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Abstract. This paper deals with a comparison between experimental observations in a low- 
Reynolds-number wake behind an oscillating cylinder and the universal properties of a sine circle 
map. When the limit cycle due to the natural vortex shedding in the wake is modulated at a second 
frequency by oscillating the cylinder transversely, one obtains in phase space a flow on a two toms. 
The nonlinear interaction between the two oscillators results in Arnoltd tongues due to phase 
locking, the devil's staircase along the critical line, and a transition from order to chaos via the 
quasiperiodic route. The sine circle map describes these features adequately. A comparison between 
the experiment and the theory is made in terms of multifractal formalism and trajectory scaling 
function. 
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1. Introduction 

One of the major hopes in modem nonlinear dynamics is that it might shed some light on 
the long-standing problem of fluid turbulence. A specific aspect concerns the relevance of 
dissipative chaos to understanding facets of the onset of turbulence. There now exist 
sufficiently detailed predictions on the occurrence of chaos for some simple dynamical 
systems. There also exist Several experiments on fluid flows purporting to make 
quantitative comparisons with theoretical scenarios of dissipative chaos. The agreement 
has often been astonishingly good. A convenient collection of seminal papers on this 
subject can be found in Ref. [1]. 

For a first sight, it appears surprising that there should be this precise correspondence 
between some one-dimensional maps (or similarly simple dynamical systems) and fluid 
systems governed by partial differential equations. This deep and fascinating fact is 
attributed to two important properties of dissipative systems: (a) Dissipation stabilizes 
orbital instability and contracts the phase space, and allows some high-dimensional 
systems under certain circumstances to assume low-dimensional characteristics; (b) low- 
dimensional systems enjoy "universal" properties--that is, many measurable properties 
of a system can be quantitatively determined, independent of its specific details, by 
certain qualitative attributes. While it is true that not every system can be fitted into this 
scenario, its occurrence---even if special--is worth a serious study. 
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In this paper, we are concerned with the demonstration that the universal properties 
of the quasiperiodic route to chaos in the sine circle map ([2], [3], [4]) is an 
appropriate framework for describing the low-Reynolds-number behavior of the wake 
behind an oscillating cylinder. Previous experimental studies of this nature in this 
particular flow can be found in Refs. [5] and [6], and similar studies in other fluid flows 
in Refs. [7], [8], [9], and [10]. This paper is in some respects a synopsis of results 
obtained a few years ago [11], but it also presents some that have not been published 
before. 

2. The flow 

We study the wake of an oscillating circular cylinder of diameter 0.5 mm, housed in a 
low-noise suction-type wind tunnel, and oscillated electromagnetically in the direction 
transverse to that of upstream fluid velocity. In practice, the oscillating cylinder is a 
stainless steel string of uniform diameter stretched taut, through the wind tunnel walls, 
over a distance that is four times the tunnel span. The active length/diameter ratio of the 
cylinder is about 300. The Reynolds number based on the cylinder diameter and the 
velocity of the oncoming air flow is 55. We place a velocity sensor at a distance of 15 
diameters behind the cylinder, half a diameter off the geometric axis of the stationary 
wake. The velocity sensor is a standard hotwire of 5 }am diameter and 0.6 mm length, 
operated on a constant temperature anemometer. The sensor measures the streamwise 
component of fluid velocity. For more details of the experimental arrangement, 
instrumentation and data processing, please see Ref. [11]. 

The regular 'shedding' of vortices at Reynolds numbers above about 40 imparts to the 
wake a periodic motion of frequency fo, say. The frequency fo is a known function of the 
Reynolds number [12]. The transverse oscillation at the controlled frequencyfe imposes a 
second frequency on the wake. The amplitude of oscillation of the cylinder can be 
thought of as a coupling parameter between vortex shedding and cylinder oscillation. This 
nonlinear coupling "shifts" the shedding frequency to some neighboring value, say fo', 
which depends on the ratio f] =fe/fo and the magnitude of the nonlinear coupling 
between the two oscillators. In the jargon of quasiperiodic dynamical systems, the 
parameter f~ : f e / f o  is called the bare winding number, and the ratio ov =fe/fo iscalled 
the dressed winding number. 

