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Extraction of Anisotropic Contributions in Turbulent Flows
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We analyze turbulent velocity signals in the atmospheric surface layer, obtained by pairs of probes
separated by inertial-range distances parallel to the ground and (nominally) orthogonal to the mean
wind. The Taylor microscale Reynolds number ranges up to 20 000. Choosing a suitable coordinate
system with respect to the mean wind, we derive theoretical forms for second order structure functions
and fit them to experimental data. The effect of flow anisotropy is small for the longitudinal
component but significant for the transverse component. The data provide an estimate for a universal
exponent from among a hierarchy that governs the decay of flow anisotropy with the scale size.
[S0031-9007(98)07959-9]
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Experimental studies of turbulent flows at very hig
Reynolds numbers are usually limited in the sense th
one measures the velocity field at a single spatial po
as a function of time [1], and uses Taylor’s hypothes
to identify velocity increments at different times with
those across spatial length scales,R. The standard
outputs of such measurements are the longitudinal tw
point differences of the Eulerian velocity field and thei
moments, termed structure functions:

SnsRd ­

øÇ
fusr 1 R, td 2 usr, tdg ?

R
R

Çn¿
, (1)

wherek?l denotes averaging over time. In homogeneo
and isotropic turbulence, these structure functions a
observed to vary as a power law inR, SnsRd , Rzn , with
apparently universal scaling exponentszn [2].

Recent progress in measurements [3] and in simulatio
[4] begins to offer information about the tensorial natur
of structure functions. Ideally, one would like to measur
the tensorialnth order structure functions defined as

Sa1···an
n sRd ; kfua1 sr 1 Rd 2 ua1 srdg

3 fua2 sr 1 Rd 2 ua2 srdg

· · · fuan sr 1 Rd 2 uan srdgl , (2)

where the superscriptai indicates the velocity component
in the directioni. Such information should be useful in
studying the anisotropic effects induced by all practic
means of forcing.

In analyzing experimental data the model of “homoge
neous and isotropic small scale” is universally adopte
but it is important to examine the relevance of this mod
for realistic flows. One of the points of this Letter is
that keeping the tensorial information helps significant
in disentangling different scaling contributions to struc
ture functions [5]. Especially when anisotropy might lea
to different scaling exponents for different tensorial com
ponents, a careful study of the various contributions
needed. We will show below that atmospheric measur
0 0031-9007y98y81(24)y5330(4)$15.00
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ments contain important anisotropic contributions to on
type of transverse structure functions.

We analyze measurements in atmospheric turbulence
heights of 6 and 35 m above the ground (data sets I a
II). Set I was acquired over a flat desert with a long fetc
and the Taylor microscale Reynolds number was abo
10 000. Set II was acquired over a rough terrain with il
defined fetch, and the microscale Reynolds number w
20 000 [6]. The data were acquired simultaneously fro
two single hot-wire probes separated by 55 cm (set I) a
40 cm (set II). In both cases, the separation distance w
within the inertial range and was set nominally orthogon
to the mean wind direction (see below). The hot wire
about 0.7 mm in length and6 mm in diameter, were
calibrated just prior to mounting them on the meteoro
ogy towers and checked immediately after dismountin
The hot wires were operated on DISA 55M01 constan
temperature anemometers. The frequency response of
hot wires was typically good up to 20 kHz. The voltage
from the anemometers were suitably low pass filtered a
digitized. The voltages were constantly monitored on
oscilloscope to ensure that they did not exceed the di
tizer limits. Also monitored on-line were spectra from a
HP 3561A Dynamic Signal Analyzer. The wind spee
and direction were independently monitored by a dire
tion indicator mounted on the tower (set I) or a van
anemometer a few meters way (set II). The real-time d
rations of data records were limited only by the degree
constancy demanded of the wind speed and its directi
The Kolmogorov scales were about 0.75 mm (set I) a
0.45 mm (set II). Table I lists a few relevant facts abo
the data records analyzed here. The various symbols h
the following meanings:U ­ local mean velocity,u0 ­
root-mean-square velocity,k´l ­ energy dissipation rate
obtained by the assumption of local isotropy and Ta
lor’s hypothesis,h andl are the Kolmogorov and Taylor
length scales, respectively, the microscale Reynolds nu
berRl ; u0lyn, andfs is the sampling frequency.
© 1998 The American Physical Society
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TABLE I. Data sets I (first line) and II (second line).

