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Refined Similarity Hypothesis for Transverse Structure Functions in Fluid Turbulence
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We argue on the basis of empirical data that Kolmogorov’s refined similarity hypothesis (RSH) needs
to be modified for transverse velocity increments, and propose an alternative. In this new form, trans-
verse velocity increments bear the same relation to locally averaged enstrophy (squared vorticity) as lon-
gitudinal velocity increments bear in RSH to locally averaged dissipation. We support this hypothesis
by analyzing high-resolution numerical simulation data for isotropic turbulence. RSH and its proposed
modification for transverse velocity increments appear to represent two independent scaling groups.
[S0031-9007(97)04070-2]
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In all small-scale turbulence research driven by exp
tations of universality, one deals with so-called veloc
increments, which are differences of velocities betwe
two spatial positions separated by a fixed distance.
special interest are velocity increments when the sep
tion distances belong to the inertial range, that is, len
scales which are small compared to a typical large-sc
motion but large compared to a typical viscous cuto
scale. It is fair to say that much of the phenomenolo
cal work on this subject, summarized in Refs. [1–3],
based to some degree or another on two sets of simila
hypotheses proposed by Kolmogorov, abbreviated as K
[4] and K62 [5]. The latter, also called the refined sim
larity hypotheses (RSH), have been verified in both r
experiments and numerical simulations of turbulence—
least to an extent that certifies them as reasonable.
verification has focused, largely for historical reasons
experimental convenience, on longitudinal velocity incr
ments, that is, velocity increments for which the sep
ration distance is aligned with the velocity compone
considered. The theme of this Letter is that RSH is
adequate for transverse velocity increments, for which
separation distance is transverse to the direction of the
locity component considered, and that a nontrivial mo
fication (RSHT) is necessary to account for experimen
facts. We conclude that RSH and RSHT form two ind
pendent scaling groups in small-scale turbulence.

We need a few definitions before proceeding fu
ther. The rate of energy dissipation is given by´ ­
n

2 s≠uiy≠xj 1 ≠ujy≠xid2, wheren is the fluid viscosity,
and its local average is defined as´r sx, td ­

R
Vr

´ dV ,
where the integration volumeV srd, with the character-
istic linear dimensionr, is centered at the spatial pos
tion x. The longitudinal velocity increment is defined a
dur ; usx 1 rd 2 usxd, where the velocity componen
u and the separation distancer are both in the same di
rection, sayx. The form of RSH that has been verifie
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extensively [6–8] is given by the relation

dur ­ b1sr´rd1y3, (1)

where b1 is a stochastic variable independent ofr and
´r . Assume now that thepth order longitudinal structure
function SL

p srd ; ksdurdpl , rz L
p and k´p

r l , rtp . Here
the angular brackets denote suitable averages. It t
follows from Eq. (1) that

z L
p ­

p
3

1 tpy3 . (2)

This equation connects the scaling exponents of
longitudinal structure functions with those of the locall
averaged dissipation function. If a further assumptio
about the statistics of́ r can be made, such as log
normal [5], multifractal [9], or log-Poisson [10],tp can
be obtained analytically via Eq. (2).

The thinking in K62 is that Eq. (1) holds equally
well if the longitudinal velocity increment is replaced
by a transverse velocity increment, namely,dyr ­
ysx 1 rd 2 ysxd, where the separation distancer is
transverse to the velocity componenty. If true, this
would imply that the scaling exponentsz T

p and z L
p , for

longitudinal and transverse structure functions, resp
tively, are equal. A kinematic constraint from isotrop
[1,11] assures us thatz T

2 ­ z
L
2 . Two sets of measure-

ments [12] appear to suggest (or imply) that the equal
holds, within experimental uncertainty, for largerp as
well. On the other hand, more recent numerical [13,1
and experimental work [15] has revealed that transve
velocity increments are more intermittent than longit
dinal ones, and thatz T

p are measurably smaller thanz L
p ,

at least forp . 4. These results imply that the RSH
cannot be equally true for both longitudinal and transver
velocity increments. With this in mind, we first obtain
the scaling exponents of longitudinal and transver
© 1997 The American Physical Society 2253
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FIG. 1. Flatness of velocity increments,SL
4 srdySL

2 srd2 and
ST

4 srdyST
2 srd2, as functions ofr.

