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Gaussian nature of the COBE data from multipoint correlations
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Important information about the early universe can be obtained from a study of the cosmic background
radiation(CBR) in the microwave range. We study high-order correlation and structure functions of tempera-
ture fluctuations collected from the first two years of Differential Microwave RadioniBfdiR) observations
from the Cosmic Background Exploré€EOBE) satellite. The intent is to determine whether the radiation data
possess significant deviations from Gaussianity. The most difficult problem in drawing meaningful conclusions
is the presence of instrumental noise, which is quite strong even after a two-year averaging has been per-
formed. We have taken into account the noise in various ways. Within the limitations imposed by the noise,
our study shows that the fluctuations are quite likely to be Gaussian-like. The results can, therefore, be said to
favor the inflation scenario of the univer$&0556-282(96)02912-§

PACS numbd(s): 98.70.Vc, 98.80.Bp, 98.80.Cq

I. INTRODUCTION if one considers multipoint statistics for nonzero separation.
Low-order multipoint statistics have already been studied:
Experimental data on temperature fluctuations in cosmidhe autocorrelation corresponding to the second moment has
background radiatiodlCBR) have been available for a few been obtained in Ref$9,10] and the third moment, corre-
years now(see, for example, Reff1—6]). This radiation in  sponding to the skewness, has been discussddlihand
the microwave wavelengths is believed to be the remnanbbtained in Refs[12,13; see also Ref[14] for a detailed
“afterglow” of the early universe, corresponding to the re- discussion of correlation properties of COBE data. These
combination time at which baryonic matter and radiationtwo low-order moments are also consistent with a Gaussian
were decoupled. The properties of CBR are, therefore, ofmultivariant distribution.
great interest in the context of the formation of the early If the departures from Gaussianity are not pronounced, it
universe. The data, obtained primarily from the Cosmicis clear that one should examine high-order correlations to
Background ExplorefCOBE) satellite, have been used re- arrive at a definitive conclusion. This is the goal of this pa-
cently to obtain some insight into this question, in particular,per. The type of high-order statistics we consider is analo-
to shed light on cosmology theories. There are two familiegous to those used in the study of fluid turbulence where the
of competing theories of formation of the universe at theissue of non-Gaussianity looms large. For example, even
time of the matter-radiation decoupling: one of them in-though temperature fluctuations in heated homogeneous
volves expansion and structure formation due to gravitationallows are closely Gaussian, the smaller scales display strong
instabilities(see, e.g.,7]), and the other involves symmetry- deviations from Gaussianity. One of the principal aims of
breaking processes, such as topological defects, resulting intarbulence theory is the characterization of this scale-
textured and intermittent univerggsee, e.g.[8]). Careful dependent deviations from Gaussianity, or the so-called “in-
analysis(see, for example, Reff4, 5]) shows that the fluc- termittency” effect. This effect is best explored by studying
tuations in the COBE data are significant beyond the variouthe so-called structure functions and correlations of magni-
uncertainties due to noise sources, but the question that reddes of quantities of relevance such as velocity and tem-
mains is whether such fluctuations represent genuine inteperature. Motivated by these considerations, we compute for
mittency (or strong deviations from Gaussianitgr are more the COBE Differential Microwave RadiometédDMR) data
akin to fluctuations inherent in a Gaussian distribution. Wethese same quantities and compare them with Gaussian
believe that the fundamental importance of these considercounterparts. We are, however, constrained in carrying the
ations needs no further elaboration here. analogy with turbulence too far because of the strong effects
A one-point analysis of the background radiation revealsof instrumental noise in the COBE data. Despite this diffi-
that it is essentially Gaussian; the probability distributionculty, we explore ways of extracting useful information
function is also known to deviate little from Gaussi@gee about the temperature distribution on the sky. The inference
Sec. |l for details and some referencednfortunately, this appears to be that statistically substantiated deviations from
conclusion is not decisive because of the substantial contricaussianity do not exist.
bution of instrumental noise. Single-point statistics can be The rest of the paper is organized as follows. After a
considered to represent the limit of multipoint statistics forpreliminary analysis of data in Sec. I, we explore their cor-
zero separation. It can be argu@ge Sec. )lthat, while all  relations and structure functions in Sec. Ill and study ampli-
correlations at zero separation are influenced by instrumentélide correlations of high-order statistics in Sec. IV. In Sec.
noise, the prospects for learning something useful are bettdf, we introduce briefly the new topic of “high points” in the
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sky, and conclude the paper with Sec. VI, where some prinf4,5,17. The task is to eliminate noise effects, where pos-