U u0 102k´l, h l fs, per No. of
m s21 m s21 m2 s23 mm cm Rl channel, Hz samples

4.1 1.08 1.1 0.75 15 10 500 10 000 4 3 107

8.3 2.30 7.8 0.45 13 19 500 5 000 4 3 107

To test whether the separation between the two prob
is indeed orthogonal to the mean wind, we computed t
cross-correlation functionku1st 1 tdu2stdl. Here,u1 and
u2 refer to velocity fluctuations in the direction of the
mean wind, for probes 1 and 2, respectively. If the sep
ration were precisely orthogonal to the mean wind, th
quantity should be maximum fort ­ 0. Instead, for set
I, we found the maximum shifted slightly tot ­ 0.022 s,
implying that the separation was not precisely orthog
nal to the mean wind. To correct for this effect, the da
from the second probe were time shifted by 0.022 s. Th
amounts to a change in the actual value of the orthog
nal distance. We computed this effective distance to
D ø 54 cm (instead of the 55 cm that was set phys
cally). For set II, the effective separation distance was e
timated to be 31 cm (instead of the physically set 40 cm
Next we tested the isotropy of the flow for separations
the order ofD. Define the “transverse” structure func
tion acrossD as ST sDd ; kfu1sŪtd 2 u2sŪtdg2l and the
“longitudinal” structure function asSLsDd ; kfu1sŪt 1

ŪtDd 2 u1sŪtdg2l, where tD ­ DyŪ. If the flow were
isotropic we would expect [1]

ST sDd ­ SLsDd 1
D

2
≠SLsDd

≠D
. (3)

In the isotropic state both components scale with t
same exponent,ST ,LsDd ~ Dz2 , and the ratioST ySL is
computed from (3) to be1 1 z2y2 ø 1.35, wherez2 ø
0.69 (see below). The experimental ratio was found
be 1.32 for set I, indicating that the anisotropy at th
scale D is small. This same ratio was about 1.8 fo
set II, indicating a higher degree of anisotropy at th
scale. The differences between the two data sets se
attributable at least partly to differences in the terrain a
other atmospheric conditions.

To obtain a theoretical form of the structure functio
tensor we first select a natural coordinate system.
obvious choice is the mean-wind directionn along the
3-axis. The second axis is given by the separation vec
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D between the two probes. We make the simplifying
assumption of cylindrical symmetry about the mean-win
direction. It is showna posteriori that this assumption
probably accounts for most of the anisotropyfor this
particular geometrical setup.

To continue, we need to write down the tensor form
for the general second order structure function [define
by Eq. (2) for n ­ 2] in terms of irreducible represen-
tations of the SO(3) rotation group. This tensor can b
written in terms of the representations of the direct prod
uct of two three-dimensional Euclidean vector spaces (fo
the indicesa, b) and the space of continuous functions
on the unit sphere (for the direction ofR) [7]. The
latter is spanned by the spherical harmonicsYl,m, and
the representations of the product space are indexed
j, denoting a2j 1 1 dimensional irreducible represen-
tation. Every such representation is associated with
scalar functioncjsRd, which is expected to scale with

a universal exponentz
s jd
2 ; the exponent is an increas-

ing function of j, and z
s0d
2 ­ z2. Previous theoretical

considerations [8] led to the estimatesz
s1d
2 ø 1, z

s2d
2 ø

4y3. We are interested in relatively modest anisotropie
and so focus on the lowest order correction to the isotrop
( j ­ 0) contribution. In other words, we write

SabsRd ­ S
ab
j­0sRd 1 S

ab
j­2sRd 1 · · · . (4)

We do not have aj ­ 1 term since the possible contri-
butions to it vanish either because of parity consideration
(the structure function itself is even in R) or by the incom
pressibility constraint. Now the most general form of the
tensor can be written down by inspection. The casej ­ 0
is well known, and we write it as