3. The circle map 

Systems with two independent frequenciesfo andfe define a torus in the phase space. As 
the system evolves, the phase space trajectory hits a Poincar6 section at some discrete 
iterates along a circle. The angular position of the iterates is the variable of dynamical 
interest. A paradigm situation is given by the sine circle map 

0n+1 -- 0n + f~ - ff--~r sin(27rgn), (1) 

where 0n is the angular coordinate of the n th iterate, fl is the bare winding number and 
K > 0 is the nonlinear coupling parameter. The map is utilized by setting 0 < f~ < 1 and 
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obtaining the iterates of  0. The dressed winding number is defined as 
w = limn-.o~[(0n - Oo)/n]. 

The experimental situation is qualitatively similar to that encountered in circle maps; 
following the spirit of universality mentioned above, it appears reasonable to explore the 
analogies quantitatively. For this purpose, we should recall a few key results about the 
circle map, known from the theoretical analysis of Refs. [2]-[4]: 

• For low forcing amplitudes, equation (1) exhibits Amol'd tongues (regions of mode 
locking) in which the frequency fo shifts so that the dressed winding number is fixed as 
a rational over some finite range offe. 

* In other case where the dressed winding number is irrational, the motion is 
quasiperiodic. 

• As the nonlinear coupling parameter K increases, the Amol'd tongues widen; they 
overlap at some critical line corresponding to the critical value of K. This critical line 
corresponds to the breakdown of the two torus and the onset of chaos. 

• Along the critical line, the system exhibits the devil's staircase structure. 
• A special case of interest is the locus of the position in the K - [~ space where the 

dressed winding number is the inverse of the golden mean. (Loosely speaking, golden 
mean - ( x / 5 -  1)/2 is the "most" irrational number, or least well represented by a 
rational approximation, because its continued fraction representation contains only the 
numeral one.) At the critical point on this line, where w = ag, the latter being the 
inverse of the gloden mean, the system is least influenced by mode-locking and is 
quasiperiodic. The properties of the system at this critcal point are universal. 

• At the critical point, the power spectrum of the angular variable has a certain well- 
quantified self-similar structure [2]. 

• A description of this behavior requires modem dynamical systems theory including 
multifractals [13] and scaling functions [2]. 

4. Devil's staircase and power spectral density 

In Refs. [5] and [11], it was shown that most of these properties were exhibited by the 
wake of the oscillating cylinder. As a quick recapitulation, we show in figure 1 the devil's 
staircase structure along the critical line. The small circles mark the extremes of a few 
principal Arnol'd tongues corresponding to the rational values of the dressed winding 
number marked on the figure. These are to be compared with the horizontal bars 
representing the theoretical results for the circle map. The comparison is good on the 
whole. Many other tongues were mapped out experimentally but are not given on the 
figure. A few narrower tongues near the rational numbers 4/15 to 5/16 are displayed in 
the inset. The general pattern is the same as that of the circle map, although some visible 
differences occur. 

As a second example of the correspondence between the wake and the circle map, we 
show in figure 2 the scaled power spectral density of the velocity signal obtained close to 
the critical point. As known for the circle map dynamics, we have (nearly) equal- 
amplitude spectral peaks, marked 1, at powers of % up to the fifth. For higher powers, the 
flow system does not respond like the circle map, yet the appearance of these equally- 
spaced peaks is quite encouraging. Furthermore, between any two of the four right-most 
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Figure 1. The devil's staircase showing mode-lockings along an experimentally 
determined critical line (circles). The general pattern is similar to that of the circle 
map (bars). The inset expands the small rectangle to the lower left. 