cipal results are reiterated. sible, only from the knowledge of the distribution of its rms
value. As can be imagined, this imposes severe constraints
Il. PRELIMINARY CONSIDERATIONS on our ability to eliminate noise effects.

) ) o ] Returning now to the variance around the mean value of
Single-point statistics are the simplest measures of théne second-order correlations, one can write the following
nature of the data. For the COBE data, these are best evalyyore general expression for the correlation function by as-
ated as averages out of the galactic plane, i.e., for the galactg;gning different weightsv; to different pixels, because, as
latitude b satisfying the(somewhat arbitrary but reasonable mentioned above, the noise rms is different at different pix-

constraintb|>15°. If t is the temperature fluctuation around g|s. we take the standard definition for the weights, namely,
the mean value of about 2.736 Ko within a few mil- w;=1/(n?). Then,

likelvin), direct calculation$15] result in

1 Wititir Wi/
(1)=2.07 uK, (|t|)=154.0 uK, (13 Ky(r)=— > — o0
(t?)=3.83x 10" uK?, (1b) 1 Wit Wi
ooy oW gy
(t*=4.88x10° uK?*, (10 M M;(r)
t%)=1.11x 10'° uKS®, (1d) 1 1 ~ ~
< > AKZ:M . Z() Mi(r) Wi{tini/(r)+ niti/(r)+ nini/(r)}Wi/(r) .
(t8=3.57x107° uKS. (1e ne 3
From these numbers, one obtains Here, the index corresponds to any pixel, (r) to pixels
(t“) such that the angle between them and ttre pixel isr,
f=-=5=3.33, M:Eiwi!andMi(r)ZEWi’(r)-
(t9) Expression(3) tells us about the mean correlation func-
6 tion, but nothing about the variances around the mean value.
fom (%) _19.8 This variance iSAK %), which can be written as
(5> =
1 W Wi Wi Wi,
200y — [ el Sk K -
g(r)= —————— (it (N°) S i/
and ( ) Wi,i’(r)Zj,j’(r) l\/li(l’)Mj(l’) {< i ]>< > ij
8 —~—— ~— ~ —~
_ <t > _ +<titjr><n2>5jir+<tjtir><n2>5ijr+<tirt]‘r><n2>5ij
fg _2_<t % 166,
+<n2>2[5ii’5jj’+5ij5i']’+5ij’8ji']}' (4)

not very different from the Gaussian values of 3, 15, and h h read idered th ise 10 be G :
105, respectivelyfor more detailed calculations of this na- where we have aiready considered thé noise to be >aussian.

ture, see Refs[13,14). However, because of instrument This gxpression_is equivalent to the diagonal elements of a
noise information about the real distribution cannot be asovarance matm[:%]. L ., .
If r#0, which means that#i" andj+#j’, a rough esti-

sessed from one-point statistics. . ; M
Indeed, let =T+ n, wheret is the sky temperature, amd mation of (4) (which, for simplicity, also takes all the
‘ ’ ’ weights to be comparablgives

is noise. Then, for homogeneous fluctuations,

Ko(x—X")=(t0)t(x"))=E()Tx ) +(n?) Sy . (2) o(r)~ 1 VIK,(0(n?) +(n?) 7}, (5)

Here angular brackets denote an ensemble avévageh, in NINr)
principle, implies an average over all experiments and allyhere N is the number of Dpixels, N(r)=(N;(r))
possible universesit was supposed above that the noise is=3,N;(r)/N, andN;(r) is the number of pixels such that the
uncorrelated at different points, and statistically independenéngle between them and thté pixel isr. At the origin,r =0,
of the signal[16]. The last term in Eq(2) cannot be ne- j=j’ j=j’, andN;=1, so that
glected if the noise is comparable to, or higher than, the _
signal t; then, the correlation function at the origin is 4t 2(nH\ 2
strongly influenced by noise. + N ~(n%. ©

