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Direct numerical simulations of homogeneous turbulence in a periodic box are examined here to
support the traditional expectation that the dissipation rate at high Reynolds numbers is independent
of fluid viscosity, and is a constant of order unity when scaled on the integral scale and
root-mean-square velocity. However, the numerical value of the constant appears to depend on
details of forcing at low wavenumbers, or, perhaps, the structure of the large scale itsdl@9&®
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A basic premise in the phenomenology of turbulence is  Itis instructive to plot the data listed in Table I. Figure 1
that the mean energy dissipation rate), is independent of shows that the data organize themselves into two groups, in
the fluid viscosity v, as long as the latter is sufficiently small each of whichD decreases wheR, is small, just as in
(or the Reynolds number is sufficiently hight then follows  experiments, and tends to asymptote to a constant value be-
from dimensional considerations thad=(e)L/u® ap-
proaches a constant of order unity in the high'ReynmdSﬁ'ABLE I. D=(g)L/u® as a function of the Taylor microscale Reynolds
number limit. Hereu andL are the velocity and length scales numberR,=u\/». The Taylor microscale = (15vu?/(e))Y2 The num-
characteristic of the large scale motion of turbulence, such asers attributed to Yeung and Zhou are different by a few percent from the
the root-mean-square velocity and integral length scale. Th@ublishe_d data. The Iatt_er corre_spond to a slightly _di_fferent definit_ioh.of
significance of this premise has been emphasized at varioJ§'e ‘reV|sed data, consistent with the present definitioh,ofvere kindly
times!—3and attempts® have been made to test its tenability provided by P. K. Yeung.
in experiments. The experimental situation is somewhat dif- Source R, D Comments
ferent in different classes of flowsHere, we consider ho-

. . . ._ Jimenezet al? 35 1.09 forced
mogeneous and isotropic turbulence. In experimental realiza- 61 0.82
tions of this turbulence behind grid®— D.,=constant at 94 0.70
high Reynolds numbers. However, experiments also show 168 0.69
(see Figs. 2 and 3 of Ref) hatD., depends on some details Wanget al” 21 1.81 decaying
of turbulence generation at the grid itself. The suggestion, 68 0.86
then, is that the asymptotic value might depend on the nature igg g'ig forced
of large-scale forcing, or, perhaps, on the structure of the 151 043
large scale. With this in mind, data ¢n)L/u, obtained by 195 0.49
several authors from direct numerical simulations of turbu-Yeung and Zhou 38 0.69 forced
lence in a periodic box, are collected and presented. 90 0.46
Table | lists all the relevant data. In each case, the origi- igg g'ﬂ
nators of the data believe that the simulations have been 240 0.40
carried out for “sufficiently long times.” The quantiti€s),  caoet al® 24 0.95 forced
L andu are defined as follows: 70 0.51
103 0.45
3 . . 103 0.44
Euzz fo E(k)dk, <s>=2vf0 k2E(k)dKk, ﬁé gig
151 0.43
186 0.43
_m (=E(k) K 218 0.40
2utJo Kk 3Reference 6.
PReference 7.
HereE(k) is the energy spectrum, amdis the wavenumber ZReference 8.
. Reference 9.
magnitude.
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2 perhaps be manipulated moderately—even in isotropic
unfilled squares: Jimenez et al, forced turbulence—by adjusting in some manner the forcing
filled diamonds: Wang et al., decaying L. .
crosses: Wang et al., forced scheme or the large structure. Some preliminary calculations
unfilled diamonds: Yeung & Zhou, forced of Juneja(private communicationsuggest that the same de-

filled squares: Cao et al., forced . . . . .
e gree of manipulation might also be possible by varying the

<e>L/u3 e o
initial conditions. At present, we do not know enough to say
11 precisely how this can be done in a controlled way. To re-
2 solve this issue, one ought to implement systematic changes
; in the forcing scheme, the large-scale structure, and initial
P S conditions. That the large structure does influence the con-

stant D, is clear from experiments in homogeneously
sheared flows; in Ref. 5, it is shown th&t,=D.(S), S
being a non-dimensional shear parameter.
One is now left with the question as to whether the na-
Ry, ture of forcing at the large scale, and the resulting differences
o , _ , in the structure of the large scale, affect other aspects of
FIG. 1. The variation of the quantife)L/u® with the Taylor microscale 1 \jance as well. We have examined various small-scale
Reynolds numbemR, , in simulations of homogeneous and isotropic turbu- .. .
lence in periodic box. The symbols, described on the figure, correspond tStatistics from the sources cited here. There seems to be no
different sources of data noted in Table I. perceptible difference in this regard. But the scaling
range—as determined, for example, by Kolmogorov's 4/5-
yond someR, . However, the numerical value &, is not  ths law'—does depend on the nature of forcing: it can be
the same in the two groups. To compare them meaningfullgxtended or contracted depending on how one deals with the
with experiment$, the scaled. andu used there have to be energy level of the lowest few wavenumbers.
redefined slightly. The redefinition leads ,~0.73 for
square grids of round bars, and is in rough agreement with\CKNOWLEDGMENTS

the D,, for the upper curve in Fig. 1. It was noted in Ref. 4
* . . . Thanks are due to Dr. S. Chen, Dr. P.K. Yeung and Dr.
that D., assumes different values for grids of different con- Jimenez for discussions about their data, and t(g) a referee
figurations, especially for the active grids of Gad-el-Hak and; . '
Corrsin® or some perceptive comments.
Yeung and Zhou used a stochastic forcing confined to, . A ol
; P. G. Saffman, “Lectures on homogeneous turbulence,Tapics in Non-
the IIOW%StCtWO Orl thre.e vyavinumber Shef”S’ fWh"(la Wang linear Physics edited by N. ZabuskySpringer, Berlin, 1968 p. 487.
etal. an ao_et al. maintain the energy ot a ew owest 23 | |umley “Some comments on turbulence,” Phys. Fluids4A203
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