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Extraction of Anisotropic Contributions in Turbulent Flows
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We analyze turbulent velocity signals in the atmospheric surface layer, obtained by pairs of probes
separated by inertial-range distances parallel to the ground and (nominally) orthogonal to the mean
wind. The Taylor microscale Reynolds number ranges up to 20000. Choosing a suitable coordinate
system with respect to the mean wind, we derive theoretical forms for second order structure functions
and fit them to experimental data. The effect of flow anisotropy is small for the longitudinal
component but significant for the transverse component. The data provide an estimate for a universal
exponent from among a hierarchy that governs the decay of flow anisotropy with the scale size.
[S0031-9007(98)07959-9]

PACS numbers: 47.27.Gs, 05.40.+j, 47.27.Jv, 94.10.Jd

Experimental studies of turbulent flows at very highments contain important anisotropic contributions to one
Reynolds numbers are usually limited in the sense thatype of transverse structure functions.
one measures the velocity field at a single spatial point We analyze measurements in atmospheric turbulence at
as a function of time [1], and uses Taylor's hypothesisheights of 6 and 35 m above the ground (data sets | and
to identify velocity increments at different times with 1l). Set | was acquired over a flat desert with a long fetch,
those across spatial length scalgs, The standard and the Taylor microscale Reynolds number was about
outputs of such measurements are the longitudinal twot0000. Set Il was acquired over a rough terrain with ill-
point differences of the Eulerian velocity field and their defined fetch, and the microscale Reynolds number was
moments, termed structure functions: 20000 [6]. The data were acquired simultaneously from
n two single hot-wire probes separated by 55 cm (set I) and
5.(80) = ( ) @

40 cm (set ). In both cases, the separation distance was
) ) within the inertial range and was set nominally orthogonal
where(-) denotes averaging over time. In homogeneoug, the mean wind direction (see below). The hot wires,
and isotropic turbulence, these structure funct|o_ns argpout 0.7 mm in length ané um in diameter, were
observed to vary as a power law&h S,(R) ~ R, with  cajibrated just prior to mounting them on the meteorol-
apparently universal scaling exponegi2]. _ogy towers and checked immediately after dismounting.
Recent progress in measurements [3] and in simulationgpe hot wires were operated on DISA 55MO01 constant-
[4] begins to offgr information about the tgnsorlal ”aturetemperature anemometers. The frequency response of the
of structure functions. Ideally, one vyould Ilkg to measuren ot wires was typically good up to 20 kHz. The voltages
the tensoriakth order structure functions defined as from the anemometers were suitably low pass filtered and
Sy (R) = (u™(r + R) — u®(r)] digitized. The voltages were constantly monitored on an
X [u™(r + R) — u®(r)] qsciII(_)S(_:ope to ensure that they did not exceed the digi-
tizer limits. Also monitored on-line were spectra from an
~-[u*(r + R) — u*(r)]), (2) HP 3561A Dynamic Signal Analyzer. The wind speed
where the superscript; indicates the velocity component and direction were independently monitored by a direc-
in the directioni. Such information should be useful in tion indicator mounted on the tower (set I) or a vane
studying the anisotropic effects induced by all practical@nemometer a few meters way (set Il). The real-time du-
means of forcing. rations of data records were limited only by the degree of
In analyzing experimental data the model of “homoge-constancy demanded of the wind speed and its direction.
neous and isotropic small scale” is universally adopted]he Kolmogorov scales were about 0.75 mm (set I) and
but it is important to examine the relevance of this mode.45 mm (set Il). Table I lists a few relevant facts about
for realistic flows. One of the points of this Letter is the data records analyzed here. The various symbols have
that keeping the tensorial information helps significantlythe following meaningsU = local mean velocity ' =
in disentangling different scaling contributions to struc-root-mean-square velocity(e) = energy dissipation rate
ture functions [5]. Especially when anisotropy might leadobtained by the assumption of local isotropy and Tay-
to different scaling exponents for different tensorial com-or's hypothesisy; and A are the Kolmogorov and Taylor
ponents, a careful study of the various contributions idength scales, respectively, the microscale Reynolds num-
needed. We will show below that atmospheric measureberRx = u’A/v, andf; is the sampling frequency.

[u(r + R, ) — u(r,t)] - %
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TABLE I. Data sets | (first line) and Il (second line). A between the two probes. We make the simplifying
— ; > assumption of cylindrical symmetry about the mean-wind
U u 10%e), m A fs,per — No.of  girection. It is showna posteriori that this assumption

ms' ms' m’s® mm cm R, channel, Hz samples probably accounts for most of the anisotrofiyr this

41 108 11 0.75 15 10500 10000 4 X 107 particular geometrical setup.

