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Inertial Range Scalings of Dissipation and Enstrophy in Isotropic Turbulence
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The inertial range scalings of local averages of energy dissipation rate and enstrophy (vorticity
squared) are studied using high resolution direct numerical simulation data for homogeneous and
isotropic turbulence. The Taylor microscale Reynolds number is 216. It is found that the enstrophy is
more intermittent than dissipation, consistent with previous one-dimensional surrogate measurements at
high Reynolds numbers. Contrary to some recent expectations, enstrophy and dissipation have different
exponents. [S0031-9007(97)03795-2]
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An important step in the understanding of small-sca
turbulence was the introduction [1] of the locally average
dissipation rate,́ rsx, td ­ V 21

r

R
Vr

´sx0d dx0, where´ is
the rate of dissipation per unit volume of the turbulen
kinetic energy, and the volume of integration,Vr , is
centered atx and has a characteristic length scaler ø

L, L being a suitable measure of the large-scale
turbulence. One can similarly define the local averages
enstrophy (­ v2 where the vorticityv ­ = 3 u). The
global averages of enstrophy and dissipation are rela
(i.e., k´l ­ nkv2l, where n is the kinematic viscosity
coefficient of the fluid), but this does not imply that thei
local averages scale identically. If they do, however, the
is some hope that the scaling exponents for small-sc
turbulence are unique. If not, there is a need to identi
classes of small-scale quantities which have the sa
scaling properties. Existing experimental data, survey
in [2], suggest that the scaling exponents for dissipatio
and enstrophy may indeed not be the same, but t
conclusion was not definitive because the experimen
evidence was affected in unknown ways by artifacts su
as Taylor’s hypothesis and the use of one-dimension
surrogates of dissipation and vorticity; for example, it i
known [3] that there are some differences between t
energy dissipation and its one-dimensional surrogate.

Given the uncertain nature of the existing knowledg
it seemed important to study the scaling of enstrophy a
dissipation without resorting to the artifacts just mentione
We use direct numerical simulation of the Navier-Stoke
equations carried out in a5123 periodic box [4]. A
statistically steady state was obtained by forcing lo
Fourier modes. At the modest Reynolds number of th
flow (the Taylor microscale Reynolds number,Rl, is 216),
a narrow inertial range can be identified by demonstratin
that Kolmogorov’s24y5 law [5] is verified [6].

For later purposes, note that the dissipation rate´

is related to the symmetric part of the strain tensor
´ ­ 2nS2, whereS2 ­ SijSji andSij ­ 1y2s≠uiy≠xj 1
0031-9007y97y79(7)y1253(4)$10.00
le
d

t

of
of

ted

r
re
ale
fy
me
ed
n

he
tal
ch
al
s
he

e,
nd
d.
s

w
is

g

as

≠ujy≠xid. The relationship betweenS and the enstrophy,
V ­ v2, is

S2 ­
V

2
1

≠ui

≠xj

≠uj

≠xi
. (1)

Using the Navier-Stokes equations, the right-hand si
of (1) can also be related to the pressurep via S2 ­

V

2 2

=2p. The local averages of (1),S2
r and Vr , are con-

nected through surface integrations asS2
r ­

Vr

2 1

V 21
r

R
ssrd

≠uiuj

≠xj
dsi , where ssrd denotes the surface

around the volumeVr . From the above equations, we
note that in general the power law scaling in the inerti
range ofk´p

r l is not necessarily the same as that ofkVp
r l.

On the other hand, the above equation does not at pres
point to fruitful results and yield predictions for the
scaling relations ofk´p

r l and kVp
r l. It is therefore useful

to summarize the available experimental data and t
phenomenological understanding.