In the COBE satellite data we are using here, the back-
ground temperature has been obtained by averaging observaguation(6) demonstrates the following. Not only is the cor-
tions at each pixel over a two-year period. One also has, aelation function atr =0 determined strongly by noiseas
each pixel, the root-mean-squdres) fluctuation around the already seen from E@2)], but so also is the variance around
pixel mean. Since the mean is constant over the period dhe mean. The correlation functionrat0 may have a closer
observations, this is indeed the rms noise, calculated witlsonnection to the sky temperature, provided the noise is ac-
error propagation analysis; this is all we know about theceptably low, or the produchNN(r) in (5) is sufficiently
noise characteristics. The rms noise is a strong function dfrge, i.e., one has acceptable statistics. Therefore, in order to
the position in the sky(i.e., it is inhomogeneoys see find measures of the sky temperature, for example,

1+2
N

a(0)=|(n?)?
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Tzz(fz), where 8ny(r)=én,(x+r,x) is the average value of
ony(x+r,x) over allx. This formula expresses the fourth-
itis better to study the behavior &f, atr #0 and extrapolate order correlation through observed second- and fourth-order
it to r=0 in some sensible way, rather than study(0) correlations and rms noise at each point.

itself. Similarly, we have(for r #0)
The same situation holds for high-order moments. For the
fourth-order correlation Rg(r)={T(x+r)%t(x)%
Ct(x)2= ()DL 2= {t(x)D)]) =(t(x+r)*(x)*— dng(r)
= (£(x)%(x")2) = (L) A(t(x)?) =([t(x+1)*=6t(x+r)’n(x+1)?=(n(x+1)*]

X[t(x)4—6t(x)2n(x) 2= (n(x)*)])
=([t(x+r)*=6t(x+r)2n(x+r)2+5(n(x+r)%]

X[(t()* = B6t(X)2N(X) 2+ 5(n(X))]). (10

we can write, as in Eq.2), that

([tO)2 = ()AL 2= (t(x")3)])

=((t002= (RO T = ({xHHD

AG00F (X)) N2) + 2(n2)218.., . 7 Basically, these two formulag9) and (10), are subtracting
A0 + 2] 5 . the  noise  contribution (n(x+r)n(x)%)  from
Changingx’ —x+r, and averaging expressidi) over all  (t(x+1)?t(x)%) and(n(x+r)*n(x)*) from (t(x+r)*t(x)*);

pixels positioned ax, we get the other terms in these equations are of higher order and
small.
Ka(r)=(t(x)t(x")2) — (1(x)?)(t(x")?). Let us return to the variances. For the fourth-order corre-

lation, expressions liké4)—(6) can be constructed by chang-
We have two kinds of averages here. One is over differening variables tat 24+ m fromt+n, wherem is a new noise
pixels (with indexi), and another one is over all pixels in one variable. Thus, againt*) would represent the statistics of
bin, i.e., separated by a distangedenoted in(3) with index  the noise, and one has to stuBy(r) in order to get the
i’(r). The latter corresponds to tie-) average in the ex- fourth-order moment for the temperature.
pression above, and the first to the overbar. For a homoge- In principle, complete information about the errors gives
neous process, we can do only with one kind of average, andhe covariance matrix, including its off-diagonal elements.

this can be written as This has been described in R¢f], where the matrix has
been written down for the correlation functidf,(r). An
Ka(r)=(t(x+r)2t(x)?) —(t?)? (8)  attempt to construct a covariance matrix for the fourth-order

correlation leads to cumbersome expressions; at the present

(no overbar neededThus, for this correlation, the errors are stage it is not clear how to handle them when processing the
not accumulated for#x'. data. Therefore we shall take account of only the diagonal
Since the distribution of the signal could be inhomoge-elements when calculating the errors. While this procedure

neous(this being a conservative statement because the noises not guarantee complete estimation of noise effects, the
appears to be 3owe will use an expression equivalent to Eq. y? analysis of the deviations of the calculated correlations
(7) and compare it with E(8). In order to get this equiva- from these noise models shows that the error propagation,
lent expression, consider again the correlatigh(x  performed this way, correspond reasonably well to these

