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Transverse structure functions in high-Reynolds-number turbulence
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~Received 11 July 1997!

Transverse structure functions are obtained at high Reynolds numbers in atmospheric turbulence~Taylor
microscale Reynolds numbers between 10 000 and 15 000!. These measurements confirm that their scaling
exponents are different from those for longitudinal structure functions. Implications of this conclusion are
discussed briefly.@S1063-651X~97!50511-3#

PACS number~s!: 47.27.Ak, 47.27.Jv
ad
c-
ts

e

ly

he
v
n

-
ie
e
S
er

2
ue
ll-
en

n
th
fo
s

i
r
o
o
a
th
a

ge
r

ts in
m-

olds
dies

re
ns-
im-

ire
ve
en
in
r

SA
ncy
z.
red
alf
o
ce-
the
s
ting

le
the

wire
lly
the
-

Anomalous scaling in turbulence has been studied tr
tionally in terms of the so-called longitudinal structure fun
tions ~LSF’s!, which are moments of velocity incremen
Dur[u(x1r )2u(x), whereu is the velocity component in
a certain directionx and the separation distancer is mea-
sured also in the same direction. For most flows, experim
tal convenience necessitates that the directionx be that of the
mean flow. Several attempts@1–10# have been made recent
to obtain the so-called transverse structure functions~TSF’s!,
which are moments of velocity increments for which t
separation distance is transverse to the direction of the
locity component considered. A few of these measureme
~e.g., Refs.@1,2,6#! suggest~or imply! that the scaling expo
nents for TSF are equal, to within experimental uncertaint
to those for LSF. If the two sets of exponents are inde
equal, the hierarchy of models built up on the basis of L
~see, e.g., Ref.@11#! remains essentially intact. On the oth
hand, there exist measurements@3–5,8–10# purporting to
show that the transverse exponents of order greater than
measurably smaller than the longitudinal exponents. If tr
this observation calls for additional complexity in sma
scale phenomenology—and might even suggest the abs
of strict scaling in the problem.

To make a convincing case that high-order TSF expone
are smaller than those of LSF, it must first be shown that
inertial-range scales are isotropic. A minimum condition
local isotropy to exist is that the second-order exponent
the inertial range should be equal for LSF and TSF. It
known ~e.g., Ref.@12#, Fig. 5! that this requires, in shea
flows, a Taylor microscale Reynolds number of the order
1000 and higher. All the results cited above have been
tained at modest Reynolds numbers. Some of them h
been made in shear flows. One might therefore wonder if
observed differences between the two sets of exponents
due perhaps to the lack of isotropy in the inertial ran
Further, the scaling range at moderate Reynolds numbe
modest at best.
561063-651X/97/56~5!/4928~3!/$10.00
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In this context, we have made a series of measuremen
atmospheric turbulence at Taylor microscale Reynolds nu
bers ranging between 10 000 and 15 000. These Reyn
numbers are comparable to the highest ever used for stu
of small-scale turbulence~e.g., @13,14#!. Here, we examine
the velocity data solely to address the following issue: A
there genuine differences between the longitudinal and tra
verse exponents? As already remarked, this question is
portant for the theory of small-scale turbulence.

The velocity data were acquired by means of single-w
and3-wire probes mounted at a height of about 35 m abo
the ground on a meteorological tower at the Brookhav
National Laboratory. The hot wires were about 0.7 mm
length and 5mm in diameter. They were calibrated just prio
to being mounted on the tower, and operated on DI
55M01 constant-temperature anemometers. The freque
response of the hot wires was typically good up to 20 kH
The voltages from the anemometers were low-pass filte
and digitized. The low-pass cutoff was never more than h
the sampling frequencyf s . The voltages were converted t
velocities in a standard way through the calibration pro
dure. The mean wind velocities, roughly constant over
duration of a given data set, ranged between 5 and 10 m21

in the experiment series. The usual procedure of surroga
time for space~‘‘Taylor’s hypothesis’’! was used to obtain
the dissipation ratê«& and estimate the Kolmogorov sca
h. The latter varied between 0.44 and 0.64 mm among
various data sets and was comparable to the active
length. The real-time duration of data records was typica
of the order 2500 sec. Table I lists the relevant data for
data records analyzed here:Ū andu8 are the mean and root
mean-square velocities, respectively, andf s is the sampling
frequency;

^«&515n^~]u]x!2& ,

h5~n3/^«&!1/4,
s

TABLE I. The basic parameters for the data sets used in this work.

Ū u8 ^«& h l Rl f s ,Hz Number

ms21 ms21 m2 s23 mm cm per channel of sample

7.6 1.36 3.231022 0.57 11.4 10 340 5000 107

4.8 1.45 2.031022 0.64 15.4 14 860 2000 53106

5.2 1.80 0.9231022 0.44 8.9 10 680 10 000 43107
R4928 © 1997 The American Physical Society
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^«& D 1/2

,

Rl5u8l/n .