Siggia [7] and Kerr [8] used direct simulations data t
study the flatness ofjSj and jvj and found the latter to
be larger, implying that theV field is more intermittent
than the´ field. The one-dimensional measurements
the streamwise components of´ andv, obtained at both
high and low Reynolds numbers [9], conclude that th
degrees of intermittency in the dissipation and enstrop
fields are not the same. Recent analysis of circulati
data [10] implies that there are differences between t
two scalings. Working from the spatial support of th
dissipation and enstrophy, Wu and Fan [11] argue th
the surface integration

R
ssrd

≠uiuj

≠xj
dsi is the major reason

why ´r is less intermittent. Finally, Chenet al. [12] have
shown that the flatness ofjvj is larger than that ofjSj if
the velocity field satisfies the quasinormal assumption. O
the other hand, a popular turbulence model [13] implicit
assumes that high-order statistics of the enstrophy a
dissipation are the same in the inertial range; the hierarc
hypothesis in the model is based on moments of the loca
© 1997 The American Physical Society 1253
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averaged dissipation while the codimension is taken fro
enstrophy. Most recently [14], it has been suggest
from considerations of fusion rules that the inertial rang
scalings of local averages of all quantities within th
same symmetry group should have the same scaling in
inertial range; a typical implication is thatk´p

r l andkVp
r l

should possess the same scaling properties.
The available information is thus quite contradictor

and the issue requires clarification. This is important b
cause the answer bears on further theoretical developm
and on the possibility or otherwise of a unique set of sca
ing exponents for small-scale turbulence. We shall ther
fore examine the relation between the statistical quantit
k´p

r l andkVp
r l for various values ofp without using Tay-

lor’s hypothesis and one-dimensional surrogates; we sh
also examine the scaling of fourth order tensor quantiti
related to those discussed in [14].

In Fig. 1, we show various normalized probability
density functions (PDF’s),kDr lPsDrykDr ld, as functions
of the normalized quantity,DrykDr l, whereDr represents
the local average of either the dissipation or the enstroph
the averaging scale is within the inertial range. Th
PDF for the unaveraged dissipation and enstrophy a
also shown. The PDF’s for enstrophy possess wider ta
than those of dissipation, indicating that large amplitud
events in the enstrophy field are more prevalent th
in the dissipation field. This is consistent with the
observation that iso-surfaces of dissipation are mo
fragmented than iso-surfaces of enstrophy. In the ins
we show the flatness of local averages of dissipation a
enstrophy as functions of the averaging scale,r. It is
seen that enstrophy’s flatness is significantly larger th
that of dissipation, especially in the dissipation range;
particular, for flatnesses, we havekV4lykV2l2 ­ 179 and
ke4lyke2l2 ­ 34.5, qualitatively consistent with previous

FIG. 1. Normalized PDF’sDr PsDrykDrld as functions of
Dr ykDr l. The solid line is forDr ­ ´r , and the dotted line
for Dr ­ Vr . Herer ­ 16 in units of lattice spacing, and lies
in the inertial range. The dot-dashed line is for´ while the
dashed line is forV (both with no space averaging). The inse
shows the flatness of́r andVr as functions ofr.
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findings [8]. Only whenr approaches the box size o
simulation do the two fields reach the common value of1.

We have also compared the PDF’s of dissipatio
and enstrophy with the lognormal distribution b
examining the statistics ofwD ­ sln D 2 kln Dldy
ksln D 2 kln Dld2l1y2. We found that sF4dV ­ 3.33,
SV ­ 20.34, sF6dV ­ 21.86, and sF4d´ ­ 3.07, S´ ­
20.1, sF6d´ ­ 16.54. Here F4, S, and F6 represent the
flatness factor, the skewness, and the sixth order mom
of wD. These numbers also reflect the fact that th
dissipation is close to a lognormal distribution and th
enstrophy is more strongly intermittent than dissipation.

