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Along with the computation of attractor dimension via the Grassberger—Procaccia
method and the nearest neighbour algorithm, a variety of phase space tests are
used to search for low-dimensional characterization of daily maximum and minimum
atmospheric temperature data (ca. 25000 points each, spanning about a 70-year

_d
/Z[\n‘ period). These tests include global and local singular value decompositions, as well as
—_ others for uncovering nonlinear correlations among amplitudes of the global singular
< vectors and for recognizing determinism in a time series. The results show that a
S E low-dimensional characterization of the temperature data is unlikely.
2
= O
Eg 1. Introduction

Understanding the dynamics of the weather and the climate, with the ultimate ap-
plication to prediction, is a major research challenge in geophysical fluid dynamics.
Since these systems involve complex interactions of numerous subsystems (such as
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the atmosphere, oceans, biosphere and so forth) a complete ab initio analysis is well
out of reach. The best one can do is to develop models with adequate predictive
power. A consistent feature of weather/climate data is that they are aperiodic and
their deviations from periodicity cannot be explained by conventional linear models
of time series analysis. With this as the background, three types of models have
evolved. (1) A system perturbed by stochastic noise. Here, one can only hope to
predict the future weather or climate in a statistical sense. (2) A deterministic sys-
tem (chaotic or non-chaotic) with many degrees of freedom: in this case, accurate
prediction (short term if chaotic) would be possible in principle. However, building
the model would be rather unfeasible if detailed mechanisms are not known. (3) A
chaotic (deterministic) system with only a few degrees of freedom; although pre-
dictability would be limited to short times, modelling without a knowledge of all
details would in principle be feasible.

A paradigm that has been discussed in the literature over the past decade is the
so-called weather/climate attractor conjecture, which states that weather/climate
systems have low-dimensional attractors. Several studies corroborating this conjec-
ture have appeared (Nicolis & Nicolis 1984; Fraedrich 1986; Tsonis & Elsner 1990;
Keepenne & Nicolis 1989; Maasch 1989; Sharifi et al. 1990). In all these reports the
Grassberger—Procaccia procedure (Grassberger & Procaccia 1983) for estimating the
correlation dimension (Ds) of an attractor was applied to several data sets that are
representative of weather or climate variations. A summary of the type of data used,
the number of points in the data strings and the estimated dimension is given in
table 1. Reported values have typically fallen between 3 and 8. There have also been
reports negating the weather/climate attractor conjecture (Grassberger 1986; Tsonis
& Elsner 1990; Lorenz 1991; Zeng et al. 1992). Part of the skepticism arises from the
realization that dimension estimates spuriously saturate for short data records, lead-
ing to false conclusions about finite dimensional attractors. Several saturation limits
have been obtained on the basis of heuristic arguments (Procaccia 1988; Smith 1988;
Eckmann & Ruelle 1992). Eckmann & Ruelle show that the saturation dimension
is of the order 2log,, IV, where N is the number of points in the time series, but it
must be noted that this estimate assumes data of good precision and scaling only
over a decade. For the estimated D, in a physical experiment to be reliable, it must
be well below this saturation limit. In view of such data requirements (both quantity
and quality) most of the dimension estimates cited in table 1 are not satisfactory.
Apart from the spurious saturation of dimension estimates, there are several other
systematic errors (due to discretization, geometry of the attractor, edge effects and so
on) which make it difficult to obtain reliable dimension estimates from experimental
data. For a catalogue of potential difficulties, see Theiler (1990).

Before describing the specific goals of this work, it seems useful to put it in context
by addressing the following two questions: (1) What does one mean by a ‘weather
attractor’ or ‘climate attractor’? (2) What dimension values can be considered low?
Weather refers to the localized state of the atmosphere (involving temperature, hu-
midity, wind velocity, and so forth), with time scales ranging from a few hours (e.g.
thunder storms) to a few weeks (e.g. planetary-scale waves in the atmospheric circu-
lation). Climate, on the other hand, refers to the long-term state (a few decades to
millions of years) of the atmosphere and is usually characterized by representative
aggregates (such as suitably defined averages) of weather systems. Strictly speaking,
the relevant phase space for weather and climate attractors would be the space of all
global fields of atmospheric temperature, humidity and wind velocity and so forth.

Phil. Trans. R. Soc. Lond. A (1996)
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Table 1. Summary of the reports of low-dimensional estimates of D2 for weather/climate data

(6*80 is the ratio of the rare '®0 and the common 60 isotope. To a first order, it is a proxy of
global ice volume (Fraedrich 1986).)

approximate
references data type data points  estimated Do

Nicolis & Nicolis (1984) s1%0 500 3.1
Fraedrich (1986) local surface pressure 5500 34

relative sunshine duration 11000 3-4

zonal wave amplitude 3500 3-4

§'%0 200 3-4
Keppenne & Nicolis (1989) 500 mbar geopotential height 9000 7.5
Tsonis & Elsner (1989) vertical wind velocity 4000 7.3
Maasch (1989) 8180 200 4-6
Sharifi et al. (1990) rainfall 4000 4

To study the properties of the attractor one needs to resolve the smallest time scale
of interest and encompass enough of the largest scales. For example, the shortest
time scale of interest for the weather attractor would be an hour (say), with the
largest time scale of the order of several weeks. For climate attractors, typical short
and large time scales could be a year and few million years (associated with ice
ages), respectively. Data spanning such large periods of time, although available in
some prozy form (Nicolis & Nicolis 1984), are unfortunately very limited in extent
and have the further drawback of not resolving time scales on human experience.
On the other hand, data spanning a few decades or centuries, with resolution on
the order of a day, are easily available; however, these data are not long enough to
encompass features of the climate attractor. These conflicting demands between the
resolution and the record length may appear to make the situation for the climate
quite hopeless. However, the issue that makes further study meaningful is that cli-
mate phenomena of disparate time scales are reasonably stationary with respect to
their own characteristic time scales. Accordingly, parts of the ‘global’ climate attrac-
tor can be thought of (in very loose terms) as ‘local’ attractors, which can then be
studied as objects of interest in themselves. It is in this sense that the term ‘local cli-
mate attractor’ is interpreted in this paper. Since the ‘local’ attractors might indeed
be quite different depending upon the nature of different data sets (time scales and
sampling locations), the issue is really about the existence of some climate systems
which have low-dimensional characterizations.

With regard to the dimension of the weather/climate attractors, it must be said
first that the phase space is infinite dimensional in the strict sense. It is generally the
case, however, that in dissipative systems the dimension of the attractor is less than
that of the phase space in which it resides. Recent work has shown the existence
of finite-dimensional (Hausdorff dimension) attractors in dissipative systems with
infinite-dimensional phase space (Mallet-Paret 1976; Foias & Témam 1979; Ruelle
1982; Constantin et al. 1985). This gives some reason to believe that the conjecture
about low-dimensionality of weather/climate attractors may not be absurd. The issue
of what constitutes ‘low-dimensionality’ should be discussed in the light of the fact

Phil. Trans. R. Soc. Lond. A (1996)
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that studying systems of dimension greater than ten, say, is fraught with practical
difficulties. Only smaller dimensions could therefore be considered usefully ‘low’.

The goal of this paper is to assess the feasibility of low-dimensional characteri-
zation of atmospheric temperature data. We examine data sets consisting of single-
point daily maximum and minimum temperature (Tyax and Ty, ) in the atmosphere
spanning about 70 years. We are thus looking at a local climate system with the
largest characteristic time of the order of a decade. The use of daily maxima or
minima in reconstructing the attractor is believed to produce a smoothed version
of it without introducing undue distortions on time scales of interest; the primary
reason for this belief is that the smoothing works on a time scale of the order of a
day, which is almost certainly finer than the finest resolution required for climate at-
tractors. This issue will be revisited in the text. Along with dimension estimates, we
examine several characterizations of temperature data (all computed from the phase
space reconstruction of the attractor); these include the global singular value decom-
position (svD) (Broomhead & King 1986), local svDb (Broomhead et al. 1987), an
extension of svD based on calculating nonlinear correlations among the amplitudes
of the global singular vectors (Healey 1994) and a test for recognizing determinism
in a time series (Wayland et al. 1993). SvD provides an ‘optimal’ basis for the data,
in phase space and the number of ‘dominant’ basis vectors can be taken as an up-
per bound to the dimension. Global svD is calculated using the whole data set and
does not always indicate low-dimensionality because nonlinear correlations among
the amplitudes of the global basis vectors ‘excite’ new basis vectors thereby spuri-
ously increasing the total number of ‘dominant’ vectors. Such correlations could be
reduced by examining local bases (local svD) or could be uncovered by correlation
fits using spline-like functions. The test for recognizing determinism in a time series
needs some explaining since one is looking here for a relation between a statistic
which depends upon the dynamics on the attractor and its dimension, which is a
geometric (measure-theoretic) property. This relationship is not known in general,
although it is believed that a deterministic attractor of high dimensionality would
appear stochastic in a low-dimensional reconstruction. On the other hand, if the ex-
perimental data appear deterministic in a low-dimensional reconstruction then they
are likely to have a low-dimensional characterization.

