — Ce is the so-called intermittency
exponent. In the asymptotic regime, 2 — (s is indeed equal to the intermittency
exponent determined independently. 20)

The second point is that we have used the x-wire data to measure the transverse
exponents (i.e., the exponents for the increments of transverse velocity component
separated in the longitudinal direction). The high Reynolds number of the present
measurements allows us to determine them with enough confidence to say that they
are measurably smaller than the longitudinal exponents.2!) The implications of this
result have been discussed in Ref. 22), and are outside the scope of this article.

Finally, it should be pointed out that there may be better quantities than struc-
ture functions?® if the scaling properties are the focus. This consideration is also
outside the scope of the present work.
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Fig. 12. The Rj-dependence of the sixth-order ESS exponent. Data from both isotropic
turbulence (DNS) and shear-flow turbulence (experiment) are presented. The DNS
sources are: Camussi and Guj,?? (R», () = (2.5, 1.95), (6.0, 1.89), (12.5, 1.83), (20,
1.79), (36, 1.81); Benzi et al.,'!) (38, 1.78); Briscolini et al.,?% (38, 1.78); Vincenti and
Meneguzzi, 26) (150, 1.76); Chen et al.,??) (181, 1.77), (212, 1.746). Experimental data:
Taylor-Couette flow 27, (188, 1.72) and (640, 1.72); present atmospheric data, (10,340,
1.71). The line is a convenient interpolation formula for the data.
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