From three-dimensional visualization of turbulenc
structures at moderate Reynolds numbers [15], it is kno
that isosurfaces of high intensity events of dissipatio
wrap around those of high intensity events of enstroph
the latter forming elongated tube-like structures [16,17
It has been also argued fromDp ­ V2y2 2 S2 that
enstrophy concentration acts as a source of low pr
sure, which provides a method for visualizing vorticit
structures experimentally [18]. The spatial correlatio
between dissipation and enstrophy can be quantified
means of conditional statistics. In Fig. 2,kV0

r j´0
rl (the

h symbol) andkV02
r j´0

rl (the 3 symbol) are shown as
functions of ´0

r for r in the inertial range, where quan
tities with prime are normalized by their mean value
V0

r ­ VrykVl and ´0
r ­ ´ryk´l. The dotted line refers

to a linear variation and the dash-dotted line to a power
2. It is evident that for allr, the moments ofV0

r increase
with ´0

r . Although the data do not correspond to an
power law for smalĺ 0

r , the conditional averages for large
´0

r grow linearly with ´0
r . This result is consistent with

visualization studies which show that the high amplitud
in V0

r and´0
r possess a strong domain correlation. In th

inset of Fig. 2, we plot the conditional statisticsk´0p
r jV0

r l

FIG. 2. Conditional statistics ofkV0p
r j´0

rl (for p ­ 1 and 2)
as functions of́ 0

r for r ­ 16 lattice unit. The dotted line and
the dash-dotted line represent power relation exponents o1
and 2, respectively. The inset shows the conditional statisti
of k´0p

r jV0
r l. The dotted line represents a power of1.
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for a givenV0
r for p ­ 1 and2. For high amplitudes of

V0
r , k´0

r jV
0
r l grows slower than linearly (represented b

the dotted line) andk´02
r jV0

rl grows slower thanV02
r . In

fact, the measured exponents in the power range are c
to 0.6 and1.2 for p ­ 1 and2, respectively.

We have also studied conditional averages for otherp
values and for different separations. In general, we fi
thatkV0p

r j´0
rl , ´

0p
r for large´0

r values. The reversed con
ditional statistics,k´0p

r jV0
r l, seem to scale well withV0ap

r
for the largeV0

r region, with a , 1. This implies that
the spatial growth of́ 0

r in the statistical sense is slowe
than that ofV0

r . The difference between the conditiona
statistics ofkV0p

r j´0
rl and k´0p

r jV0
rl is consistent with vi-

sualization observations that dissipation and enstrophy
not correlated point by point though there is a strong d
main correlation. It should be pointed out further that, fo
both sets of conditional statistics, the linear region shrin
with increasing ofp.

In the inset to Fig. 3, we plot the momentsk´py3
r l as

functions ofr for p ­ 1, 2, . . . , 10 (from the top line to
the bottom line). A power-law range fork´py3

r l , rtpy3

can be identified between12 and 50 lattice units, corre-
sponding to0.147 # r # 0.613 in units of 2p for the
whole box. Using data within the scaling range, the lo
cal slopetpy3srd ­ dk´py3

r lyd ln r can be calculated as
a function of r using a least-square fit for every thre
neighboring points. The averaged value oftpy3 is used
as the scaling exponent in the inertial range; these nu
bers are shown in the plot by the (d) symbol. The error
bar is too small to be noted. Some typical values oftpy3

FIG. 3. The scaling exponents ofk´py3
r l as a function ofp

from numerical measurement (d) and theoretical predictions
from various phenomenological models: the solid line is fo
Kolmogorov’s refined similarity theory [1], the dash-dotted lin
for the p model [19], the dotted line for She-Leveque mode
[13], the dashed line from Chen and Cao [20], and the do
dashed line from Nelkin [21]. The scaling exponent,opy3, of
kVpy3

r l has also been plotted for comparison againstp and
shown by the (3) symbol. The inset shows the scaling relatio
k´p

r l versusr for p from 1 to 10.
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are t1y3 ­ 0.026, t2y3 ­ 0.026, t4y3 ­ 20.051, t2 ­
20.223, t8y3 ­ 20.483, andt10y3 ­ 20.822. Values of
tpy3 for various available models [1,13,19–21] are als
shown. For low-order moments (p # 7), all phenomeno-
logical models agree with numerical results quite we
The models can be made to agree with the data be
by adjusting the free parameter contained in them (
example, by changing thep-model parameter from 0.7
to 0.719).

