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Inertial Range Scalings of Dissipation and Enstrophy in Isotropic Turbulence
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The inertial range scalings of local averages of energy dissipation rate and enstrophy (vorticity
squared) are studied using high resolution direct numerical simulation data for homogeneous and
isotropic turbulence. The Taylor microscale Reynolds number is 216. It is found that the enstrophy is
more intermittent than dissipation, consistent with previous one-dimensional surrogate measurements at
high Reynolds numbers. Contrary to some recent expectations, enstrophy and dissipation have different
exponents. [S0031-9007(97)03795-2]

PACS numbers: 47.27.Gs

An important step in the understanding of small-scaledu;/dx;). The relationship betweefiand the enstrophy,
turbulence was the introduction [1] of the locally averaged() = w?, is
dissipation rateg, (x,t) = V! fv, e(x’) dx’, wheree is
the rate of dissipation per unit volume of the turbulent §2 = Q + ui aﬂ
kinetic energy, and the volume of integratiol,, is 2 dx;j 0x;
centered a and has a characteristic length scalex
L, L being a suitable measure of the large-scale of
turbulence. One can similarly define the local averages
enstrophy € w? where the v)(;rticityw =V X u). Th% “p. The local averages 9f (1)Sf.and Q, areﬂcon'
global averages of enstrophy and dissipation are relatgd€cted through surface integrations & =5 +
(i.e., (&) = v(w?), where v is the kinematic viscosity V, ' [y 55, dsi, where s(r) denotes the surface
coefficient of the fluid), but this does not imply that their around the volumeV,. From the above equations, we
local averages scale identically. If they do, however, ther@ote that in general the power law scaling in the inertial
is some hope that the scaling exponents for small-scal&nge of(e?) is not necessarily the same as that@f ).
turbulence are unique. If not, there is a need to identifyOn the other hand, the above equation does not at present
classes of small-scale quantities which have the samgoint to fruitful results and yield predictions for the
scaling properties. Existing experimental data, surveyegcaling relations ofe?) and((Q)?). It is therefore useful
in [2], suggest that the scaling exponents for dissipatioio summarize the available experimental data and the
and enstrophy may indeed not be the same, but thehenomenological understanding.
conclusion was not definitive because the experimental Siggia [7] and Kerr [8] used direct simulations data to
evidence was affected in unknown ways by artifacts suclstudy the flatness dfS| and |w| and found the latter to
as Taylor's hypothesis and the use of one-dimensiondie larger, implying that thé) field is more intermittent
surrogates of dissipation and vorticity; for example, it isthan thee field. The one-dimensional measurements of
known [3] that there are some differences between théhe streamwise components ofand w, obtained at both
energy dissipation and its one-dimensional surrogate.  high and low Reynolds numbers [9], conclude that the
Given the uncertain nature of the existing knowledge degrees of intermittency in the dissipation and enstrophy
it seemed important to study the scaling of enstrophy anfields are not the same. Recent analysis of circulation
dissipation without resorting to the artifacts just mentioneddata [10] implies that there are differences between the
We use direct numerical simulation of the Navier-Stokegwo scalings. Working from the spatial support of the
equations carried out in &12° periodic box [4]. A dissipation and enstrophy, Wu and Fan [11] argue that
statistically steady state was obtained by forcing lowthe surface integratiorfs(r) f’;‘;j_’f ds; is the major reason
Fourier modes. At the modest Reynolds number of thisvhy ¢, is less intermittent. Finally, Cheet al. [12] have
flow (the Taylor microscale Reynolds numbgy,, is 216), shown that the flatness & | is larger than that ofS]| if
a narrow inertial range can be identified by demonstratinghe velocity field satisfies the quasinormal assumption. On
that Kolmogorov's—4/5 law [5] is verified [6]. the other hand, a popular turbulence model [13] implicitly
For later purposes, note that the dissipation rate assumes that high-order statistics of the enstrophy and
is related to the symmetric part of the strain tensor aglissipation are the same in the inertial range; the hierarchy
e = 2vS?% whereS? = §;;S;; andS;; = 1/2(du;/dx; +  hypothesis in the model is based on moments of the locally

1)