+1)t(x)%), which can be written, analogously to &), as  deviations—at least in the most important cases. Some cases
do show that the error model gives slightly greater errors

(t()%t(x")?) = {E(x)ZX")?) + dna(x,x'), than the standard deviations, thus overestimating the instru-
_ ment errors slightly. These cases are of less importance for
Sny(x,x") =(n(x)2(n(x")%) +(n(x)*){t(x")?) the main results. Good consistency of error propagation due
N2 2 ~ 2 to instrumental noise with the observed deviations from the
H{(n(x') >({(X) >+4(f(x)t(x IHN0O?) B fitted lines, at least for the most important cases of high-
+[{(N(X)HN = (N(X)2)%] Sy order correlations, suggests that the diagonal elements of the
covariance matrix provide a sensible approximation for the
where error estimation.
_ A potential problem with studying the high-order mo-
{t(x)2)=(t(x)?) —(n(x)?), ments is that the data analysis in making the DMR map has
- been manipulated with data cuf47]. In particular, this
and(t(x)t(x")) is found from Eq.(2). means that the measured data in excess of three standard
Therefore the sky temperature correlation can be writtejeviations are excluded. This “bad data” flagging might
for nonzeror as have increasing influence on high-order statistics. Because of
~ PO the dominance of the noigeee Sec. Il A, we may hope that
Ry(r)=(t(x+1)7t(x)*) these limits exceed several more standard deviations of the
= (t(X+T)2(X)2) — Sny(r) sky temperature fluctuation, and therefore do not influence

the conclusions excessively. However, this artifact should be
=(t(x+1)2=(n(x+N)AH][t(x)2=(n(x)?)]), (99  kept in mind while interpreting the results.
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x?=291.3 (n;=393, Q=0.999,
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A E where y° represents the deviation from the straight ling,
X of X represents the number of degree of freedom, @ni$ the
;;\ : . % goodness of fit. Note that the latter is the probability that a
% ook o a0k i value of X° as poor as
v F Waeighted fit 5'& N )
F - ——. Fit £ err dq .—q— .
-2000? 1 L - . ‘E XZ(a,b):E (M)
0 50 100 150 i g;j

r angular separation in degrees

should occur by chance.
On the other hand, a white noise with no correlation

250! ! i —
. ZOOZE“ 31 would give a simple zero ling;=0. Therefore we may try to
x - g . . . . . cpn
i f fit Ky(r) itself to a straight line, to see the significance of the
A 1500 structures. Then,
x
gt a=1.49<10° b=-254x10",
+ F
£ seop ¥2=463.0 (n;=393, Q=0.0064.
N 3 Thus{Ky(r)—f,(r)} definitely fits the zero line better than

K, (r).
Figure Xb) also depicts the extrapolation to zero separa-
FIG. 1. Second-order correlation functi&y(r), defined by Eq.  tion, or lag, of the functiorf,(r). The zero-separation value
(3), plotted against the angular separatioin degreesi(a repre-  can be calculated independently from Eg). as
sents the whole COBE map whilb) shows data near the origin. In
these and all other figures to follow, diamonds represent averages (T 2):(t2>—<n2>, (11
over 40 bins and dots averages over 400 bingalnthe solid line
is the least-square polynomial weighted fit to the 400-bin data. Thevhich yields
dashed lines shown on either side of the full line represent one
standard deviation on either side of the fit. The same notation will K, (r =0)=<f 2>= 2297+ 269 uk?. (12
be used in all other figures as well. The asteriskiinrepresents the
value of the fit function extrapolated to zero lag, and the filled circleThis guantity is presented with its error bars in Figb)l
is obtained independently by E¢L1). They represent the best es- (filled circle at zero lag Remarkably, it almost coincides

timate for the “real” temperature variance over the sky. with the extrapolated value of the correlatib0) (asterisk
on the figure, increasing our confidence in the estimate.
[Il. CORRELATION AND STRUCTURE FUNCTIONS We note that both these values, given by the extrapolated
) fit and by Eq.(12), are still small compared witkilb), sug-
A. Correlations ; ; :
gesting a large effect of the noise. Indeed, the ratio at the