To compare the scaling features ofkVp
r l with those of

k´p
r l, we plot in Fig. 4 the quantitykV0p

r l, for p ­ 2 and
p ­ 4, againstk´0p

r l. The dashed lines representkV0p
r l ,

k´0p
r l. The relative power laws can be identified in th

scaling range [shown by the (d) symbol]. It appears
clear that the exponents of the locally averaged enstrop
are larger than those of locally averaged dissipation. W
have found thatkV02

r l , k´02
r l1.56 and kV04

r l , k´04
r l1.47.

This result does not seem to support the prediction fro
the irreducible representation of the rotation group SO
for l ­ 0 [14], according to whichkV02

r l scales the
same way ask´02

r l. If we definekVp
r l , rop , using the

relative power relation betweenkVp
r l and k´0p

r l, we can
calculateop from tp. The typical scaling exponents ar
o2y3 ­ 0.0415, o4y3 ­ 20.08, o2 ­ 20.347, ando8y3 ­
20.737. Here the error bar is less than5%. In Fig. 3, we
includeopy3 (the3 symbol) as a function ofp: the result
is thatopy3 is smaller thantpy3 for p . 3.

As pointed out in [22], in addition tó andV, one can
also construct other small-scale quantities from the lo
order grouping of local velocity derivatives,≠aub≠gud.
For incompressible fluids, it has been shown [14] th
they can be decomposed on the basis of SO(3) a
represented by irreducible representations characteri
by an index l (l ­ 0, 1, 2, 3, and 4). In this notation,
S2 and V are two scalar quantities corresponding

FIG. 4. kV02
r l as a function ofk´02

r l. Here r is an implicit
variable. The (d) points are for r in the inertial range
(12 # r # 50). The dotted line is forkV02

r l , k´02
r l. The inset

shows a similar result for the fourth order quantity.
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l ­ 0. To understand the intermittency properties
these quantities with differentl orders and compare them
with those of ´r and Vr , we wish to construct local
averages forl $ 0. We show in Fig. 5 the scalings
relative toksS2d2

rl of various quantities withl orders up to
4. All these quantities have been averaged over the en
computational domain in all three directions, and th
well converged. According to [14], all these quantitie
should scale and the exponents should scale differen
with the l order. We first note that these quantities d
not all scale equally well at the Reynolds number
these simulations; this is no different when plotted direc
against the averaging scaler . The quantity that scales
best is SiksSijvjd2

rl, corresponding tol ­ 1. Among
all the quantities considered, this quantity has a larg
scaling exponent than all other quantities, which belo
to a larger l order. In general, it would appear tha
the scaling exponents and intermittency appear to dep
rather weakly on the decomposition indexl, but that, at
least forl ­ 1, the appearance ofv in a scaling quantity
renders it more intermittent.

Two concluding remarks are useful: First, the prese
results are based on direct numerical simulation at mo
erate Reynolds numbers. Caution should therefore
exercised when extrapolating them to high Reynolds nu
bers. In particular, the difference of the scaling exp
nent between the dissipation and enstrophy may not
adequately resolved until much higher Reynolds numb
have been reached. While the results available at h
Reynolds numbers are consistent with the present resu
the former [2] are based on one-dimensional surrogat
The effects of surrogacy are still far from being unde
stood fully: for example, for the energy dissipation, th

FIG. 5. Plotted againstksS2d2
r l are the quantitiesSiksSijvjdr2l

(filled circles, l ­ 1), SifikksSijSjkd2
r l (crosses, l ­ 2),

Si­kksSijSjk 2 S2y3d2
r l (diamonds, l ­ 2), SifijfikksSijvkd2

rl
(squares, l ­ 3), and Sifijfik,j­mksSijSkmd2

r l (open circles,
l ­ 4). Note that all the functions in this plot decrease asr
increases.
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surrogate field is in general more intermittent than the fu
field [3].
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