primary spectral peaks, there are families of peaks marked 2, 3, 4 and 5, which where 
they exist--appear at the right place according to the circle map theory. More delicate 
fine structure in the circle map is not replicated by the fluid system. It is difficult to say if 
these differences are real or if the fluid system is not exactly at the critical point as the 
theory demands. Locating the critical point is quite delicate, and the results are 
conspicuously sensitive to the precise location in its neighborhood [11]. Independent of 
this uncertainty, it is fair to say that the wake behaves, at least grossly, much like a circle 
map. This then suggests that the underlying dynamics of this fluid system may live on a 
low-dimensional attractor whose Poincar'e section closely resembles that generated by the 
circle map. This expectation is explored in greater detail below. 

5. Mult i fractal  analysis  

To construct the experimental Poincar6 section at the critical point in phase space, the 
continuous hotwire velocity time trace u(t) is sampled discretely at a time period r equal 
to the period of excitation, yielding Pn = u(t + n * r) ,  n = 0, 1 , 2 , 3 , . . . .  This procedure 
can lead to some problems if there is a drift in the bare or dressed winding numbers. A 
better procedure is to select points in the continuous time trace which have zero time 
derivative. In either case, the Pn are embedded in the three-dimensional phase space 
(P,, P~+l, P~+2), three being the lowest dimension in which the Pn are non-interacting. A 
two-dimensional projection of the three-dimensional Poincar'e section is shown in 
figure 3. The attractor lies essentially on a one-dimensional subspace and is perceptibly 
inhomogeneous. (Other projections described in Ref. [11] confirm this conclusion.) 

We first turn to a suitable statistical characterization of the attractor. From the theory of 
circle maps, one knows that the attractor generated from the sine circle map has a 
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Figure 2. The scaled power spectral density for the velocity signal measured in the 
wake of the oscillating cylinder. The dressed winding number is estimated to be within 
0.1% of a s. The structure is quantitatively similar to that of the circle map. 
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Figure 3. Two-dimensional projection of the experimental Poincar6 section at the 
critical golden mean point, obtained by embedding the velocity signal in three 
dimensions as described in the text. 

particular self-similar structure that can be quantified via the multifractal formalism. 
Exploitation of this self-similar structure for making predictions about the dynamics of 
the system is the goal of the multifractal formalism. To this end, one can construct a 
measure on this attractor by subdividing it into boxes of equal size and computing the 
density of points in each of these boxes. This gives one a measure of how often certain 
regions of the attractor are visited in comparison with others. One defines a singularity 
strength [13] by 

7~i " ~  L a i  , ( 2 )  
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Figure 4.. The f(c~) curve obtained from analyzing the measure on the Poincar6 
section. The solid line is the theoretical curve for the sine circle map at the golden 
mean critical point. Typical error bars are shown. 

where 7ri is the relative density of points in the i th box of size L. The box size L is 
restricted to the scaling bounded by some inner and outer cut-off scales. Within the 
scaling range, one can define f ( a )  as the dimension of the set of points possessing 
singularity strength a by the equation 

N(a)  ~ L -:<~1, (3) 

where N(a)  is the number of boxes of size L possessing singularity strength a. T h e f ( a )  
formalism entails viewing the attractor as the union of several interwoven fractal sets 
each having a measure of a different singularity strength. (In equations (2) and (3), the 
symbol --- subsumes all the prefactors needed to render them dimensionally 
homogeneous.) 

A summary of these multifractal results is given in figure 4 which shows a comparison 
between the measuredf(a)  curve at the experimentally determined critical point and that 
for the sine circle map. Space limitations preclude a description here of how the curve 
was obtained from experimental data. This information can be found in Ref. [11]. On the 
left part of the figure representing the scaling of high probability regions on the attractor, 
the data agree well with the circle map predictions. The right half of the f ( a )  curve 
represents the scaling of the low-probability events on the attractor and is usually 
unreliable in experiment because of the strong influence of noise (even if small). It is thus 
unclear at present whether the discrepancy on the right part represents a true departure 
from the universal scaling or is an experimental artifact. 