structure functions. We employ the numerical data fro
simulations of isotropic turbulence, carried out using5123

mesh points in a periodic box; a statistically steady st
was obtained by forcing low Fourier modes. For deta
see the paper cited first in [8]. The Taylor microsca
Reynolds numberRl ­ 216, which is close to the limit of
the current computational capability. Averages over
large-eddy turnover times were used in the data analys

Figure 1 shows the flatnesses of longitudinal and tra
verse velocity increments as functions ofr. For all val-
ues ofr except perhaps those comparable to the box s
the velocity increment along the transverse direction ha
larger flatness, suggesting that the transverse velocity
crement is more intermittent [14]. This shows that sign
cantly more averaging is required for transverse quanti
than for longitudinal quantities.

In Fig 2, the transverse structure functionsST
p srd are

plotted as functions ofr for p ­ 2, 4, 6, 8, 10. An inertial-
range power-law scaling can be identified for0.2 # r #

0.6 (the whole box size being2p). This is also the scaling
range determined [16] from Kolmogorov’s4y5 law for the
third-order structure function [17].

The exponentsz T
p , determined by least-squares fi

within the inertial range just mentioned, are plotted
Fig. 3. The use of the extended self-similarity (ES
technique [18] yields very similar results [19]. The r
sults for z L

p , obtained earlier [20], have also been plo
ted for comparison. These results demonstrate that w
both exponents show considerable anomaly due to in
mittency effects (as evidenced by the deviation from
dotted line given by K41), the transverse exponents
systematically smaller than the longitudinal ones forp .

3. Typical scaling exponents forST
p are z

T
2 ­ 0.71 6

0.04, z
T
4 ­ 1.25 6 0.067, z

T
6 ­ 1.63 6 0.079, andz

T
8 ­

1.87 6 0.078. While the longitudinal exponents agre
quite well with existing scaling models [9,10,21], the d
ference between the transverse exponents and the m
2254
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FIG. 2. The transverse structure functionsST
p srd as functions

of r for p ­ 2, 4, . . . , 10.

increases withp. For brevity, we show only a comparison
with the log-Poisson model [10], which is typical.

If the scaling exponents for longitudinal and transver
structure functions are different, it is clear that Eq. (1), no
known to be valid for the former, cannot be valid for th
latter; some modification will therefore be required. On
possibility suggests itself from kinematic consideration
Recall from the second reference of [6] that RSH m
be expected because the longitudinal velocity increm
dur is an integral over the separation distancer of the
velocity derivative ≠uy≠x, whose square is one o
the components of the energy dissipation. In a simi
way, the transverse structure functiondyr is the integral
of ≠yy≠x, which is one of the two terms of the vorticity
componentvz ­ ≠yy≠x 2 ≠uy≠y. It is reasonable to

FIG. 3. Numerical results for the transverse scaling exp
nents,z T

p and z L
p , as functions ofp. The dotted line is for

the normal scaling relation (K41) and the dashed line is for t
log-Poisson model [10].
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guess, then, that a suitable modification of Eq. (1) wou
be

dyr ­ b2srVrd1y3, (3)

where V ­ nv2, v ­ = 3 u is the vorticity, andVr

is the local average ofV in the same way aśr is the
local average of́ in Eq. (1). A necessary condition
for the above equation to be plausible is that´r should
scale differently fromVr and that the difference must be
compatible in sign with that of the difference betweenz L

p

andz T
p . That this is indeed so was demonstrated recen

[22]; that is, if kVp
r l , rop , op , tp. Thus, Eq. (3) is

a priori worth exploring as a candidate for the refine
similarity hypothesis for transverse velocity incremen
(RSHT).