83 230 78 045 13 19500 5000 4 X 107 To continue, we need to write down the tensor form

for the general second order structure function [defined

To test whether the separation between the two probdsy Eq. (2) forn = 2] in terms of irreducible represen-
is indeed orthogonal to the mean wind, we computed theations of the SO(3) rotation group. This tensor can be
cross-correlation functiofu;(r + 7)uy(z)). Here,u; and  written in terms of the representations of the direct prod-
up refer to velocity fluctuations in the direction of the uct of two three-dimensional Euclidean vector spaces (for
mean wind, for probes 1 and 2, respectively. If the sepathe indicesa, 8) and the space of continuous functions
ration were precisely orthogonal to the mean wind, thison the unit sphere (for the direction @) [7]. The
quantity should be maximum far = 0. Instead, for set latter is spanned by the spherical harmonligs,, and
I, we found the maximum shifted slightly to = 0.022' s,  the representations of the product space are indexed by
implying that the separation was not precisely orthogo-j, denoting a2j + 1 dimensional irreducible represen-
nal to the mean wind. To correct for this effect, the datatation. Every such representation is associated with a
from the second probe were time shifted by 0.022 s. Thiscalar functionc;(R), which is expected to scale with
amounts to a change in the ac_tual vaIl_Je of_ the orthogos niversal exponengz(”; the exponent is an increas-
nal distance. We computed this effective distance to bclen function of i and 2 = Previ theoretical
A = 54 cm (instead of the 55 cm that was set physi- g funcfion ofj, & & &2 e OI;JS eo(zt)a cd
cally). For set I, the effective separation distance was esconsiderations [8] led to the e_sﬂmatgé ~ 1,0~
timated to be 31 cm (instead of the physically set 40 cm)f‘/3- We are interested in relatively quest anisotropies
Next we tested the isotropy of the flow for separations oftnd S0 focus on the lowest order correction to the isotropic
the order ofA. Define the “transverse” structure func- (J = 0) contribution. In other words, we write
tion acrossA asS7(A) = (u1(Ut) — ux(Ut)]?) and the
“longitudinal” structure function ass; (A) = (u (Ut +
Uty) — ui(UD)?), wherery = A/U. If the flow were
isotropic we would expect [1]

S*BR) = SER) + SIER) + - (4)

We do not have g = 1 term since the possible contri-
butions to it vanish either because of parity considerations
Sr(A) = S;(A) + A 95.(4) 3) (the structure function itself is even in R) or by the incom-
2 9A pressibility constraint. Now the most general form of the
In the isotropic state both components scale with thdensor can be written down by inspection. The case 0
same exponent§r . (A) « A2, and the ratioSy/S; is  is well known, and we write it as
computed from (3) to bd + £, /2 = 1.35, where/, = 5
0.69 (see below). The experimental ratio was found to (a8 oy _ ap _ » R'R
be 1.32 for set I, indicating that the anisotropy at the Sj=0(R) = CO(R)[(Z T 08 - b R2 } ®)
scale A is small. This same ratio was about 1.8 for
set I, indicating a higher degree of anisotropy at thatwherecy(R) = coR%, andc, is a nonuniversal numerical
scale. The differences between the two data sets seeooefficient that needs to be obtained from fits to the data.
attributable at least partly to differences in the terrain andrhe j = 2 component has six independent tensor forms
other atmospheric conditions. and corresponding coefficients but can be simplified by
To obtain a theoretical form of the structure functionimposing the conditions of incompressibility and orthog-
tensor we first select a natural coordinate system. Amnality with thej = 0 part of the tensor. This leaves us
obvious choice is the mean-wind directianalong the (in the case of cylindrical symmetry) with two independent
3-axis. The second axis is given by the separation ve(ftcrroefficients we calk andb, giving
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FIG. 1. The structure functions® for # = 0 and for nonzero  FIG. 2. The structure function$™ for ¢ = 0 and for nonzero

6 computed for set . The dots are for experimental data and computed for set Il. The dots are for experimental data and
the line is the analytic fit. Panel (a) presents fits to the 0 the line is the analytic fit. Panel (a) presents fits to the 0
component only and panel (b) to componejts 0 andj =2  component only and panel (b) to components 0 and; = 2
together. together.

