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Refined Similarity Hypothesis for Transverse Structure Functions in Fluid Turbulence
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We argue on the basis of empirical data that Kolmogorov's refined similarity hypothesis (RSH) needs
to be modified for transverse velocity increments, and propose an alternative. In this new form, trans-
verse velocity increments bear the same relation to locally averaged enstrophy (squared vorticity) as lon-
gitudinal velocity increments bear in RSH to locally averaged dissipation. We support this hypothesis
by analyzing high-resolution numerical simulation data for isotropic turbulence. RSH and its proposed
modification for transverse velocity increments appear to represent two independent scaling groups.
[S0031-9007(97)04070-2]
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In all small-scale turbulence research driven by expecextensively [6—8] is given by the relation
tations of universality, one deals with so-called velocity 13
increments, which are differences of velocities between du, = Bi(re,)"”, 1)

two spatial positions separated by a fixed distance. Of . . : .
special interest are velocity increments when the separé(\—’here'g1 Is a stochastic variable independent ofnd

tion distances belong to the inertial range, that is, Iengt@' Assume now that theth order longitudinal structure
{

. L )24

scales which are small compared to a typical large-scalfnction S;(r) = (Bu,)?) ~ rér and(er) ~ r7r. Here
motion but large compared to a typical viscous cutoff e angular brackets denote suitable averages. It then
scale. It is fair to say that much of the phenomenologi-foIIOWS from Eg. (1) that
cal work on this subject, summarized in Refs. [1-3], is LD
based to some degree or another on two sets of similarity & = 3 T Tp/3 )
hypotheses proposed by Kolmogorov, abbreviated as K41
[4] and K62 [5]. The latter, also called the refined simi- This equation connects the scaling exponents of the
larity hypotheses (RSH), have been verified in both realongitudinal structure functions with those of the locally
experiments and numerical simulations of turbulence—aaveraged dissipation function. If a further assumption
least to an extent that certifies them as reasonable. Tlabout the statistics ok, can be made, such as log-
verification has focused, largely for historical reasons ohormal [5], multifractal [9], or log-Poisson [10}, can
experimental convenience, on longitudinal velocity incre-be obtained analytically via Eq. (2).
ments, that is, velocity increments for which the sepa- The thinking in K62 is that Eq. (1) holds equally
ration distance is aligned with the velocity componentwell if the longitudinal velocity increment is replaced
considered. The theme of this Letter is that RSH is in-by a transverse velocity increment, namel§p, =
adequate for transverse velocity increments, for which the(x + r) — v(x), where the separation distange is
separation distance is transverse to the direction of the véransverse to the velocity component If true, this
locity component considered, and that a nontrivial modi-would imply that the scaling exponenf% and {,f, for
fication (RSHT) is necessary to account for experimentalongitudinal and transverse structure functions, respec-
facts. We conclude that RSH and RSHT form two inde-tively, are equal. A kinematic constraint from isotropy
pendent scaling groups in small-scale turbulence. [1,11] assures us thati = (5. Two sets of measure-

We need a few definitions before proceeding fur-ments [12] appear to suggest (or imply) that the equality
ther. The rate of energy dissipation is given by=  holds, within experimental uncertainty, for larger as
%(aui/a.x]‘ + du;/dx;)?, wherev is the fluid viscosity, well. On the other hand, more recent numerical [13,14]
and its local average is defined as(x,t) = fv, edV, and experimental work [15] has revealed that transverse
where the integration volum& (r), with the character- velocity increments are more intermittent than longitu-
istic linear dimensiorv, is centered at the spatial posi- dinal ones, and thag’ are measurably smaller thzﬂj,
tion x. The longitudinal velocity increment is defined asat least forp > 4. These results imply that the RSH
Su, = u(x + r) — u(x), where the velocity component cannot be equally true for both longitudinal and transverse
u and the separation distanceare both in the same di- velocity increments. With this in mind, we first obtain
rection, sayx. The form of RSH that has been verified the scaling exponents of longitudinal and transverse
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FIG. 1. Flatness of velocity increments; (r)/Sz(r)* and  FiG. 2. The transverse structure functiofi&(r) as functions
S4(r)/82 (r)?, as functions of-. of r for p = 2,4,..., 10.

structure functions. We employ the numerical data fromincreases witlp. For brevity, we show only a comparison
simulations of isotropic turbulence, carried out usii@®  with the log-Poisson model [10], which is typical.
mesh points in a periodic box; a statistically steady state If the scaling exponents for longitudinal and transverse
was obtained by forcing low Fourier modes. For details structure functions are different, it is clear that Eqg. (1), now
see the paper cited first in [8]. The Taylor microscaleknown to be valid for the former, cannot be valid for the
Reynolds numbeR, = 216, which is close to the limit of latter; some modification will therefore be required. One
the current computational capability. Averages over terpossibility suggests itself from kinematic considerations.
large-eddy turnover times were used in the data analysisRecall from the second reference of [6] that RSH may

Figure 1 shows the flatnesses of longitudinal and transke expected because the longitudinal velocity increment
verse velocity increments as functionsof For all val-  du, is an integral over the separation distancef the
ues ofr except perhaps those comparable to the box sizeselocity derivative du/0x, whose square is one of
the velocity increment along the transverse direction has the components of the energy dissipation. In a similar
larger flatness, suggesting that the transverse velocity irway, the transverse structure functiéw, is the integral
crement is more intermittent [14]. This shows that signifi-of dv/dx, which is one of the two terms of the vorticity
cantly more averaging is required for transverse quantitiesomponentw, = dv/dx — du/dy. It is reasonable to
than for longitudinal quantities.