It is useful to start with the correlation functidti,(r), ~ origin of [t %/(t?~T?]Y* is a measure of the sky-
although it has been studied more than once for the COBtemperature-to-noise ratio. From the present estimates, this
data[4,5,9,1Q. We first note that the present calculations of number is of the order of 0.25—which clearly emphasizes
the correlation function yield results identical with those ob-the_ neeq to examine the four-year average COBE data, for
tained before. Second, as is well known, the correlation funchich this ratio can be expected to improve by a factor of

tion is almost zero except for small separation angles; se@b(\)/\l;t 14. " he hiah g ati
Fig. 1(a). Hereafter, we will find a polynomial fit for all e now consider the higher order correlation

— 3 O ;
s o i, b o 0707100 shown P 2 e
mial weighted fii for K,(r) is depicted in Fig. @) (solid 9 - 19 P

ine. Tis functon, denote (), devites o some ce.. [ OTleor, t e o . for onperion. e Gavss
gree from zero, especially for small angles(though the P 2 ' y

. e : . . deviate from Gaussian.

errors are bigger in this regipnThere is, of course, a vari-
ability to each data point in the figure, as determined through
error propagation analysis. B. Structure functions

That the correlation function possesses a weak, yet statis- Structure functions were introduced by Kolmogofdag]
tically significant, structure can be demonstrated as followsfor the study of the “universal” aspects of high-Reynolds-
Suppose we fit the functiofK,(r) —f,(r)} to a straight line,  number turbulence. Thath-order structure function is de-
y=a+br. If f,is a proper representation of the correlationfined as
function, theny should be close to zero, within errors; that is
to say,a=b=0. Using y* analysis, we obtain Sq(r) =([t(x+1)—t(x)]%,
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t chIsz'tThel corrglallt:((ir{t(xfr)t';(x)by tsgil'd line corresgogds FIG. 3. The second-order structure function, defined by Eq.
ho eth est polynomial it, _f_ Ils:' el I?S Srrors.(aihaltw th( )b t(f1t4). The solid line corresponds to the best fit and the —— line to fit
ave the same meaning as for Fg. . It can be seen that the beStit o415 The -. .- Jine corresponds to the asymptotic value. Note

is practically a ZEro line, which varies even less tha_n the Ggusga{hat the fit corresponds to the correlation function depicted in Fig. 1
counterpart. This means that this correlation essentially vanishes ahd that the asymptotic value is rather close the mean-square sky
nonzero lag. This behavior would be expected for a process Wmﬂemperature @ . This means that the noise subtraction is self-
small departure from Gaussianity. consistent

f(:r a?y p?sm\t/_e lnt_egtehq.t'}]he Erlnmpal p0|r|1t of fstt_x_zlé;;]mg ply means that the calculations with noise subtraction are
structure functl_ons IS ab eyd ocu dston sca esbp ?.'Z ef th self-consistent. Another consistency check is provided by the
structure functions can be reduced 1o a combination o eolsymptotic value of the structure function: at infinity the cor-

more familiar correlation functions. In particular,q&=2, relation vanishes, an&z(r)—>2(fz>. Indeed, the structure
_ N function quickly approaches this value, defined by BE®)
Sa(r) = 2[{t%) = Kx()]. (13 (the dash-dot line in Fig.)3