We now test the validity of Eq. (3). In particular, we
test whether the relation

z T
p ­

p
3

1 opy3 , (4)

which follows from Eq. (3), is true. We should note tha
the equations

dyr ­ b3sr´r d1y3, (5)

dur ­ b4srVrd1y3 (6)

are both dimensionally plausible, and would yield

z L
p ­

p
3

1 opy3 , (7)

z T
p ­

p
3

1 tpy3 . (8)

Equation (4) would derive greater support if the alternati
relations (7) and (8) can be shown to be unsatisfactory

In Figs. 4(a) and 4(b), we show comparisons
numerical results forp up to 10 with predictions of (4)
and (8) for the transverse case, and with predictions
(2) and (7) for the longitudinal case. (For odd orde
we have used absolute values of the appropriate velo
differences.) The exponentstpy3 and opy3 used in the
above relations were taken from previously publish
results for the same data [20,22]. Forp , 3, the
differences between the implied relations (2), (4), a
(7), (8) and numerical results are relatively small, an
cannot be distinguished easily. On the other hand, w
increasingp, only z L

p 2 tpy3 and z T
p 2 opy3 coincide

with py3, showing that Eqs. (2) and (4) are valid t
a good approximation. The numerical evidence th
z L

p 2 opy3 and z T
p 2 tpy3 depart frompy3 for large p

effectively disqualifies (5) and (6). Note that the erro
bars in Fig. 4 are quite small and do not affect th
conclusion.

A more detailed test of Eq. (3) is given in Fig. 5, wher
we plot the normalized probability density function (PDF
of b2 ; DyrysrVrd1y3 with r ­ 0.2, 0.34, and 0.44, all
ld
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FIG. 4. Verification of the scaling relations in RSHT
(a) shows the results for the transverse structure functions
(b) for the longitudinal case. The dashed lines correspond
py3, which would be followed by the numerical data if th
similarity hypothesis used is correct. See the equation pa
(2) and (4), and (7) and (8).

of which lie in the inertial range. The three PDFs collap
quite well. It is seen that in the regionb2ykb2

2 l1y2 , 3,
the PDFs agree with the standard Gaussian distributi
For larger values ofb2yksb2d2l1y2, the PDFs seem to
depart slightly from Gaussian, with a tendency perha
towards exponential. This trend has also been seen
the longitudinal counterpart,b1, investigated by Wang
et al. [8]. One difference between the PDFs ofb1 and
b2, which follows from Kolmogorov’s4y5ths law [17], is
that b2 is not expected to be skewed, whereasb1 should
have a third moment equal to24y5. The PDFs ofb3
and b4 have also been obtained but are not shown he
They do not collapse for inertial range separations, nor

FIG. 5. Normalized PDFs ofb2yksb2d2l1y2 for r ­ 0.2, 0.34,
and 0.44.
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they agree with the Gaussian distribution even in the c
region, and they possess larger departures from Gaus
near the tails.

The results in Figs. 4 and 5 suggest that RSHT p
posed in (3) is a good working approximation connecti
the transverse velocity increment with the enstrophy fie
In addition, the differences of the intermittency prope
ties betweendur anddyr as well aś r andVr strongly
suggest the possibility of two independent scaling grou
Note that́ r andVr are the symmetric and antisymmetr
parts of the strain-rate tensor, respectively; so we exp
that this difference, reflecting the difference in the inerti
range physics of the dissipation and vortex dynamics, m
quite plausibly carry over to the high Reynolds numb
limit as well.

It should be pointed out that a more general refin
similarity hypothesis, which encompasses results for b
velocity components, cannot be ruled out. One poss
scenario could be

Dyr ­ b5srVa
r ´12a

r d1y3, (9)

whereb5 is again a universal stochastic variable anda

could, in general, be a function of the order indexp [23].
Equation (9) is more complex than (1) and (3), since
scalings of the cross-correlation functionskVp

r e
q
r l have to

be taken into account.
In summary, we have proposed a refined similarity h

pothesis for the transverse direction (RSHT); it conne
the statistics of the transverse structure function in
inertial range with the locally averaged enstrophy. N
merical simulations data for the Navier-Stokes equatio
at moderate Reynolds numbers demonstrate that RSH
valid for the transverse structure functions in the inert
range, while Kolmogorov’s RSH has been shown pre
ously to be essentially correct for the longitudinal case [
8]; the latter result is confirmed again in this paper. T
important implication of RSHT is the possibility of th
existence of two independent scaling groups which m
correspond to different intermittent physics in fluid turb
lence: one is related to the symmetric part of the str
rate, or the dissipation physics, and the other is relate
the antisymmetric part of the strain rate, or the vortex d
namics. This view also suggests that no more than
sets of independent exponents are required for describ
the scaling of all small-scale features as longitudinal a
transverse velocity increments, dissipation, enstrophy,
circulation [24]. Its conclusions are consistent with a
previous data.
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