In Fig 2, the transverse structure functioﬂﬁ(r) are
plotted as functions of for p = 2, 4, 6, 8, 10. Aninertial- 3 —
range power-law scaling can be identified (o2 =< r = L .
0.6 (the whole box size beingyr). This is also the scaling -
range determined [16] from Kolmogorowg's law for the AL @
third-order structure function [17]. | og, IR

The exponents{,"f, determined by least-squares fits 2 B T ¢
within the inertial range just mentioned, are plotted in *f ¢
Fig. 3. The use of the extended self-similarity (ESS) L ,»:5"@ _
technique [18] yields very similar results [19]. The re- L A §
sults for glf, obtained earlier [20], have also been plot- 1F o —
ted for comparison. These results demonstrate that while - !/" .
both exponents show considerable anomaly due to inter-
mittency effects (as evidenced by the deviation from the il 7
dotted line given by K41), the transverse exponents are 0 E , , , |
systematically smaller than the longitudinal ones jfor- 0 5 10
3. Typical scaling exponents fQ?}f are s =071 = D

T _ T _ T _
0‘04’54 — 125 = (-)'067’ g .1'63. = 0.079, andg FIG. 3. Numerical results for the transverse scaling expo-
1.87 = 0.078. While the longitudinal exponents agree nents,¢7 and /£, as functions ofp. The dotted line is for

quite well with existing scaling models [9,10,21], the dif- the normal scaling relation (K41) and the dashed line is for the
ference between the transverse exponents and the modélg-Poisson model [10].
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guess, then, that a suitable modification of Eq. (1) would 4 . .
be o CTP = Opis i
1/3 o CHARL i ]
dv, = Ba(rQ,)"", (3) N o8 ]
o
where Q) = vw?, @ =V X u is the vorticity, and(}, 1 b /.w'! ]
is the local average of) in the same way as, is the - (a)
local average ofe in Eg. (1). A necessary condition 0 == ' !
for the above equation to be plausible is tlkatshould 4 . ' o
scale differently from(), and that the difference must be st °:CL,,-Tp,3 0 Frad ]
compatible in sign with that of the difference betweg(;fn 08,0 v s
and g,,T. That this is indeed so was demonstrated recently 2t W,ﬂ'/ ]
[22]; that is, if (QF) ~ %, 0, < 7,. Thus, Eq. (3) is ik . ;
a priori worth exploring as a candidate for the refined !,,!" (®)
similarity hypothesis for transverse velocity increments o L= - L
(RSHT). 0 5 10
We now test the validity of Eq. (3). In particular, we p
test whether the relation FIG. 4. Verification of the scaling relations in RSHT.
(a) shows the results for the transverse structure functions and
gT - L + 0,3, 4 (b) for the longitudinal case. The dashed lines correspond to
P 3 p/3, which would be followed by the numerical data if the

which follows from Eq. (3), is true. We should note that ?ﬁ?gﬁg&?fﬁéﬂ%ﬁgﬁ ?g)_'s correct.  See the equation pairs

the equations

Sv, = Bs(re,)'?, (5) ofwhich lie in the inertial range. The three PDFs collapse
quite well. It is seen that in the regig,/(B3)!/% < 3,
Su, = Ba(rQ,)'? (6) the PDFs agree with the standard Gaussian distribution.
For larger values ofB,/{(3,)*)!/2, the PDFs seem to
are both dimensionally plausible, and would yield depart slightly from Gaussian, with a tendency perhaps
P towards exponential. This trend has also been seen for
i = 3 + 0p/3, (7)  the longitudinal counterpart@;, investigated by Wang
et al.[8]. One difference between the PDFs gf and
ng -, Tp/3 - (8) B2, which follows from Kolmogorov'st/5Sths law [17], is
3 that B, is not expected to be skewed, whergasshould

Equation (4) would derive greater support if the alternativéhave a third moment equal to4/5. The PDFs ofg;

relations (7) and (8) can be shown to be unsatisfactory. and 84 have also been obtained but are not shown here.
In Figs. 4(a) and 4(b), we show comparisons ofThey do not collapse for inertial range separations, nor do

numerical results fop up to 10 with predictions of (4)

and (8) for the transverse case, and with predictions of

(2) and (7) for the longitudinal case. (For odd order, @ 'ET T '™ T ™+ T v T o0
we have used absolute values of the appropriate velocity /SN T rfgﬁ
differences.) The exponents,;3 and o,/; used in the 0.1 / \ ,,,,,, Gaussian
above relations were taken from previously published / \

results for the same data [20,22]. Fgr < 3, the 0.01 E

differences between the implied relations (2), (4), andfl\
(7), (8) and numerical results are relatively small, and< ¢.go1
cannot be distinguished easily. On the other hand, withg'
increasingp, only (& — 7,3 and /] — 0,3 coincide &
with p/3, showing that Egs. (2) and (4) are valid to
a good approximation. The numerical evidence that
(= op;3 and ! — 7,3 depart fromp/3 for large p
effectively disqualifies (5) and (6). Note that the error
bars in Fig. 4 are quite small and do not affect this 10
conclusion. ° 02 o >
A more detailed test of Eq. (3) is given in Fig. 5, where B/<B,>
we plot the normalized probability density function (PDF) FiG. 5.  Normalized PDFs 08, /{(8,)*)"/2 for r = 0.2, 0.34,
of B, = Av,/(rQ,)'/3 with » = 0.2, 0.34, and 0.44, all and 0.44.
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