S
ab
j­0sRd ­ c0sRd

∑
s2 1 z2ddab 2 z2

RaRb

R2

∏
, (5)

wherec0sRd ­ c0Rz2 , andc0 is a nonuniversal numerical
coefficient that needs to be obtained from fits to the dat
The j ­ 2 component has six independent tensor form
and corresponding coefficients but can be simplified b
imposing the conditions of incompressibility and orthog
onality with thej ­ 0 part of the tensor. This leaves us
(in the case of cylindrical symmetry) with two independen
coefficients we calla andb, giving
S
ab
j­2sRd ­ aRz

s2d
2

∑
sz s2d

2 2 2ddab 2 z
s2d
2 sz s2d

2 1 6d 3 dab sn ? Rd2

R2 1 2z
s2d
2 sz s2d

2 2 2d
RaRbsn ? Rd2

R4

1 sfz s2d
2 g2 1 3z

s2d
2 1 6dnanb 2

z
s2d
2 sz s2d

2 2 2d
R2 sRanb 1 Rbnad sn ? Rd

∏
1 bRz

s2d
2

∑
2sz s2d

2 1 3d sz s2d
2 1 2ddabsn ? Rd2 1 sz s2d

2 2 2d
RaRb

R2 1 sz s2d
2 1 3d sz s2d

2 1 2dnanb

1 s2z
s2d
2 1 1d sz s2d

2 2 2d
RaRbsn ? Rd2

R4 2 sfz s2d
2 g2 2 4d sRanb 1 Rbnad sn ? Rd

∏
. (6)
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FIG. 1. The structure functionsS33 for u ­ 0 and for nonzero
u computed for set I. The dots are for experimental data a
the line is the analytic fit. Panel (a) presents fits to thej ­ 0
component only and panel (b) to componentsj ­ 0 andj ­ 2
together.
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FIG. 2. The structure functionsS33 for u ­ 0 and for nonzero
u computed for set II. The dots are for experimental data a
the line is the analytic fit. Panel (a) presents fits to thej ­ 0
component only and panel (b) to componentsj ­ 0 andj ­ 2
together.
f
Finally, we note that in the present experimental setup only the component of the velocity in the direction on is
measured. In the coordinate system chosen above we can read from (6) the relevant component as

S33sR, ud ­ S33
j­0sR, ud 1 S33

j­2sR, ud ­ c0

µ
R
D

∂z2

f2 1 z2 2 z2 cos2 ug 1 a

µ
R
D

∂z
s2d
2

3 fsz s2d
2 1 2d2 2 z

s2d
2 s3z

s2d
2 1 2d cos2 u 1 2z

s2d
2 sz s2d

2 2 2d cos4 ug 1 b

µ
R
D

∂z
s2d
2

3 fsz s2d
2 1 2d sz s2d

2 1 3d 2 z
s2d
2 s3z

s2d
2 1 4d 3 cos2 u 1 s2z

s2d
2 1 1d sz s2d

2 2 2d cos4 ug . (7)
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Here u is the angle betweenR and n, and R has been
normalized byD, making all the coefficients dimensional
with units of smysecd2. To fit these expressions to the
experimental results we have converted, using Taylo
hypothesis [9], the structure functions computed fro
time differences for a single probe, and cross differenc
between the two probes. This allows us to obta
components ofSab from (7), with u ­ 0 and variable,
respectively. In other words,

S33sR, u ­ 0d ­ kfu1sŪt 1 ŪtRd 2 u1sŪtdg2l , (8)

wheretR ; RyŪ, and

S33sR, ud ­ kfu1sŪt 1 ŪtR̃d 2 u2sŪtdg2l . (9)