We have discussed this issue in more detail in Refs. [11] and [14] where we have 
concluded that the correspondence between the circle map and the flow is indeed real. 

6. The trajectory scaling function 

One would like to push further the correspondence between the flow and the circle map. 
One powerful way of describing the dynamics of a system is the so-called Feigenbaum 
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scaling function [15], [16]. This object contains microscopic information about a 
deterministic dynamical system and its scaling properties. At the onset of chaos, the 
attractor can be regarded as constructed by an underlying multiplicative process that 
successively refines it, in such a way that it possesses scaling properties at finer and finer 
scales. The scaling function gives a compact description of the refinement basic to the 
fractal structure of the attractor. The underlying multiplicative process can be mapped on 
to a subdividing tree structure where, on the average, each branch divides into 2 
subbranches at each successive level of refinement. The iterates of the dynamical system 
become branches of the tree, and intervals are formed by joining nearest neighbor 
branches. 

At the critical golden mean winding number, the attractor can be thought to have been 
generated by successive refinements of a measure created from superstable periodic 
orbits whose winding numbers are successive Fibonacci approximations to the golden 
mean. The Fibonacci sequence is given by the relation Fi+2 = Fi + Fi+l with Fo = 0 and 
Fl = 1. It is easily verified that the ratio p/q  = Fi/Fi+l approaches Crg for large enough i. 
Since the intervals at each level are formed by joining nearest neighbor points, a 
measure is constructed to give equal weight to each such interval. The scaling function, 
which describes the contraction factors of each interval along each branch as the tree 
subdivides, is defined as 

, O'e(£n+l, • • £o) -- 7-2- . . . .  (4) 

where L(en, . . . ,  Co) is the length of an interval belonging to the tree. The Kronecker 
delta's ensure that the two intervals being compared have the same history in the tree 
construction. The sequence of o's describes the location of the intervals in the tree 
structure, and assume the binary values of 0 or 1. For the circle map, the sequence 
@i-t-1,£i) = (1, 1) is forbidden, consistent with the Fibonacci sequence defining the 
periodic orbits. The argument of the function is determined by expanding time (or 
iterations) in base 2, i.e., t = ~ei2 i, yielding cr(t). After suitable normalization, this 
procedure associates a real number between 0 and 1 to each interval. Such an expansion 
also correctly organizes the intervals to be compared. It should be stressed that if one can 
extract the scaling function from the experiment, one has a complete microscopic 
description of how the attractor was refined, and one can easily compute all statistical 
averages. 

We shall now assume that the two entities, namely the flow and the map, possess 
the same multiplicative structure, leading to a particular kind of scaling at finer and 
finer scales. We now like to quantify the refinement process by extracting the values 
of scale contractions at each stage of refinement and comparing them with those from 
the circle map. Here one runs into the difficulty that the scaling function is 
experimentally not a robust quantity and therefore difficult to obtain. We therefore 
extract a suitably modified scaling function [17], which is based on comparing intervals 
within a single periodic orbit rather than two orbits. Focusing on the golden mean 
winding number, we note that the ratios p/q,  which approximate the golden mean 
successively better for each increasing index on the Fibonacci sequence, correspond to 
the different frequency-locked Arnol'd tongues mentioned earlier. We thus need to study 
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Figure 5. A typical Poincar~ section for the mode-locked state for the ratio 
p/q = 5/8. The numbers by the point clusters represent the dynamical sequence of the 
periodic iterates creating the attractor. The sequence 1-6-3-8-5-2-7-4 is consistent with 
the circle map theory. The Poincar~ section is embedded in three-dimensional phase 
space whose two-dimensional projection is presented. Three dimensional vector 
distances between neighboring points are used to determine the trajectory scaling 
function. 