It should be pointed out that, so far, only dimension calculations and global svD
have been applied to weather/climate data. The application of empirical orthogonal
decomposition and principal component analysis (variants of global svD) in study-
ing weather/climate data can be traced back to Lorenz (1956). There have been
numerous studies since then, making use of singular vectors as expansion bases,
and as filters to identify the mean drift and important structural components of
the data. Implications of global svD on dimensionality have been explored only re-
cently. Fraedrich (1986) and Vautard & Ghil (1989) examined proxy data indicative
of global ice ages and used the amplitudes of singular vectors and statistical tests
to identify the dominant vectors. These authors reported, respectively, on the pos-
sibility of a four-dimensional and a ten-dimensional characterization of their data
sets. Further phase space analysis of such small, non-stationary data sets (100-500
points) would, of course, be devoid of much meaning. Indeed, from the perspective
of weather/climate attractors, the relevance of the reported results is unclear.

The outline of the paper is as follows. In §2, the data sets of daily maximum and
minimum temperature are given preliminary probing by displaying their time trace,
spectra, histograms and delay-time plots. Phase space reconstruction of dynamical

Phil. Trans. R. Soc. Lond. A (1996)
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Table 2. Summary of the breaks in Tmax and Tmin data

length of break 1 2 4 5 6 11 20 23 30 31 43 53 91
number of breaks 11 5 1 1 1 1 1 1 1 1 2 1 1

systems using time series of a single variable is discussed in §3. Since the data are
likely to be noisy we have used a noise reduction technique based on phase space
reconstruction (Kostelich & Yorke 1990) as a pre-processing step. The methodology
and results of this pre-processing are described in §4. Briefly, the noise reduction
scheme works by modelling the local dynamics on the attractor by linear maps and
then adjusting the data to make them more consistent with the local linear maps.
The noise reduction might be considered effective without being detrimental if this
adjustment moves points in phase space by small distances (say less than 10% of
the attractor extent, which is defined as the maximum inter-point distance on the
reconstructed attractor). It turns out that the Ti.x and Ty, data require larger ad-
justments. Hence, the pre-processing step was deemed ineffective for these data and
the rest of the analysis was done with the original data. In §5 two practical methods
of calculating dimensions, namely the Grassberger—Procaccia algorithm (Grassberger
& Procaccia 1983) for the correlation dimension (Ds) and the nearest neighbour al-
gorithm (Badii & Politi 1985) for the information dimension (D;), are described.
Estimates of D, for the temperature data are reported (but D, could not be esti-
mated due to limitations of the data). The results do not indicate low-dimensionality.
However, the dimension estimates with a noisy and small data set can only be taken
as a rough guide. The svD techniques and the test of determinism of a time series
are introduced in §6 to explore further the issue of low-dimensionality. These tech-
niques are evaluated in the first half of § 7 via their performance on control data (the
z-variable of the Hénon map and the local maxima of the y-variable of the Lorenz
flow). In the second half of that section, we report the results of these tests for the
temperature data. Summary and conclusions are presented in § 8.

The principal conclusion of the investigation is that a low-dimensional character-
ization of the atmospheric temperature data is unlikely.

2. The data

The time series of daily maximum and minimum temperature, sampled at Berke-
ley (California), were obtained from the US Climatic Data Center, Asheville, North
Carolina. The temperature data, recorded in degrees Fahrenheit to the nearest inte-
ger, cover a time span of about 70 years. There are some breaks in the data (identical
for Tinax and Thin) as shown in table 2. For the sake of efficiency we have decided
to treat the whole data set (ca. 25000 points) as contiguous. Any attempt to fill the
breaks using some interpolation would introduce extraneous correlations and is to be
avoided. The number of ‘bad points’ in the reconstructed phase space (i.e. the num-
ber of points affected by these breaks) is at the worst about 4% of the total number
of points. The calculation of the number of ‘bad points’ and its implications on the
phase space reconstruction along with those of using a non-standard reconstruction
procedure, are discussed in the next section. Among the various data displays shown
in this section, the breaks marginally affect the power spectrum and the delay-time
plots. The frequency axis in the power spectrum has to be rescaled (multiplied by

Phil. Trans. R. Soc. Lond. A (1996)
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Figure 1. For description see opposite.
Phil. Trans. R. Soc. Lond. A (1996)


http://rsta.royalsocietypublishing.org/

A

/

A

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

OF

L2

TaNsactions | HE ROVAL

SOCIETY

OF

Downloaded from rsta.royalsocietypublishing.org on 20 February 2009

Low-dimensional characterization 1721
4—TT T T T T T T
m"_oooo«goooo$oo$o_
L af .
é - ¢ flatness .
= 20 o skewness —
g L ]
e .
§<>oooooooooooooo_
2 o0F -
s L@ i
-1 NSNS TN Y NN Y TN NN T N AN N TN N |
10 15 20 25
days/103
(e) L L
100 — . : — 100 |~ Sl -
~ 80 — ~ 80 —
o S
— o
+ B 7 + B 7
& 60 - & 60 - —
40— — 40+ —
| | | | | | | | ] | 1 | | |
40 60 80 100 40 60 80 100
T() T()
[ I I T | T | [ T I T I ! I
100 L . — 100 —
& 80r — o 80 —
o~ \O
— - - on - -
+ +
= 60 = g 60k -
40~ — 40 —
| ] | | | | | | | | | | | |
40 60 80 100 40 60 80 100
T(®) T(1)

Figure 1. Plots for the Timax data consisting of ca. 25000 points. (a) A sample of the time
trace. (b) The power spectrum. The frequency is in (days) " and the spectrum was computed
in blocks of 2'? points and averaged over six blocks. (¢) The amplitude histogram with bin size
= 1. (d) The variation of the skewness factor ((Tmax — T'max)’)/0max, and the flatness factor
((Tmax — Trmax)*) /0t ax With the data record length. Tmax is the mean and 02.ax is the variance.
(e) Delay-time plots for delay-times of 10, 30, 175 and 366 days. 10000 points have been used
for each plot.

the ratio of the time span of the data set to the total number of points in it) in order
to display it in units of (days)~'. The delay-time plots undergo only the innocuous
change of having a small number of points perturbed from their true values.
Figures 1 and 2 show, respectively for the Tpax and T, data, the following fea-
tures: (a) a typical segment of the time trace, (b) power-spectral density, (c) ampli-
tude histogram, (d) the skewness and flatness factors and (e) delay-time plot (i.e.
plot of T'(t) versus T'(t+ 7), where 7 is the delay-time). The notable features of both
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Figure 2. Plots for the Tiin data consisting of ca. 25000 points. (a) A sample of the time trace.
(b) The power spectrum. The frequency is in (days)™! and the spectrum were computed in
blocks of 2'% points and averaged over six blocks. (¢) The amplitude histogram with bin size
= 1. (d) The variation of the skewness factor ((Tmin — T'min)®) /o34, and the flatness factor
((Tmin — Trmin)*)/0min With the data record length. Tmin is the mean and o2, is the variance.
(e) Time-delay plots for delay-times of 10, 30, 175 and 366 days. 10000 points have been used
for each plot.