Finally, we note that in the present experimental setup only the component of the velocity in the direatios of
measured. In the coordinate system chosen above we can read from (6) the relevant component as

& ey
SP(R,0) = S74(R.0) + S72,(R.0) = c0<£> [2+ & — &Heos o] + a<£>

A A
®) L@, ) @,,0 R\&
X (&7 +2)? = 573BL" +2)cog b +257(5 — 2)cod 0] + b<K>
X[ + 27 +3) - 87687 + ) xcoso + 257 + )& —2codo]. (7

Here 6 is the angle betwee®R and n, and R has been
normalized byA, making all the coefficients dimensiona\, performed the following analysis. For given values of the
with units of (m/seg?. To fit these expressions to the variablesk and §, we guessed the second exponeﬁ{
experimental results we have converted, using Taylorsand estimated the unknown coefficients a, andb by
hypothesis [9], the structure functions computed fromusing a linear regression algorithm. We followed this pro-
time differences for a Single prObe, and cross differenc.8§edure repeated]y for different Va|uesé’é%) ranging from
between the two probes. T_hls allows us to obtai to 2. We then chose the value Cﬁz(z) that mini-
components ofs*# from (7), with # = 0 and variable,
respectively. In other words,

SP(R,0 = 0) = (u(Ut + Utg) — uy(UHT), (8)
wheretz = R/U, and 5- - ' -y x " - ; _—
SP(R,0) = (u (Ut + Utg) — w(UNF).  (9) al
Here 6 = arctaiA/Utz), ti = R/U, and R = ~, 3
2

JA? + (Utp)?.

The quantities (8) and (9) computed from the experimen- .,
tal data were fitted to the theoretical expression (7) using 1f Tl 11} .
the appropriate values &. The fits were performed in i , s et . . e .
the rangel < R/A <10 (0.54 m < R < 5.4 m) for set 6 05 10 15 200 05 10 15 20
landl < R/A < 25(0.31 m < R < 8 m). The ranges 2 2
were based on the constancy of the third order structure o )
function. Panels (a) of Figs. 1 and 2 show, for data sets FIG. 3. - The determination of the ?XPOHQHL% from a least-
and 11, respectively, a comparison between the measuregfluares fit ofS™(r. ) to its analytic fomz‘)' From set | we
S33(R,6 = 0) and thej = 0 form of the equation. The obtain a numerical value of the best ﬁﬁ = 1.38 = 0.15,

. . while from set Il the best-fit value i4.36 = 0.1, both of
comparison shows that the agreement is modest and th\ﬁﬂich are in close agreement with the theoretical expectation

the best fit yields the exponeidt to be 0.69. To in-  of 4/3 (without intermittency corrections). The differences in
clude thej = 2 contribution, we fixed/, to be 0.69 and the nature of the minima are not understood.
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mized y? (the sum of the squares of the differences be-
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TABLE ll. The scaling exponents and the three coefficients in units(rafseg’> as
determined from the nonlinear fit of Eq. (7) to data sets | (first line) and Il (second line).

O gz(z) Co a b
0.69 1.38 £ 0.15 0.023 £ 0.001 —0.0051 = 0.0006 0.0033 = 0.0005
0.69 1.36 £ 0.10 0.112 £ 0.001 —0.052 = 0.004 0.050 = 0.004

corresponding values of the coefficients are chosen fathe lower order values o;fz(’) can be measured and com-
further fitting purposes. For data set I, we found a “bestputed. We intend to proceed in this direction.
fit” value of the exponent from fitting only the values of At Weizmann, the work was supported by the Basic
S$3(R,6 = 0). We then used this value %(2) in the Research Fund administered by the Israeli Academy of
expression fols33(R, #) in (7) and fit this to (9) to extract Sciences, the U.S.-Israel Binational Science Foundation,
the coefficients:, a, andb. For data set Il, we found the and the Naftali and Anna Backenroth-Bronicki Fund
value of the exponeng;” by fitting simultaneously both for Research in Chaos and Complexity. At Yale, it
SH(R,6 = 0) andS¥(R, 0). was supported by National SC|ence_Foundat|0n Grant
No. DMR-95-29609 and the Yale-Weizmann Exchange
rogram. Special thanks are due Dr. Yoshiyuki Tsuji,
Mr. Christopher White, and Mr. Victor Cassella for their
help in acquiring the data.

In Fig. 3 we presenfy? values as a function 052(2).
The optimal value of this exponent and the uncertaint

determined from these plots .§(2) ~ 1.38 £ 0.15 from

set | and gz(z) ~ 1.36 = 0.1 from set Il. The best

numerical values for the coefficients are presented in
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