periodic orbits of length Fi = q, where 0,, = On+ q. It follows that 0, and 0n+F~_~ are nearest 
neighbors on the Poincar'e section, 0n and On+F,_2 are the next nearest neighbors, and so 
forth. Following Ref. [17], we define the trajectory scaling function within a single 
periodic orbit for the circle map as 

[0j - 0j+~._2] if 0 < j  < Fn-2 (5) 
O'j - -  [Oj - -  Oj+F, ,_ , ]  

and 

[Oj - Oj+F._2] if Fn-2 < j _< Fn. (6) 
° J  - [0 j  - 

Since we wish to approach the golden mean critical point with a sequence ofp/q rational 
approximations, we experimentally adjust the system at the critical amplitude to the best 
possible rational approximation to the golden mean winding number. For any given p/q 
approximation, the Poincar'e section consists of a set of q discrete points. For the 
experimental situation, a two-dimensional projection for q = 8 is shown in figure 5. The 
experimental trajectory scaling function is obtained using the three-dimensional vector 
distances between the appropriate points. The noise within each point cluster is reduced 
by averaging. The experimental trajectory scaling function for a 5/8 lock-in state is 
shown in figure 6. The reader should examine figure 6 with figure 4 of Ref. [17] to realize 
that the present comparison is actually of better quality than for the convection 
experiment considered there. The agreement between theory and experiment is 
reasonably good, though more data points and smaller experimental error would have 
been desirable. 
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Figure 6. The trajectory scaling function from the experiment for a 5/8 lock,in 
state. The solid line is computed from the sine circle map at the golden mean critical 
point. The various symbols represent calculations from different experimental runs, 

7. Conclusions 

Even though some departures from the universality associated with the circle map are 
apparent in wake dynamics, we think that the extent of the observed similarity is 
remarkable. It is not obvious whether the departures observed are real or occur because 
the control parameters are not as fine tuned as desired. It is known, for example, that 
departures from criticality can produce comparable departures from universality to those 
observed here [18]. Apropos of this state of affairs, we reiterate that enormous care was 
exercised in the experiments, and state our belief that the residual problems of fine 
control cannot be eliminated without resorting to unconventional ways of generating such 
flows, A particular focus of this work has been the search for universal behavior through 
the study of the trajectory scaling function. This gives a detailed description of the 
attractor. We believe that the agreement with universality predictions for this 
experimentally fragile but rich function is indeed considerable. 

In the past, observations such as these have evoked the question: why does a fluid flow 
governed by coupled field equations follow the dynamics of a simple map? The key 
idea here is universality: a system may exhibit quantitative universality as long as it 
possesses certain common qualitative properties. The relevant statement here is that the 
dynamics of many systems with two nonlinearly coupled modes, one of which is 
periodically driven, yield the dynamics of a sine circle map near the critical point. It must 
be said that at present there are no general rules that help us forecast with certainty that a 
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flow in which a few modes are excited will or will not follow a certain universal scenario. 
However, with the hindsight of the experimental (or other) knowledge about the existence 
of a universal scenario, it is often possible to derive the simple map from the governing 
equations. 

In the particular case of the oscillating cylinder, the experimental demonstration of the 
correspondence between the flow and the circle map implies that one should be able to 
extract the latter appropriately from the equations of motion governing the flow. Without 
this step, the connections implied are unsatisfying and, to a skeptical mind, perhaps no 
more than a curiosity. Some work in the needed direction has already occurred [11]. The 
starting point is the Landau-Stuart equation [19], [20] which, on the one hand, can be 
deduced from the equations of motion and, on the other hand, is also known to describe 
the wake evolution near the critical Reynolds number [21], [22]. Add to this equation an 
external forcing term F = Foexp(iwet), in the same spirit as that of the oscillating 
cylinder experiment. From this one can generate a coupled dynamical system for the 
amplitude and phase of a disturbance in the forced wake. An analytical study of even this 
simplified dynamical system is too complex, but its numerical study shows features that 
are close to those observed. In the limit of low forcing, this dynamical system indeed 
reduces to the circle map. 
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