Figure 1 shows the normalized third-order LSF,S3[
2^Dur

3&/r^«&, plotted against the separation distancer . If the
turbulence were homogeneous, one expects a sizeable re
where S3 is a constant equal to 4/5@15#. There exists no
foolproof demonstration that the Kolmogorov’s four-fifth
law holds for inhomogeneous turbulence~e.g., see@16,17#!.
Atmospheric turbulence is strongly inhomogeneous. Yet,
expectation just cited is roughly satisfied. The flat region
Fig. 1 can thus be considered the inertial range. It is, ho
ever, difficult to choose from the figure an unambiguou
scaling part. This choice is critical if small differences
scaling exponents are being sought. We have sidesteppe
issue here by computing the ratios of LSF to TSF as fu
tions of r . If the longitudinal and transverse exponents a
the same, the ratios must be flat over some range. We
considern52, 4, and 6; data convergence is poorer forn
.6. It is also useful@18# to examine moment orders belo
unity. For this purpose, one should take absolute value
velocity differences in the above expression. We thus c
sider, in general, the ratios of generalized structure functio

Rn5^uDur un&/^uDv r un& ,

wherev is the turbulent velocity normal to the ground.
Figure 2 shows the ratiosR2, R4 , and R6 . As already

noted, isotropy considerations demand thatR2 should have
zero slope in the inertial range. This is indeed very nearly
Cross-spectral data~not presented here! confirm that the an-
isotropy is negligible in this range of scales. If one fits
power law toR2 in Fig. 2, one obtains an index of abo
0.02. This is quite close to zero. On the other hand, the ra

FIG. 1. Normalized third-order structure function,S3

[^Dur
3&/r ^«&, where«515n^(]u/]x)2&, plotted against the sepa

ration distancer . A scaling range of more than a decade is like
The magnitude ofS3 is not far from 0.8 in the region where it i
roughly flat, as expected from Kolmogorov’s four-fifths law; it
both interesting and nontrivial that the law appears to hold qua
tatively even in inhomogeneous turbulence. First and second se
data from Table I have been combined.
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R4 and R6 show stronger departures from being flat in t
same region. Least square fits yieldR4;r 0.07 and R6
;r 0.13. Even though the scatter inR6 is large, the slope can
be obtained relatively unambiguously. If the structure fun
tions scale like power laws, as is believed to be the case~e.g.,
Ref. @16#!, the indices inR4 andR6 are equal to the differ-
ences between the longitudinal and transverse exponen
appears clear that the latter are larger than the former.
results are very close to those obtained from low-Reyno
number simulations@9#.

One can also obtain the two sets of exponents directly
using the extended self-similarity method@19#; as examples,
the fourth-order LSF and TSF are plotted in Fig. 3 agai
^uDur u3&. The scaling region is marked. For this flow, th
power-law part does not extend to the dissipation regi
consistent with Ref.@20#. It is clear that the TSF has
smaller slope than the LSF. The difference in the slo
agrees well with that obtained from Fig. 2 directly. Table

i-
of

FIG. 2. RatiosR2 , R4 , andR6 plotted againstr . As expected
for locally isotropic turbulence, the ratioR2 is essentially indepen-
dent of r , while the fourth- and sixth-order ratios become increa
ingly stronger functions ofr . This confirms that higher-order TSF’
scale with smaller exponents than LSF’s of corresponding or
Third set of data from Table I has been used.

FIG. 3. ESS plots for the fourth-order LSF and TSF. Marked
the figure are the scaling region and the slopes obtained from
square fits to data in that range. Third set of data from Table I
been used.
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lists the exponents for thegeneralizedLSF and TSF obtained
by the ESS method. For reference, it might be noted
^uDur u3&;^Dur

3&1.05 for the present measurements.
In summary, it appears that the scaling exponents for T

are measurably smaller than those for LSF. The second-o
structure functions should scale exactly alike if local isotro
prevails in the inertial range. In our data, they are sligh
different ~Fig. 2!. One might thus wonder if this residua
anisotropy gets magnified in higher-order moments, lead
to the present conclusion. However, this lingering anisotro
is no more than that observed in the DNS data of forma
isotropic turbulence@9#. We are inclined to think that it is

TABLE II. Scaling exponents for generalized structure fun
tions determined from the ESS method. For exponents with mom
orders 4, 5, and 6, the error bars are, respectively,60.022,60.031,
and60.05, and are comparable for longitudinal and transverse
ponents. For lower moment orders, the errors are much smalle
harder to quantify.

Moment Longitudinal Transverse
order exponent exponent

0.2 0.076 0.075
0.4 0.150 0.148
0.6 0.224 0.220
0.8 0.295 0.290
1.0 0.366 0.359
2.0 0.700 0.680
3.0 1 0.960
4.0 1.266 1.200
5.0 1.493 1.402
6.0 1.692 1.567
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almost impossible to obtain textbook isotropy in the inert
range, and that the level of anisotropy present in our dat
benign. Subject to this provision, we support the previo
conclusion drawn from studies using numerical data~e.g.,
Ref. @9#! that the transverse exponents are smaller than
longitudinal ones. The numerical data correspond to mod
Reynolds numbers, but have the advantage of not nee
Taylor’s hypothesis. While we do employ the hypothesis,
effects are believed to be small because only ratios of LS
TSF are considered.

If the two sets of exponents are indeed different, as
pears likely, it would mean that one needs a richer sm
scale phenomenology than is usually employed~e.g., Ref.
@11#!. An attempt in this direction has been made by Ch
et al. @9#. Alternatively, it has been suggested@21# that struc-
ture functions are not the fundamental objects of intere
The suggestion of Ref.@21# is to use, instead, irreducibl
representation of the rotation group. At the level of the fou
order, the latter reduces to a linear combination of the L
the TSF, and the mixed structure function,^Dur

2Dv r
2& @22#.

We have tested the scaling of these linear combinatio
Purely on empirical grounds based on the quality of pow
law plots, it does not appear that there is any advantag
preferring them over the traditional structure functions.
more detailed discussion of this important issue is beyo
the scope of this article and will be published elsewhere.
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