time traces (figures la,b) are: (i) periodicity with a period approximately equal to a
year and (ii) large amplitudes of small scale fluctuations. These features appear in
the power spectra (figures 1b and 2b) in the form of peaks (at f = 1/366 (days)™",
1/175 (days)~! and 1/119 (days)~') and the broadband structure. The fundamental
frequency corresponds to the one-year periodicity in the climate associated with the
rotation of the Earth. The two near-harmonics do not correspond to known cycles and
their presence is quite likely indicative of the nonlinear nature of the data. The his-
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tograms of the temperature (figures 1c and 2¢) highlight the skewness of the data. The
time series of maximum temperature has mean (Tmax) ~ 64 °Fahrenheit, standard
deviation (0may) ~ 8.1 °Fahrenheit, skewness factor ({(Timax — Tmax)>) /05 ax) = 0.5
and flatness factor (((Tiax — Tmax)*)/02..) = 3.6. The time series of minimum tem-
perature has mean (T i,) ~ 50 °, standard deviation (o) & 5.7 °, skewness factor
((Tinin — Tonin)?) /025) = —0.45 and flatness factor (((Tinin — Tmin)*)/0min) ~ 3.1.
The variation of the skewness and flatness factors with the record length (figures 1d
and 2d) show that they are reasonably converged. The delay-time plots (figures le
and 2¢) show no structure even for values of delay-time corresponding to the funda-
mental frequency and the first near-harmonic in the Fourier spectrum.

As mentioned at the beginning of this section Ty, and T, have been recorded
to the nearest integer. This is a large discretization level (1.5% of the range of the
Trmax data and 2% of the range of the Ty, data) and we take it as our operational

definition of measurement error.

3. Phase space reconstruction

In order to extract any information about the attractor from the time series of an
observable, one needs to set up a map f : A — R"™, where A is the attractor (in phase
space) and R™ is the n-dimensional Euclidean space, such that P(A) = P(f(A)),
where P(A) refers to some property of A and f(A) is the reconstruction of A. Packard
et al. (1980) advocated using independent coordinates from a time series to form the
map f. They suggested using the value z(t) of the time series and its time derivatives
z(t), &(t), ..., as independent coordinates. Another set of independent coordinates,
{z(t),z(t +7),...,2(t + (n — 1)7)} is attributed in that work to a communication
from D. Ruelle. This latter procedure is described more fully by Eckmann & Ruelle
(1985). The coordinates are called delay-coordinates, 7 is called the delay-time and
the points in the delay-reconstruction are called delay-vectors. The delay-coordinate
map is easy to implement numerically and hence often used for reconstruction.

Having found the form of the map, one needs to know the values of n and 7 for
which a desired property P will be preserved for a typical dynamical system and
a typical observation function (i.e. the observed time series). To preserve qualita-
tively the global orbit structure on the attractor, thereby preserving all dynamical
properties (relating to the sequencing of points on the orbit) and measure-theoretic
properties (relating to some probability measure on the attractor) of the system,
almost all delay-coordinate maps are good enough when n is greater than twice the
dimension of A (Sauer et al. 1991). (This result is true under certain hypotheses
which are vacuously satisfied by aperiodic time series. Also, ‘dimension’ in this re-
sult refers specifically to the boxcounting dimension.) This result is an extension of
an earlier result of Takens (1981). If, instead of preserving the global orbit structure,
one is interested only in the dimension (a measure-theoretic property), then a smaller
n may suffice. It has been proved that n not less than the dimension of A is sufficient
to preserve the dimension when the relevant dimension is the Hausdorff dimension
(Hunt et al. 1993) or the correlation dimension (Sauer & Yorke 1993).

Since the attractor dimension is the unknown in practice, the theorems just men-
tioned cannot be used to estimate the value of n required to preserve the dimension.
However, we are assured that if n is large enough then the reconstruction will have
the dimension of the attractor. Thus measurement of a dimension of a dynamical
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system from a time series has to involve a series of reconstructions for increasing
values of n till the ‘dimension’ saturates, assuming of course that this saturation is
not an artifact of the finiteness of the data.

For data with finite precision, the value of the delay-time 7 plays a practical role
in phase space reconstruction. Small values of 7 (implying that delay-coordinates
are strongly correlated) lead to a phase space portrait which is clustered around the
diagonal of the phase space. Large values of 7 (implying that delay-coordinates are
almost uncorrelated) will lead to a space-filling portrait. In both cases, the estimation
of attractor properties will be difficult and might lead to erroneous results. There
have been various suggestions for an optimum value of 7, ranging from the simple
— for example, the time required for the autocorrelation function of the time series
to reach 1/e or zero (Atten et al. 1984) — to the more sophisticated — for example,
the first minimum of the mutual information between delay-coordinates (Fraser &
Swinney 1986). Our choice of 7 has been influenced significantly by the number of
‘bad points’ (N},) in the reconstructed phase space. Let by represent the breaks of
length less than or equal to 7 and b, represent the breaks of length greater than 7.
If the spacing between consecutive breaks is larger than (n — 1) x 7 (as it is for the
temperature data, for all values of n and 7 considered here), then

Ny = (n — 1) x [sum of the lengths of b + 7 X number of b]. (3.1)

This formula shows that Ny, increases with 7 for a fixed n. Hence, based solely on
the criterion of minimizing Ny, the choice of 7 would be 1. As a compromise between
‘optimal phase space reconstruction’ and ‘minimal number of bad points’ we have
chosen 7 = 10. For this value the autocorrelation is ca. 0.43 and and the number of
‘bad points’ in the worst case (n = 9) is about 4% of the total number of points on
the reconstructed attractor.

In principle, all techniques based on phase space reconstruction can be carried out
making use of only the ‘valid’ delay-vectors (those that do not go across breaks in the
data). However, such sophistication comes at a price, and its value has to be assessed
for each specific test separately. The initial step of any phase space technique (based
on delay-embedding) is the formation of delay-vectors from a given time series. This
requires that detailed information be provided, along with the time series, about
the break positions and break lengths as well. Tests in which the dynamics of the
attractor have to be reconstructed will suffer from the added expense of having to
label all the points which do not have images (because of the breaks), so that the
algorithm does not use them while computing local dynamics. These bookkeeping
overheads may well overwhelm the overall computational time of tests depending, of
course, on the specific test. One then has to ask the question whether the gain (which
relates to the elimination of the error incurred due to the assumption of contiguity)
is commensurate with the added overhead.

In order to answer this question, we shall characterize the various tests by certain
qualitative attributes and we will discuss the gain and the price as functions of these
attributes. The characterization shall be in terms of: (1) the number of points used —
small (a few thousand), or large, (2) whether dynamic (temporal sequence of points),
or geometric (location of points) information is required and (3) whether or not the
tests involve some form of global averaging.

The bookkeeping overheads will be negligible for tests requiring small data sets,
but significant for the others — most certainly for those requiring dynamic information
such as noise reduction and the test for determinism. As regards the error incurred in
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the results of these tests, there is a sharp difference between the tests which require
dynamic information and those that require only geometric information. The error
in case of the ‘geometric’ tests will primarily depend on the number of ‘bad’ delay-
vectors and not on the magnitude of perturbation they represent. In case of ‘dynamic’
tests the magnitude of the perturbations might play a significant role. Finally, the
errors are going to be small for the tests which involve global averaging.

Tests which require small data sets, global svb and nonlinear svb, could and
should be carried out with only ‘valid’ delay-vectors. In our work, these tests have
been carried out with a section of data of length 5000, having only two breaks,
each of length one. Consequently, the errors in the results of these tests can be
considered to be negligible. Among the tests which require large data sets, those
that are ‘geometric’ (dimensions and local svD) will have small errors if the number
of ‘bad’ delay-vectors is small. The test of determinism involves a global average
of a local statistic and, for this reason, a small number of ‘bad’ delay-vectors will
introduce only a small error.

The noise reduction technique of Kostelich & Yorke has the potential for suffering
adversely, even by the small number of ‘bad’ points we have estimated (4% in the
worst case). At the same time, because of the large number of data points required
(with the requirement becoming particularly critical for larger reconstruction dimen-
sions) and of the need to estimate local dynamics, the bookkeeping overheads will be
rather high. It is unavoidable that large atmospheric data sets (with long time spans)
will have breaks in them. As longer data sets become available and the computing
power increases — so that larger reconstruction dimensions can be used for phase
space reconstruction — attempts will have to be made to build algorithms to identify
and suppress heuristically the influence of ‘bad’ delay-vectors. To a large extent such
heuristics are built into the noise reduction technique of Kostelich & Yorke. Details
will be presented in the next section.