Fitting {S,(r) — f,4(r)}, wheref,4(r) is a polynomial fit,
to a straight line results iny’=305.4 (n;=367) and
SQ=0.989. For a white noise, the structure function would be
zero atr=0 and constanfcoinciding with the dash-dotted
line on Fig. 3 elsewhere. Fitting the structure function itself
to a straight line, i.e., treating it as a noise, results in
X*=382.7(n;=367), andQ=0.252. Thus the goodness of fit
is statistically poorer if we treat the structure function as
R T2\ 2 white noise.
So(r) =([t(x+r)—=t(x)]) =([t(x+r)—t(x)]%) It is clear from Fig. 3 thatS,(r—=)—2(t %) has been
—(n(x+1)2)—(n(x)?). (14)  achieved over many bins. It may at first be thought that this
asymptotic value provides a more reliable estimatdtdj
Figure 3 depictsS,(r). It clearly reflects the correlation on than that given in Fig. (b). But this is deceptive because the
Fig. 1(a), as expected from Eq13). Substituting into Eq. correlation function is averaged ové& points while the
(13) of the correlation function obtained independently with- structure functions are averaged simply over the nunhber
out “noise subtraction,” one obtains the structure functionitself. In any case, the estimafe? from structure functions
which practically coincides with that depicted on Fig. 3.is close to that from Fig. (b).
(Note that there is no need to do the noise subtraction when In summary, we may conclude that the second-order
constructing the correlation functigrThis coincidence sim- structure function shows consistency with the noise subtrac-

Thus, increasing correlation for somecorresponds to de-
creasingS,(r), and vice versa. It follows from the definition
of Sy(r) that this feature is also true for structure function
of arbitrary order(i.e., anyq).

We have to construct, however, “noiseless” structure
functions. Analogous to Eqg9) and (10), we get, for the
second order:
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FIG. 5. The fourth-order structure functiofif(x+r) —t(x)]%),
FIG. 4. The skewness defined in Sec. Ill B. All deviations from gefined by Eq(15).

zero are clearly within errors.

Sy(r)=([Tx+x)-T(x)1*
tion method, i.e., botls,(r) and its asymptotic value corre- 4D =([HXE) =019

spond to the correlation function given %3, and to the =([t(x+x)—t(x) ] = (n(x+1r)H—(n(x)*%

independent estimate given by HG2). n2 22 ’ )
The first indication of the deviation from Gaussianity +B[(N(X+1))%+(NO) %)+ (n(x+1))H(N(x)9)]

would be a nonvanishing value of the skewn¢$4,12. — 6([t(x+X) — t)IA[(N(X+ D)D) +(n(x))].

Consider the structure function of the third order,

(15
_ 3
([tx+1) =t 1), Figure 5 shows that this structure function is embedded
within errors and that noise effects are too strong. Four-year
and define skewness, in analogy with turbulence theory, asobservations of COBE could presumably give a more sub-
stantial result, and it would be interesting to study them from
<[t(X+ r) _t(x)]3> this p0|nt of view.

~ (It -t B

IV. CORRELATIONS OF MAGNITUDES

This quantity, which in general may dependmris depicted In this section, we study the correlations of absolute val-
in Fig. 4 for the COBE data. The skewness is essentialljes of temperature fluctuations. We consider even moments
zero. More precisely, it is within the Gaussian variance. Oufand so do not explicitly write the absolute value sigasd
conclusion, based on the structure function, is in agreemerurn to the fourth-order correlatioR,(r) defined in Eq(9).
with that of Ref.[12] based on three-point correlation stud- The results are shown in Fig. 6. One glance at the figure
ies. We again fit the function by a polynomial and denote itsuffices to show that the statistics are far from perfect. In
by f5(r). Now, x2 for {S(r) —f4(r)} is 21.63,n;=362, even fact, ¥’=167.1(n;=374). This small value of> means that
less than for the case when we fit the skewness itself to ththe errors are somewhat overestimated, which might be re-
zero line[19]. In that case®=26.19. That is to say, the zero lated to the neglect of off-diagonal elements in the covari-
line fits the skewness values marginally better. This impliesance matrix; see the end of Sec. Il.
that the multipoint distribution function is actually symmet-  In spite of this limitation, théweighted average oR,(r)
ric. (which essentially corresponds to the asymptotic value of the
Analogous to Eq(14), we can construct a “noiseless” fourth-order correlation gives for R4(r—>oo):<T 22 the
fourth-order structure function: value
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FIG. 7. The eighth-order correlation of magnitudes,
Rg(r)=(t(x+r)%(x)*), defined by Eq(10).