Using the Navier-Stokes equations, the right-hand side
f (1) can also be related to the presspreia S> = % -
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averaged dissipation while the codimension is taken fronfindings [8]. Only whenr approaches the box size of
enstrophy. Most recently [14], it has been suggestedimulation do the two fields reach the common valué.of
from considerations of fusion rules that the inertial range We have also compared the PDF’s of dissipation
scalings of local averages of all quantities within theand enstrophy with the lognormal distribution by
same symmetry group should have the same scaling in thexamining the statistics ofwp = (InD — (In D))/
inertial range; a typical implication is th&t?) and(Q?)  ((InD — (InD)?)!/2. We found that (F4)o = 3.33,
should possess the same scaling properties. Sq = —0.34,(Fg)g = 21.86, and (F4), = 3.07,S, =
The available information is thus quite contradictory —0.1, (Fg). = 16.54. Here Fy4, S, and Fs represent the
and the issue requires clarification. This is important beflatness factor, the skewness, and the sixth order moment
cause the answer bears on further theoretical developmemt, wp. These numbers also reflect the fact that the
and on the possibility or otherwise of a unique set of scaldissipation is close to a lognormal distribution and the
ing exponents for small-scale turbulence. We shall thereenstrophy is more strongly intermittent than dissipation.
fore examine the relation between the statistical quantities From three-dimensional visualization of turbulence
(e?) and(Q?) for various values op without using Tay- structures at moderate Reynolds numbers [15], it is known
lor's hypothesis and one-dimensional surrogates; we shathat isosurfaces of high intensity events of dissipation
also examine the scaling of fourth order tensor quantitiesvrap around those of high intensity events of enstrophy,
related to those discussed in [14]. the latter forming elongated tube-like structures [16,17].
In Fig. 1, we show various normalized probability It has been also argued froMp = Q?/2 — §? that
density functions (PDF'skD,)P(D,/{D,)), as functions enstrophy concentration acts as a source of low pres-
of the normalized quantity, /{D,), whereD, represents sure, which provides a method for visualizing vorticity
the local average of either the dissipation or the enstrophystructures experimentally [18]. The spatial correlation
the averaging scale is within the inertial range. Thebetween dissipation and enstrophy can be quantified by
PDF for the unaveraged dissipation and enstrophy armeans of conditional statistics. In Fig. &)/|¢!) (the
also shown. The PDF’s for enstrophy possess wider tail§] symbol) and{Q2/?|s!) (the X symbol) are shown as
than those of dissipation, indicating that large amplitudefunctions of ¢/ for r in the inertial range, where quan-
events in the enstrophy field are more prevalent thamties with prime are normalized by their mean values:
in the dissipation field. This is consistent with the Q! = Q,/(Q) ande! = ¢,/(e). The dotted line refers
observation that iso-surfaces of dissipation are moréo a linear variation and the dash-dotted line to a power of
fragmented than iso-surfaces of enstrophy. In the insel. Itis evident that for all-, the moments of) increase
we show the flatness of local averages of dissipation andith /. Although the data do not correspond to any
enstrophy as functions of the averaging scale, It is  power law for smalk’, the conditional averages for large
seen that enstrophy’s flatness is significantly larger thae! grow linearly with ¢/.. This result is consistent with
that of dissipation, especially in the dissipation range; invisualization studies which show that the high amplitudes
particular, for flatnesses, we hai@+)/(Q2)*> = 179 and  in ! ande! possess a strong domain correlation. In the
(e*)/(€?)* = 34.5, qualitatively consistent with previous inset of Fig. 2, we plot the conditional statisties?|()/)
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FIG. 1. Normalized PDF'sD,P(D,/{D,)) as functions of
D,/{D,). The solid line is forD, = ¢,, and the dotted line FIG. 2. Conditional statistics of(}/”|e’) (for p = 1 and 2)

for D, = Q,. Herer = 16 in units of lattice spacing, and lies as functions of! for r = 16 lattice unit. The dotted line and
in the inertial range. The dot-dashed line is forwhile the  the dash-dotted line represent power relation exponents of
dashed line is fof) (both with no space averaging). The inset and 2, respectively. The inset shows the conditional statistics
shows the flatness af. and(}, as functions of-. of (¢’7[Q2]). The dotted line represents a powerlof
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for a givenQ}/ for p = 1 and2. For high amplitudes of are 7,3 = 0.026, 75,3 = 0.026, 743 = —0.051, 7, =

O/, (e/|1Q)) grows slower than linearly (represented by —0.223, 73,3 = —0.483, andro/3 = —0.822. Values of

the dotted line) ande?|Q/) grows slower thaf)’>. In 7,3 for various available models [1,13,19-21] are also

fact, the measured exponents in the power range are closbown. For low-order momentg (= 7), all phenomeno-

to 0.6 and1.2 for p = 1 and?2, respectively. logical models agree with numerical results quite well.
We have also studied conditional averages for ofher The models can be made to agree with the data better

values and for different separations. In general, we findy adjusting the free parameter contained in them (for

that(Q/?|el) ~ e for largee’ values. The reversed con- example, by changing thg-model parameter from 0.7

ditional statistics{e’”|Q}"), seem to scale well witf)/*»  to 0.719).