Finally, we need to justify the sampling of the consecutive local maxima or local
minima of a single variable. This may be thought to be equivalent in some sense,
to sampling a time series of a certain Poincaré section of the flow, and numerical
evidence from Lorenz flow and Réssler flow suggests that this is essentially the case.
A Poincaré section of an attractor preserves all the dynamical properties of the
attractor and has dimension one less than the dimension of the attractor. To monitor
the possible artifacts of using such a non-standard reconstruction, we have used a
time series of local maxima of a single variable of the Lorenz flow as one of the control
signals to be compared with the temperature data with respect to all the tests of
low-dimensionality. This will be described in §7.

4. Noise reduction

(a) Methodology

Heuristically, noise is the difference between the ‘true’ system and its experimental
observation. To attempt a more precise definition one needs to restrict the class of
systems under consideration. For deterministic systems, two concepts of noise can
be made precise: measurement noise and dynamic noise. Suppose that a noise-free
deterministic dynamics is given by the map

Ynt1 = g(yn)‘ (41)
Phil. Trans. R. Soc. Lond. A (1996)
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The measurement noise (r,,) is defined as the difference between the exact orbit (y,,)
and the measured orbit (x,),

Ty = Yn — Tp. (4.2)
In general, r, may be deterministic or stochastic; and, if stochastic, it may be cor-

related or uncorrelated with y,,. Dynamic noise, on the other hand, is a feedback
process wherein the system is perturbed during its evolution,

Lpy1 = g(wn + rn)~ (43)

In this case, an orbit satisfying the exact dynamics might simply not exist. The
‘shadowing problem’, which deals with the existence and search of ‘exact’ orbits,
is a very difficult one. Importantly, although the two types of noises are associated
with different mechanisms (and hence might require different schemes to remove
them), they may not be distinguishable a posteriori based only on the data. Almost
all noise-reducing schemes aim to remove additive measurement noise, with special
operational definitions for r,,.

Any practical noise-reduction scheme has to assume that the ‘exact’ orbit can be
recovered. The scheme should have: (1) an operational definition of noise, (2) an
algorithm for separating the noise (as defined in step (1)), and (3) an estimate of the
effect of noise-removal on the signal. If there is a priori knowledge of some charac-
teristics of the system, a natural way to define noise would be to relate it to the part
of the signal devoid of those characteristics. For example, in the case of band-limited
signals, noise could be defined as a collection of high frequency components. This
is the operational definition of noise used in low-pass Fourier filtering. As another
example, in the case of low-dimensional dynamical systems one could relate noise
to high-dimensional behaviour (deterministic or stochastic). In the absence of any a
priori knowledge of the exact system, one has to assume an operational definition of
noise. The assumption should be guided by some testable hypothesis about the sys-
tem. For the atmospheric temperature data, a plausible hypothesis (and one which
we wish to test) is that the local climate attractor (associated with the temperature
data) is low-dimensional. It would be reasonable to choose a noise-reduction scheme
aimed at removing noise from a low-dimensional system. Several (essentially similar)
schemes have been proposed to remove (measurement) noise from low-dimensional
systems (for reviews, see Grassberger et al. 1993; Kostelich & Schreiber 1993). We
use the method proposed by Kostelich & Yorke (1990).

The goal is to get an approximation for the underlying ‘true’ attractor from its
‘blurred’ reconstruction. Kostelich & Yorke propose to achieve this by using local
linear approximations of the map governing the dynamics of the reconstructed phase
space, g. The linear approximation (which they call the Eckmann—Ruelle lineariza-
tion) can be computed by carrying out a linear least-squares fit to the data points

(réf)  (ref) . . . (ref) .

(x;7’,y; ') with a linear estimator, where x; ' are the delay-vectors in a small
neighbourhood of ), and y™" are their respective images under g. In the next
step, Kostelich & Yorke perturb sections of the orbit (defined as sets of delay-vectors
ordered temporally, {z;}}) to a new one {&;}] so that it is more ‘consistent’ with
the dynamics of the locally linear maps. The measure of inconsistency (which is to
be minimized) is taken to be

p
> {wll@s — @il]® + 1@ — Lioa (&i-0)|1” + @41 — La(&:)|1*} (4.4)

=1
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where w is a weighting factor (which depends upon the confidence one has in the
accuracy of the original values), L is the linear map, p is the length of the trajectory
section adjusted in a single adjustment step and || - || denotes the Euclidean norm.
The minimization problem is solved using least-squares.

The size of the neighbourhoods in which the local linear maps are computed have
to be small so that nonlinearities do not introduce large errors. At the same time
the neighbourhoods have to be large enough to provide a sufficient number points
to compute the linear maps (involving a least-squares fit). Reasonable values of
the size of the neighbourhoods are between 10% and 20% of the attractor extent.
Points whose images do not remain close to the image of the reference point are
discarded as they probably lie on another fold of the attractor. Such restrictions
on the size of the neighbourhoods of the reference point and its image will prevent
‘bad’ points which are large perturbations of the trajectory from being used in linear
map computations. The influence of the ‘bad’ points is further suppressed by forms
of local averaging during linear map computations and trajectory adjustment. The
least-squares fit of the local maps is overdetermined, i.e. the number of points used in
the computations (50-100 in our work) are more than the n? unknowns (n being the
reconstruction dimension). This reduces the influence of the few neighbouring ‘bad’
points in determining the local linear maps. In the trajectory adjustment criterion of
equation (4.4), a large value of p will reduce the effect of ‘bad’ points in determining
adjustment distances.

An upper limit is placed on the distance that a point can move during trajectory
adjustment (5-10% of the attractor extent), since large adjustments would indicate
that the local linear approximations do not work well, either because the data are too
noisy and/or the reconstruction dimension is not large enough to preserve dynamical
properties of the attractor. If a large number of points (say more than 5-10%) need
to be moved beyond the specified limit then the scheme should be abandoned.

(b) Results

The noise reduction algorithm discussed above was applied to the T}, and Ty,
data with different sets of reconstruction dimension n (3 to 7) and delay-time 7 (1
to 30). The maximum adjustable distance was set to 10% of the attractor extent.
The value of the weighting factor w in equation (4.4) was taken to be 1.0 and 0.8,
and the value of p was taken to be 24. Linear maps were computed using 50-100
points inside neighbourhoods of radii equal 20% of the attractor extent. It was also
required that the maximum distance between the images of the selected points and
the image of the reference point be less than 20% of the attractor extent. In all
the cases, it was found that a large number of points needed to be moved by more
than the preset maximum adjustable distance. In case of the higher dimensional
reconstructions (n > 5) there was the added problem of the failure of linear map
computations at several points because of a lack of sufficient neighbouring points.
Noise reduction was also performed on a smaller section of the maximum temperature
time series for reconstruction dimensions of three and four, with various values of
the delay-time. The 17 000-point long section contains only three large breaks, of
lengths 11, 43 and 23 respectively. The results of the noise reduction are qualitatively
similar to that of the whole time series. Thus the preprocessing is ineffective for these
data, and the rest of the analysis will be done using the original data. The failure
of the noise-reduction scheme may already be an indication that a low-dimensional
characterization of the data might not be possible.
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5. Dimension calculation

The first step in attempting to show that a dynamical system is low-dimensional
is obviously to measure its dimension. In this section we describe the various existing
definitions of ‘dimension’ and point out the practical schemes to compute the ‘di-
mension’ from an experimental time series. At the end of the section the dimension
estimates of the temperature data are given.