Here u ­ arctansDyŪtR̃d, tR̃ ­ R̃yŪ, and R ­p
D2 1 sŪtR̃d2.
The quantities (8) and (9) computed from the experime

tal data were fitted to the theoretical expression (7) usi
the appropriate values ofu. The fits were performed in
the range1 , RyD , 10 (0.54 m , R , 5.4 m) for set
I and 1 , RyD , 25 (0.31 m , R , 8 m). The ranges
were based on the constancy of the third order structu
function. Panels (a) of Figs. 1 and 2 show, for data set
and II, respectively, a comparison between the measu
S33sR, u ­ 0d and thej ­ 0 form of the equation. The
comparison shows that the agreement is modest and t
the best fit yields the exponentz2 to be 0.69. To in-
clude thej ­ 2 contribution, we fixedz2 to be 0.69 and
’s
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performed the following analysis. For given values of t
variablesR and u, we guessed the second exponentz

s2d
2

and estimated the unknown coefficientsc0, a, and b by
using a linear regression algorithm. We followed this p
cedure repeatedly for different values ofz

s2d
2 ranging from

0 to 2. We then chose the value ofz
s2d
2 that mini-

mized x2 (the sum of the squares of the differences b
tween the experimental data and the fitted values).

FIG. 3. The determination of the exponentz
s2d
2 from a least-

squares fit ofS33sR, ud to its analytic form. From set I we
obtain a numerical value of the best fitz

s2d
2 ­ 1.38 6 0.15,

while from set II the best-fit value is1.36 6 0.1, both of
which are in close agreement with the theoretical expecta
of 4y3 (without intermittency corrections). The differences
the nature of the minima are not understood.
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TABLE II. The scaling exponents and the three coefficients in units ofsmysecd2 as
determined from the nonlinear fit of Eq. (7) to data sets I (first line) and II (second line).

z2 z
s2d
2 c0 a b

0.69 1.38 6 0.15 0.023 6 0.001 20.0051 6 0.0006 0.0033 6 0.0005
0.69 1.36 6 0.10 0.112 6 0.001 20.052 6 0.004 0.050 6 0.004
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corresponding values of the coefficients are chosen
further fitting purposes. For data set I, we found a “bes
fit” value of the exponent from fitting only the values o
S33sR, u ­ 0d. We then used this value ofz

s2d
2 in the

expression forS33sR, ud in (7) and fit this to (9) to extract
the coefficientsc0, a, andb. For data set II, we found the
value of the exponentz

s2d
2 by fitting simultaneously both

S33sR, u ­ 0d andS33sR, ud.
In Fig. 3 we presentx2 values as a function ofz

s2d
2 .

The optimal value of this exponent and the uncertain
determined from these plots isz

s2d
2 ø 1.38 6 0.15 from

set I and z
s2d
2 ø 1.36 6 0.1 from set II. The best

numerical values for the coefficients are presented
Table II. Panels (b) in Figs. 1 and 2 show the fits to th
sum ofj ­ 0 andj ­ 2 contributions to the experimental
data. Even though thej ­ 2 contributions are small,
they improve the fits tremendously. This situation lend
support to the essential correctness of the present analy

The figures show that theu ­ 0 (purely longitudi-
nal) structure function is somewhat less affected by th
anisotropy than is the finiteu structure function (see es-
pecially Fig. 2). The reason is the closeness of the n
merical absolute values of the coefficientsa and b (see
Table II). In the caseu ­ 0 the two tensor forms multi-
plied bya andb coincide, and thej ­ 2 contribution be-
comes very small. The value ofz2 ­ 0.69 quoted above
can be obtained from such a fit to thez2 ­ 0 part alone;
as long as one measures only this component, it see
reasonable to proceed with just that exponent. Howev
the inclusion of the second exponentz

s2d
2 improves the fit

even for the longitudinal case; for the finiteu case, this
inclusion appears essential for a good fit [10].

To our knowledge, this determination ofz
s2d
2 is the

first instance of finding an exponent describing the degr
of anisotropy. The close agreement with the theoretic
expectation of 4y3 (e.g., Ref. [11]), and the apparen
reproducibility of the result for two different experiments
is a strong indication that this exponent is universal.

It should be understood that the exponentsz
s2d
2 (and also

z
s1d
2 that is unavailable from the present measurements)

just the smallest exponents in the hierarchyz
s jd
2 that char-

acterizes higher order irreducible representations index
by j. The study of these exponents is in its infancy, an
considerable experimental and theoretical effort is need
to reach firm conclusions regarding their universality an
numerical values. We expect the exponents to be a non
creasing function ofj and that the highest values ofj are
being peeled off quickly whenR decreases. Nevertheless
for
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the lower order values ofz
s jd
2 can be measured and com-

puted. We intend to proceed in this direction.
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