for the largeQ)! region, witha < 1. This implies that To compare the scaling features{(§1”) with those of

the spatial growth ok’ in the statistical sense is slower (), we plot in Fig. 4 the quantityQ),”), for p = 2 and

than that of()’. The difference between the conditional p = 4, againsie”). The dashed lines represdfi,”) ~

statistics of(Q2/”|¢!) and (¢/?|Q]) is consistent with vi- (e/P). The relative power laws can be identified in the

sualization observations that dissipation and enstrophy aggaling range [shown by the®) symbol]. It appears

not correlated point by point though there is a strong doclear that the exponents of the locally averaged enstrophy

main correlation. It should be pointed out further that, forare larger than those of locally averaged dissipation. We

both sets of conditional statistics, the linear region shrinkiave found thagQ/*) ~ (e)!°® and (Q}*) ~ (/)47

with increasing ofp. This result does not seem to support the prediction from
In the inset to Fig. 3, we plot the moments?/3) as  the irreducible representation of the rotation group SO(3)

functions of » for p = 1,2,...,10 (from the top line to for I = 0 [14], according to which(Q/?) scales the

the bottom line). A power-law range fde?/3) ~ r7»s  same way age?). If we define(Q2?) ~ r°r, using the

can be identified betweer2 and 50 lattice units, corre- relative power relation betweeff)?) and(e/?), we can

sponding t00.147 = r = 0.613 in units of 27 for the calculateo, from 7,. The typical scaling exponents are

whole box. Using data within the scaling range, the lo-02/3 = 0.0415, 04/3 = —0.08, 0o = —0.347, andog/3 =

cal sloper,/3(r) = d<85/3>/d|nr can be calculated as —0.737. Here the error bar is less thaf. In Fig. 3, we

a function of r using a least-square fit for every three includeo,; (the X symbol) as a function op: the result

neighboring points. The averaged valuergf; is used is thato,; is smaller thanr, /5 for p > 3.

as the scaling exponent in the inertial range; these num- As pointed out in [22], in addition te and(}, one can

bers are shown in the plot by th@) symbol. The error also construct other small-scale quantities from the low-

bar is too small to be noted. Some typical valuesgf  order grouping of local velocity derivativesugd,us.

For incompressible fluids, it has been shown [14] that

they can be decomposed on the basis of SO(3) and

represented by irreducible representations characterized

by an index! (I = 0,1,2,3, and4). In this notation,

$? and Q are two scalar quantities corresponding to
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FIG. 3. The scaling exponents ¢&”/3) as a function ofp
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from numerical measuremen®j and theoretical predictions iy 10 Lgvg 10
from various phenomenological models: the solid line is for S - PR [ I A SIS
Kolmogorov's refined similarity theory [1], the dash-dotted line 1 2 3 4 5
for the p model [19], the dotted line for She-Leveque model PN

[13], the dashed line from Chen and Cao [20], and the dot-
dashed line from Nelkin [21]. The scaling exponenj,s, of  FIG. 4. (Q7?) as a function of(e”?). Here r is an implicit
(Qf“) has also been plotted for comparison agaipsand variable. The @) points are forr in the inertial range
shown by the X) symbol. The inset shows the scaling relation (12 = r < 50). The dotted line is fofQ/?) ~ (/). The inset
(g?) versusr for p from 1 to 10. shows a similar result for the fourth order quantity.
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I = 0. To understand the intermittency properties ofsurrogate field is in general more intermittent than the full
these quantities with differeritorders and compare them field [3].

with those ofe, and (),, we wish to construct local We thank N. Cao, H. Chen, V. L'vov, R. Kraichnan,
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4. All these quantities have been averaged over the entinhhie Advanced Computing Laboratory at Los Alamos Na-
computational domain in all three directions, and thudional Laboratory and the Army High Performance Com-
well converged. According to [14], all these quantitiesputing Research Center, using the Connection Machine-5.
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rather weakly on the decomposition indéxbut that, at J. Fluid Mech.309, 113 (1996); I. Hosokawa, S.-i. Oide
least for( =1, the appearance @ in a scaling quantity and K. Yamamoto, Phys. Rev. Let7, 4548 (1996).
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