(a) A brief review of dimensions

It is best to think about the dimension in terms of the intuitive geometric notion
of topological dimension. Although the definition of the topological dimension and
the tools used to calculate it are far from trivial, we do have a intuitive feel of the
(topological) dimension of manifolds (sets which locally look like Euclidean spaces).
Thus, a curve is one dimensional, a surface is two dimensional, and so on. Many
simple attractors are manifolds and fit into our intuitive scheme of things very well.
For example, a stationary time-independent equilibrium (fixed point) has dimension
zero, a stable periodic oscillation (limit cycle) has dimension one, and a doubly peri-
odic attractor (2-torus) has dimension two. But chaotic (strange) attractors are often
not manifolds (such sets are usually called fractals (Mandelbrot 1983)) and cannot be
characterized with sufficient accuracy using the notion of topological dimension. For
example, both a straight line (manifold) and a space filling curve (fractal) have the
same topological dimension. Clearly, such a characterization is too coarse to be useful
for fractals. Throughout this century people have attempted to develop useful notions
of dimensions of a fractal set. Most notions start with a covering of the fractal set
with nice Euclidean sets like cubes or spheres and investigate the scaling properties
of some measure on the cover of the fractal set by increasing the observational resolu-
tion (i.e. by decreasing the size of the covering cubes or spheres). Broadly speaking,
the relevant definitions of fractal dimension fall into two groups. In the first group,
called the geometric dimensions, the scaling variable is the cardinality of the cover.
This is a purely geometric prescription and treats the ‘fractal’ as a set of points in
phase space. It does not necessarily relate to the natural measure supported on the
fractal set (i.e. the relative frequency of occurrence of any point in the set). In the
second group, called the generalized dimensions, the scaling of powers of the natural
measure supported on the fractal set is considered. The correlation dimension (Dy)
and the information dimension (D)), for example, belong to this category.

For purposes of this study we need to keep in mind, first, that all of these dimen-
sions agree with our intuitive notion of dimension for manifolds but yield non-integer
values for fractal sets. Secondly, numerical computation of dimensions of attrac-
tors has more or less been limited to variants of two algorithms: the Grassberger—
Procaccia algorithm (Grassberger & Procaccia 1983), which estimates D,, and the
nearest neighbour algorithm (Badii & Politi 1985), which estimates D;. The reason
is that most definitions of dimensions (especially the geometric dimensions) do not
lend themselves to efficient algorithms except when the ‘dimension’ of the attractor
is very small. It can be shown that Dy < D; (Hentschel & Procaccia 1983), but the
numerical values of the two dimensions are usually within the measurement precision
for attractors reconstructed from experimental data. This will be especially true in
the present case because of the poor precision of the data.
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(b) Correlation dimension (Ds)

The estimate of D, according to the Grassberger—Procaccia algorithm is given by
the slope of the plot log C'(r) versus logr for small r, where the correlation sum
C(r) is given by the number of pairs of points on the reconstructed attractor with
mutual distance not more than r. There are several practical considerations in the
estimation of Ds, which have been highlighted over the years by many researchers
based on heuristic arguments and empirical evidence. We list all the considerations
we have taken into account. (1) C(r) is computed by averaging the two-point distance
statistics over 1250 reference points (which is 5% of the total number of points on the
attractor), selected randomly with respect to the natural measure of the attractor.
(2) Since the scaling is expected to hold good only for small values of , we have
limited the upper end of the scaling range to a fraction of the attractor extent (rpax).
Based on the full-range C(r) curve at three randomly selected points we take 7,y to
be 25% of the attractor extent. (3) Discretization of the data produces steps in the
C(r) curve with ordinate levels at C(r + ¢/2), where ¢ is the level of discretization.
The correct scaling can be obtained if C(r) is calculated only at the mid point of the
steps. The net effect of discretization is to reduce the effective number of points on
the log C(r) versus log r plot. (4) To avoid spurious dimension estimates due to high
correlation between points on the attractor, the pairs of points considered for the
two-point distance statistics are separated by more than 85 units of the sampling time
of the time-series (this being equal to the first zero-crossing of the autocorrelations
for the Tinax and Ty, data).

(¢) Information dimension (D)

The estimate of D, according to the nearest neighbour algorithm is given by the
negative of the inverse slope in the plot of log(6,(k)) versus log k. Here, é,(k) is the
distance from a reference point of its pth nearest neighbour among a collection of
k points in the reconstructed attractor, and (-) represents the average over all the
reference points (1250 points). By choosing a large enough value of p, i.e. a nearest
neighbour which lies outside the range dominated by noise or discretization, one
can obtain better scaling than for D,. A comparative study Kostelich & Swinney
(1987) suggests that the nearest neighbour algorithm has better convergence than
the correlation dimension algorithm (at least for dimensions less than 10). But the
nearest neighbour algorithm also has difficulties. In particular, two features need to
be considered carefully: (1) the average distance of the reference nearest neighbour
should not be larger than 5-10% of the attractor extent, and (2) the estimation of D,
becomes very sensitive to errors in the calculation of the slope of the plot log(6,(k))
versus log k, because of the inverse relation between D; and the slope.

(d) Results of the dimension calculations

Figures 3a, b are plots of log C(r) versus logr for the Ty, and Ty, data respec-
tively with reconstruction dimensions (n) 3-9 and delay-time (7) equal to 10. The
high level of discretization (1.5% of the attractor extent for Ty .x data and 2% of the
attractor extent for T,,;, data) reduces the effective number of points to 15 and 12
respectively (if we restrict the upper end of the scaling range to 25% of the attractor
extent). No scaling is apparent for either data set.

Figures 4a, b are plots of log(6,(k)) versus log k for the Ty,.x and Ty, data respec-
tively with n = 3-9 and 7 = 10. For the T},.x data the scalings have been shown for
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points on each line.

the 50th nearest neighbour (i.e. p = 50) and for the T),;, data the scalings have been
shown for the 90th nearest neighbour. The scalings were obtained for 15 different
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Figure 5. Information dimension D; versus the reconstruction dimension n for the Timax and for
Tmin data. Dy is the negative of the inverse slope of the plots in figures 4a,b. The slopes have
been calculated by linear regression.

nearest neighbours (i.e. p = 10-290 in steps of 20). Most of them give a value of D,
close to that calculated from figures 4a, b. This can be seen from figures 4c, d, which
show the scalings for the 15 different nearest neighbours for n = 3 and 7 = 10. The
average distance of the reference nearest neighbours is always less than 7% of the
attractor extent and hence the chances of spurious scaling, arising because of the
nearest neighbours being too far away, are small. The estimated values of D; are
shown in figure 5. The dimension estimates do not level off with n, indicating that a
low-dimensional attractor does not exist.

In summary, no linear scaling region could be identified for the correlation sum
(C(r)) and hence Dy could not be estimated. Estimates of D; were obtained on
the basis of the scaling of the nearest neighbours; they do not show any tendency
to level off. In an attempt to corroborate this finding we examine well-converged
characterizations of the attractor which could be related to the dimension of the
attractor.

6. Potential indicators of low-dimensionality

Our objective is to find characterizations of the attractor which can be obtained
reliably from a small data set (small vis-a-vis the requirements for the computation
of Ds) and which could be used as potential indicators of low-dimensionality.

A natural candidate for such a characterization would be a coarse descriptor of the
geometry of the attractor. The singular value decomposition (svD) technique of linear
algebra provides a basis for a minimal (linear) subspace containing the reconstructed
attractor. If this subspace is a proper subspace of R™ then its dimension will be an
upper bound to the attractor dimension. As we shall see, global svD is too coarse
an indicator of low-dimensionality for chaotic maps such as the Hénon map. The
problem has to do with nonlinear correlations among the amplitudes of the basis
vectors. We show that local svD and a procedure for computing correlations among
the amplitudes of the basis vectors can be used as fine tuners of the global svD
test. A less obvious potential indicator of low-dimensionality is a statistic to test
for determinism in a time series. The idea here is that if a time series appears
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deterministic in a low-dimensional reconstruction then it is likely to have a low-
dimensional characterization.

(a) Singular value decomposition (SVD)
(i) Global SVD

Broomhead & King (1986) introduced singular value decomposition in the con-
text of delay-coordinate reconstructions. The methodology consists of the following
essentials.

First the trajectory matrix X is defined as

X = (z1,...,zn)", (6.1)

where x; is a delay-vector, N is the total number of delay-vectors and the superscript
‘T’ represents the transpose operation. Each delay-vector (a row of X)) is a point on
the reconstructed attractor in R™, n being the reconstruction dimension. It will be
helpful to think of X as a linear map from R" into R™, and observing that the row
space of X (subspace of R™ containing all linear combinations of the rows of X) is
the smallest subspace containing the attractor. The singular value decomposition of
the N x n matrix X,

XNXn = VNXnZanUng (62)

constructs two bases: the columns of U (called the singular vectors) spanning R"
and the columns of V' (called the left singular vectors) spanning RY. X is a diago-
nal matrix and its entries o; (called singular values) are non-negative and given by
convention in decreasing order. The o; are the root-mean-square of the projections
of the delay-vectors onto the corresponding singular vectors and in this sense are
their amplitudes. Since the singular vectors corresponding to the non-zero o; (m in
number) span the row space of X, the dimension of the smallest subspace containing
the attractor is m.

Our test will therefore comprise of the following steps: (1) construct trajectory
matrix X from the time series data, (2) compute svD of X, and (3) if m < n,
conclude that the dimension of the attractor not more than m. If m fails to be less
than n then we cannot draw any conclusions. An alternative way for obtaining m is
the calculation of the spectrum of the covariance matrix, XX (dimension n x n).
This procedure is variously known as Karhunen-Loéve decomposition, empirical or-
thogonal decomposition, proper orthogonal decomposition and principal component
analysis (Lumley 1970; Devijver & Kittler 1982; Sirovich 1989). The singular values
of X are the square roots of the eigenvalues of XX and the respective singular
vectors and eigenvectors coincide. Working with XT X is computationally advanta-
geous since in practical applications N > n. But this comes at a certain price, the
most important one being the loss of precision in determining the singular vectors. In
the procedure for uncovering (nonlinear) correlations among the amplitudes of the
singular vectors (to be discussed in § 6 a (iii), the projection of the delay-vectors onto
the singular vectors will play an important role. Now, it turns out that reasonably
converged singular values can be obtained with small sections of the time series (ca.
5000). Hence, the computational advantage gained by working with XTX, meagre
as it is in this case, is worth sacrificing for the precision.

Implementation of the sVD test hinges on the possibility of recognizing the number
of non-zero singular vectors unambiguously. In the presence of noise, all the singular
values are non-zero and for a general case there is no objective criterion for deciding
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the number of non-zero singular values associated with the ‘true’ system. Where
there is an abrupt decrease in the magnitudes of the singular values (i.e. there exists
some 7 < n such that o1,...,0; > 0i41,...,0,) it might be reasonable to take the
dominant ones as the non-zero singular values. Otherwise we should refrain from
drawing definite conclusions.

Global svD test is a poor indicator of low-dimensionality as it fails to identify
some well-known low-dimensional chaotic systems, like the Hénon map. This is il-
lustrated and discussed in § 7 a. The failure of the svD test in such a case highlights
a generic problem of representing a time series from a nonlinear system in terms
of global modes (modes being basis vectors or basis functions). First, consider the
representation of a time series from a linear system. Trivially, the amplitudes of the
excited modes (those with non-zero amplitudes) will be uncorrelated and the number
of excited modes will be equal to the dimension of the system. Nonlinearities lead
to the excitation of new modes whose amplitudes are (nonlinearly) correlated to the
amplitudes of the modes that produced them. Consequently, in case of a nonlinear
dynamical system (with a finite-dimensional attractor) the number of excited global
modes will always overestimate the dimension.

(ii) Local SVD

Instead of applying svD to the whole reconstructed attractor, it is applied to
points in a neighbourhood of a reference point. When the attractor happens to be
a manifold, scaling of singular values with the size of the neighbourhood can be
used to calculate the topological dimension (Broomhead & King 1986). For fractal
sets, a criterion has been put forward in Broomhead et al. (1991) to recognize local
directions in which the natural measure of the attractor is a fractal, and prescriptions
have been provided to interpret the scaling of singular values. However, a problem
with using a local scaling method is the need to access local neighbourhoods for
a large range of neighbourhood sizes in order to get a substantial scaling range.
Given the finite amount of data and the fact that reconstructions can produce quite
convoluted copies of the attractor as the reconstruction space grows bigger, it is
not always possible to get a substantial scaling region. With these considerations in
mind, we have decided not to attempt to make use of the full potential of the local
svD. Similar to the global svD test, the number of non-zero (local) singular values,
my, will be identified. If m; turns out to be less than n then m; would be an upper
bound for the (pointwise) dimension at the reference point. The reason for expecting
my < m is that locally the attractor will be approximated better by linear spaces,
i.e. represented by fewer linear modes.

(iii) Correlations among singular vectors

Local svD is one way of getting around the limitations of a global basis in repre-
senting a nonlinear time series. Another way, suggested by Healey (1994), is to use
radial basis functions (Powell 1985) to uncover the nonlinear correlations among the
amplitudes of the excited singular vectors. To test for correlations, sets of ‘indepen-
dent’ and ‘dependent’ amplitudes have to be chosen. A systematic way of chosing
such sets would be to use the natural ordering of the singular vectors (given by
the decreasing order of the singular values) and to evaluate the dependence of the
amplitude of the (k + 1)th singular vector on the amplitudes of the first k singular
vectors.

A standard procedure for determining correlation between two sets of data points
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is to use a linear least-squares fit with appropriate basis functions; the deviation
of the fit from the data will be a quantitative measure of the correlation between
the variables representing the two data sets (the deviation being smaller for good
correlations). Obviously, the deviation will depend on the particular basis functions
and it is to be understood that the choice of these is made so as to minimize the
deviation. A practical implementation of such a procedure will require basis functions
that approximate a large class of correlations, splines in one dimension being an
example. Radial basis functions are generalizations of one-dimensional splines to
higher dimensions. Examples are ¢(r) = r, > and r?logr, where r refers to the
FEuclidean distance.
In our problem the data points to be fitted are (¢, c;(k +1)) where

Cnk = (pnhpn% v ’pnk)T

is the vector of the projections of the nth delay-vector on the first k singular vectors
and c;z(k:—l-l) = Pn(k+1) is the projection of the nth delay vector on the (£ + 1)th
singular vector. Formally, the problem can be expressed in matrix notation as

C;Vxl :dspr'prl, (6.3)

where C} = ¢, +1)) D1 = ¢(||cnk — cikl|) (where the lth delay-vectors are randomly

chosen) and .Q is the matrix of fitted parameters. A little matrix algebra will show
that the linear least-squares fit can be expressed as

Cj, = Ss'C, ‘ (6.4)

where S is the matrix of left singular vectors of @. The standard deviation between
C’" and CY,, 0, = ||C' — Cg|, provides a quantitative estimate of the nonlinear
dependence of the amplitude of the (k + 1)th singular vector on those of the k
most-energetic singular vectors. The efficacy of this method depends on the range of
functional forms that can be estimated by the radial basis functions which, though
large, does not cover all possible functional forms. Hence, conclusions can be drawn
only when nonlinear correlations are uncovered.

(b) Determinism in a time series

The test for recognizing determinism in a time series (Wayland et al. 1993) is
based on the idea of ‘phase space continuity’ for deterministic systems, which is that
nearby points in phase space will remain nearby for short times. This test develops a
statistic to measure the observed continuity in the reconstructed attractor and can
be taken to be an indicator of determinism. If a time series appears deterministic in
a low-dimensional reconstruction, then it is most likely that the time series will have
a low-dimensional characterization. Both high-dimensional and stochastic systems
will appear stochastic in a low-dimensional reconstruction.

Let zo be an arbitrary reference point on the reconstructed attractor and z1, ..., 2
be the | nearest neighbours of zy. Let yo, ...,y represent their images. The normal-
ized standard deviation of the translation vectors (v; = y; — x;),

l
€trans — Z |IUJ || /||< >|I27 (65)

where (-) represents the average over [ + 1 points and || - || represents the Euclidean
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Figure 6. Plots for a time series of the z-variable of the Hénon map. (a) The normalized
global singular values log;y(oi/ Y o), versus the scaled reconstruction dimension i/n, with
Tw = 20 and 7 taking on values 4, 2 and 1. The time series was scaled to have zero
mean and 5000 data points were used in the computations. (b) The autocorrelation function
Qo w(@z(i+k)/ > @(i)z(i)) with n = 20000 and k =1, 2,..., 50.

norm, is a measure of ‘phase space continuity’ around zy. If the time series is deter-
ministic then the v; will be nearly equal and the translation error eg,ns will be small.
For a stochastic series, the v; will be oriented randomly and egrans Will be large. A
global measure of continuity will be the median value of a set of ei,,s evaluated at
points distributed randomly on the attractor. The average of the medians obtained
from several independent reconstructions of the attractor, (median(egrans)), provides
a robust statistic of the continuity of orbits on the reconstructed attractor.

7. Results from low-dimensionality tests

(a) Quality of the indicators

The quality of the potential indicators of low-dimensionality is evaluated on the
basis of their performance on a set of low-dimensional data. The control data, as
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Figure 6. Cont. (c) Delay-time plots for delay-times of 2, 3, 5 and 10. 5000 points have been
used for each plot.

they will be referred to subsequently, are the z-variable of the (chaotic) Hénon map
and the local maxima of the y-variable of the (chaotic) Lorenz flow. All the results
of these control data will be compared with those of their respective ‘stochastic
surrogates’, formed by randomizing the Fourier phases. This comparison will give us
an indication of the ability of the tests to distinguish between two sets of ‘similar’
data, but having very different dimensions.

The parameter values used for the (chaotic) Hénon map,

Tip1 =1 —az} +yi, Yir1 = by, (7.1)

are a = 1.4 and b = 0.3. The first 1000 iterates of the z-variable, starting from the
initial conditions z = 0.2 and y = 0.2, were discarded. The parameter values used
for the (chaotic) Lorenz flow,

z=o0(y—x), Y=rr—Yy— T2, 2= —bz+zy, (7.2)

are o = 10, b = 8/3 and r = 28. This set of differential equations was solved with a
simple Euler integration scheme with a time step of 0.01 and initial conditions x = 1,
y = 1 and z = 1. All the local maxima of the y-variable time series were sampled
after discarding the first 1000 values. A set of dimension calculations (D;) gave
estimates of about 1.2 and 1 for the control data from (7.1) and (7.2) respectively.
These estimates are consistent with previously known results. In comparison, one
might expect that the ‘stochastic surrogates’ will be space filling and assume the
dimension of the reconstruction space.
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Figure 6a shows the result of the global svD test on the control data generated
from (7.1). Following Broomhead & King (1986) we plot log,,(o:/ > 0;), where o;
are the singular values, against the scaled reconstruction dimension (i/n). The win-
dow length 7, ((n—1) x 7) is fixed at 20 and T takes on the values 4, 2 and 1. All the
singular values are the same and the global svD fails to identify the low-dimensional
attractor. The reason for the failure is the complication of the geometry of the re-
constructed attractor caused by nonlinear correlations among the amplitudes of the
singular vectors (see discussion on global svD). Because of the chaotic nature of
the map the output decorrelates in a few iterates of the map (figure 6b) leading to
complicated geometry in the reconstructed phase space (figure 6¢). Hence the delay-
coordinates will be decorrelated and the resulting reconstruction will appear to be
space filling. Globally, the reconstruction will be similar to that for an uncorrelated
stochastic process and the singular value spectrum will be flat.

Now, it is known that global svD cannot distinguish among different dynamic
processes with the same power spectrum. This is because the singular values are
eigenvalues of the covariance (see §6a (i)), which depends totally on the autocorre-
lation of the data (provided the data record length is long enough to assure approxi-
mate stationarity). Hence the Lorenz flow data, which has a nearly ‘white spectrum’
like the Hénon map data, and their respective ‘stochastic surrogates’ have the same
global singular value spectrum. In view of the present failure of global svD, it should
be pointed out that there are indeed cases where global svD gives useful answers.
Broomhead & King (1986) obtained an upper bound of 4 to the phase space con-
taining the reconstructed attractor for the time series of the z-variable of the Lorenz
flow. This signal, unlike our control data, is band-limited, and it is therefore pos-
sible to choose combinations of 7y, and 7 such that the delay coordinates are not
decorrelated.

Figure 7a shows the normalized local singular values at three different points on
the reconstructed attractor, picked randomly according to the natural measure of
the reconstructed attractor, for the z-variable of the (chaotic) Hénon map and its
‘stochastic surrogate’. Unlike the global singular values, the local singular values for
the Hénon map are not of the same magnitude. While this observation leads to no
definite conclusion (since none of the singular values are actually zero), the decay of
the local singular value spectra is an indication of low-dimensionality. By comparison,
the ‘stochastic surrogate’ has flat local singular value spectra and is unlikely to have a
low-dimensional characterization. The local maxima of the y-variable of the (chaotic)
Lorenz flow and its ‘stochastic surrogate’ show similar results (figure 7b).

For the nonlinear correlation test, following Healey (1994), we took ¢(r) = r3 as the
radial basis function and p (number of random centres) to be 100. The test uncovers
some of the nonlinear dependence of the amplitudes of the higher order singular
vectors, for both control data (figures 8a,b). On the other hand, the ‘stochastic
surrogates’ show no such dependence (figures 8¢, d).

Figure 9a is a plot of (median(egans)) (as defined in §6b) versus the reconstruc-
tion dimension, for the Hénon map and its ‘stochastic surrogate’. The plot shows
that (median(egans)) of the control data is much smaller than for their ‘stochastic
surrogates’, indicating that the former is likely to be a sample from a determinis-
tic flow/map. The increase in (median(egans)) with the reconstruction dimension, is
related to the increase in ‘randomness’, brought about by fast decorrelation of the
time series (see discussion on global svD of the Hénon map). The control data from
the Lorenz map shows similar behaviour (figure 9b).
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Figure 7. Normalized local singular values versus the scaled reconstruction dimension ¢/n. (a)
Control data from the Hénon map (dark lines) and its ‘stochastic surrogate’ (dashed lines); (b)
control data from the Lorenz map (dark lines) and its ‘stochastic surrogate’ (dashed lines). The
three lines in each set (indicated by different markers) correspond to three different locations on
the reconstructed attractor, chosen randomly according to its natural measure. In all the plots
7 =1, n = 10 and the local neighbours are taken from a box size of linear dimension equal to
15% of the attractor extent. The number of local neighbours varies from 100 to 150.

What we learned from the analysis of the control data is that the svD tests seem
to be poor indicators of low-dimensionality. The global svD test cannot be used
to deduce the low-dimensionality of the control data. The local svD test and the
nonlinear correlation test give some indication of low-dimensionality. Strictly speak-
ing, however, the strongest conclusion that could be drawn is that the control data
have dimensions smaller than their ‘stochastic surrogates’. The test for determinism,
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Figure 8. Nonlinear correlations among the amplitudes of the global singular vectors. The plots
show o1 and oy, for 7w = 20 and 7 = 2. The difference o441 — 0} is a measure of the
nonlinear correlation between the amplitude of the (k + 1)th singular vector and the first &
singular vectors. (a) Control data from the Hénon map; (b) control data from the Lorenz map;
(c) the ‘stochastic surrogate’ of (a); (d) the ‘stochastic surrogate’ of (b). 5000 data points were
used in the computation of the nonlinear correlations.

clearly, is the best indicator of low-dimensionality. An alternative and, as it turns
out, a more useful interpretation of the performance of potential indicators is the
following: if a test does not indicate low-dimensionality, the confidence with which
one could reject the hypothesis that a system has a low-dimensional characterization
is highest for the test for recognizing determinism and lowest for the global svD test.
The interpretation of results of the tests on the T},., and Ty, data should be made
in this light.
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Figure 8. Cont.

(b) Analysis of the temperature data

(i) SVD

Figure 10 shows the result of the global svD tests for the maximum temperature
data (rescaled to have zero mean) with 7, (= (n — 1) x 7) fixed at 50 and 7 taking
on values 10, 5 and 2. The computations were repeated for 7, = 20, 7 = 5 and
2 with no qualitative change. The spectra of singular values for the Tinax and Timin
data are nearly flat, although the first two singular values are slightly above the rest
(especially in the 7 = 2 reconstruction). In view of the fact that the global singular
values depend only the Fourier spectrum (discussed in §6a (i)), their uniformity
simply reflects the broadband spectra of the data.
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Figure 9. Average median translation error {median(esrans)) versus the reconstruction dimension
n. (a) Control data from the Hénon map (crosses) and its ‘stochastic surrogate’ (circles); (b)
control data from the Lorenz map (crosses) and its ‘stochastic surrogate’ (circles). The plots are
for 7 = 1 and | = 4. The median was obtained from a sample of 100 centres on the reconstructed
attractor, chosen randomly according to its natural measure. The average (-}, was taken over
30 independent 1024-point samples of the data. The vertical lines in the plots represent =1
standard deviation.

It might be of interest to investigate whether one can associate the peaks in the
Fourier spectrum, primarily the dominant peak corresponding to the annual cycle,
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Figure 10. Normalized global singular values log;4(oi/ Y o) versus the scaled reconstruction
dimension i/n, for the Tax data (rescaled to have zero mean). 5000 data points are used to

compute the singular values. This section of the data had only two breaks, each of length one.
Tw is fixed at 50 and 7 takes on the values 10, 5 and 2.

-0.18

-0.20

Figure 11. The first three singular vectors corresponding to the singular spectrum in figure 10
with delay-window 7y, = 50 and delay-time 7 = 2. The delay-coordinate ¢ goes from 1 to 26.

with the first two singular vectors. This would be in the spirit of earlier investigations
of weather/climate data which made use of variants of global svD to identify mean
drifts and structural components. But our objective will be limited to identifying
any trace of low-dimensional behaviour in the projection of the trajectory onto the
subspace of the singular vectors. The first three singular vectors and the projection
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Figure 12. Projection of the reconstructed trajectory of the maximum temperature data onto
the subspaces formed by the singular vectors shown in figure 11. (a) The projection of the
trajectory onto the (u1,us2)-subspace; (b) the projection onto the (u1,us3)-subspace. The ith
point on the (u;,ux)-plane is given by (u] i, uj ®;), where x; are the delay vectors and T
represents transpose.

of the trajectory on the planes formed by singular vectors 1-2 and 1-3 are shown in
figures 11 and 12. There seems to be no evidence of two-dimensional behaviour (limit
cycle) in the 1-2 subspace. Furthermore, the projections on 1-2 and 1-3 subspaces
are fairly identical. This argues against associating the two larger singular vectors
with the annual cycle. Figure 13 shows smaller sections (corresponding to a year
and to two years) of the projected trajectory. It appears that the phase portrait
of each year can be identified with cycles in both the subspaces. It is thus clear
that the considerable mismatch of cycles corresponding to the two years leads to the
space-filling phase portraits in figure 12. A limit cycle (at least a noisy one) would
probably be realizable if temperature at a point in the atmosphere were decoupled
from (or very weakly coupled with) other state variables. The projection results are
quite likely an indication of strong couplings and high-dimensional behaviour.

Figures 14a,b show the local singular values for the Ty, and Ty, data respec-
tively, at three points on the attractor picked randomly according to the natural
measure of the attractor. The local singular values are of similar magnitude, indicat-
ing that the local climate attractor is not low-dimensional. Unlike the control data,
no nonlinear correlations are uncovered for the temperature data (figures 15a,b),
indicating further that a low-dimensional characterization is unilikely.

(i) Testing determinism

Figures 16a, b are plots of the average median translation error (median(egans)),
versus the reconstruction dimension for the T, and Ty, data respectively, along
with their corresponding ‘stochastic surrogates’. The plots show that (median(egans))
for the original data and their ‘stochastic surrogates’ are the same and show no ap-
parent dependence on the reconstruction dimension. This is a further indication,
perhaps the strongest one, that a low-dimensional characterization for the atmo-
spheric temperature data is unlikely.

8. Conclusions

The question which we set out to answer was: does the time series of daily max-
imum and minimum temperature (Tmax and Tyin) have a low-dimensional charac-
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Figure 13. Small contiguous sections of the projected trajectory shown figure 12. (a), (b) Con-
tiguous sections of the trajectory projected onto the (u1,u2)-subspace using trajectory points
1 to 370 and 1 to 730 respectively. (c), (d) The projections of the same parts of the trajectory
onto the (w1, us)-subspace. In the longer sections, (b) and (d), points 1 to 370 are indicated by
circles and points 371 to 730 are indicated by crosses.

terization? We attempted to answer this question in two ways: (1) by estimating
the dimension (direct method), and (2) by examining potential indicators of low-
dimensionality (indirect method). The dimension estimates (via the nearest neigh-
bour algorithm) do not show any tendency towards saturation with respect to the
reconstruction dimension. Ideally, one would conclude from this that the dimension
of the local climate attractor (the saturation value) will be larger than the maxi-
mum estimated value, which is 7.5 (for Tpnax) and 7.0 (for Tryin). However, in view
of the record length of the data, dimension estimates larger than 4 or 5 may not be
reliable. Hence, based on the dimension estimates, the correct claim to make is that
the dimension of the local climatic attractor is not smaller than 5, say. The indirect
method comprises of using well-converged characterizations of the time series as po-
tential indicators of low-dimensionality. Based on the outcome of these indicators (of
which the test for determinism is the best) we conclude that it is unlikely that the
local climate attractor has a dimension less than, say, 10.

Needless to say, these conclusions are appropriate for the reconstructed attractor.
It is conceivable that the ‘true’ local climate attractor is low-dimensional, but is
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Figure 14. Normalized local singular values versus the scaled reconstruction dimension i/n.
(a) The Tmax data (dark lines) and its ‘stochastic surrogate’ (dashed lines); (b) the Tmin data
(dark lines) and its ‘stochastic surrogate’ (dashed lines). The three lines in each set (indicated
by different markers) correspond to three different locations on the reconstructed attractor,
chosen randomly according to its natural measure. In all the plots 7 = 5, n = 10 and the local
neighbours are taken from a box size of linear dimension equal to 10% of the attractor extent.
The number of local neighbours varies between 100 to 150.

‘blurred’ by noise which we are unable to remove. In view of the many sources of
disturbance in the atmosphere, dynamic noise is likely to play an important part in
determining the structure of the local climate attractor. In such a scenario, the ‘true’
local climate attractor will be very difficult to find and indeed might not exist. Thus,
we could have a stochastic attractor with characteristics of the ‘true’ system, as for
example in our case, a stochastic attractor with a strong periodic component.
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Figure 15. Nonlinear correlations among the amplitudes of the global singular vectors (similar
to figure 8), with 7 = 50 and 7 = 5. (a) The Tmax data; (b) the Tmin data. The sections of data
used are the same as that used for global svD in figure 10.

The alternative to the stochastic attractor is a high-dimensional deterministic at-
tractor. Because of practical difficulties, tools of dynamical system cannot be used to
distinguish between the two alternative scenarios. Given the data length and com-
puter resource requirements, it seems unlikely that such distinctions can be made in
the near future. The distinguishing property of stochastic and deterministic (Marko-
vian) systems is the transition probability, i.e. probability distribution of the possible
future states given the present state. If the transition probability is a delta function
then the system is deterministic, otherwise it is stochastic. Now, if the dynamics of
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Figure 16. Average median translation error (median(egrans)) versus the reconstruction dimen-
sion n. (a) The Tmax data (crosses) and its ‘stochastic surrogate’ (circles); (b) the Tmin data
(crosses) and its ‘stochastic surrogate’ (circles). The plots are for 7 = 10 and [ = 4. The median
was obtained from a sample of 100 centres on the reconstructed attractor, chosen randomly ac-
cording to its natural measure. The average (), was taken over twelve 2048-point non-overlapping
sections of the data. The vertical lines in the plot represent +1 standard deviation.

the system cannot be reconstructed (because of high dimensionality) there seems
little hope of distinguishing between a stochastic and high-dimensional attractor.
There are two directions of investigation, which might be worthwhile in the context
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of the climate attractor. The first is to study the effects of dynamic noise on simple
low-dimensional systems. The other direction of investigation would be to attempt
an identification of spatial and temporal modes of the climate system via phase space
reconstruction. After all, we are dealing with a spatially extended system and our
investigations wvia tools of temporal chaos are complicated because of the coupling
between spatial and temporal modes. Needless to say, the atmosphere is a far more
complex beast than can be captured by single point measurements as attempted
here.
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