which, at any position in the sky, corresponds to the square
of the temperature above the background noise. It is clear
] that Eg. (16), when averaged over the whole sky, yields
N O N B B B 0 {t 3. However, Eq.(16) has the advantage that it shows
0 s0 100 150 positions in the sky where tHecal temperature exceeds the
local noise. If we prescribe, for instance, that the local tem-
FIG. 6. The fourth-order correlation of magnitudes, perature exceed three standard deviations of the noise lo-

Ra(r) ={t(x+r)%(x)?), defined according to Ed9). cally, t(x)?>=9n(x)? so that dif)=8n(x)?, we will be
looking at exceedingly large temperature fluctuations, corre-
(Ry)=(5.51x1.45 X 10° uK*, sponding to either very low or high density variations. While

one hopes that these “outstanding objects” in the sky are
The ratio of this value to the square®f) given by Eq.(12)  real, there is no guarantee that they do not arise from big
is 1.04 which, being close to unity, is another check on selffluctuations of the instrumental noise itself. One may hope
consistency. that at least some of them would survive in the four-year
The second realistic feature of this correlation is that theobservations, in which case they would deserve more trust.
“smoothed value,” i.e., the 40-bin presentation Bf(r),  The situation is the same as with the structures on the con-
does not really deviate from its Gaussian counterparventional COBE map. The latter is given in Figag with
[=(t 2)2+ 2K ,(r)?]. Indeed, if we prescribe the value @fy  all the bright objects drawn on it. These objects are listed in
to be the first diamond in Fig. 6, the flatness factor will be Table I.
Another interpretation of the quantity di is that, when
<T4) it is averaged over a few neighboring pixels, say of the order
f= T2 =2.76. 10, it may reflect cosmic variations of temperature fluctua-
) tions better than the noise-affected temperature itself. This
guantity, denoted bydif(x)) has been computed. This is
presented, for the ten-pixel average, as a map in Kig). 8
The contour lines are set to the zero valuédif(x)), so that
f=8.30. the measured temperature in the positive regions exceeds one
standard deviatiorffor the locally averaged quantjtyWe

However, because of the uncertainties inherent in this ex@gain hope that this map of temperature excess, or variation
trapolation as well as due to the large noise, we cannot clairfif fluctuations, would reemerge more or less in the same way
that this represents a reliable deviation from the Gaussial® Maps from four-year averages. Only then could it be
value (f=3). trusted. The main point, however, is that there appear to be
Finally, Fig. 7 depicts the eighth-order correlatigg(r) ~ SOme small number of regions in the sky where very large
defined by expressiofi0). It is clearly within the error, It is temperature variations exist—despite our major conclusion
hard to say that the correlation deviates significantly from itshat the temperature fluctuations are by and large Gaussian.

If, on the other hand, we trust the fit,(r) and prescribe
{t*y=1,(0), oneobtains

Gaussian counterpart  [=72(t 2)2K,(r)?+ 24K 5(r)* Finally, in analogy with Eq(16), it would be tempting to
+9(t 2)41. calculate the fourth-order moment with subtracted noise,
TON _ /1 /nd\ 2 2\ _ /2
V. BRIGHT OBJECTS IN THE SKY () =(t) =(n%) = 6(nH(t") =(n%)).
We now introduce the quantity Unfortunately, the errors are large for present data. Indeed,

we find that the error is mostly defined by the variance of the
dif(x) =t(x)2—n(x)?, (16)  term 4n3. For the present signal-to-noise ratio, the error
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would exceed the quantity df*), rendering these calcula- exact expression for the second moment can be written as
tions meaningless. Four-year observations may present a bet- ~
ter opportunity for these studies, but nothing of consequence {t2y=(t?>)—(n?)—2(tn). (17)
can be said with the two-year data.
The last term in Eq(17) vanishes because the sky tempera-
ture is statistically independent of the noise, afij=0,
VI. SUMMARY AND DISCUSSION (n)=0. This happens, however, only on the average. That is
We have constructed correlations and attempted to el Say, it can be negle(_:te_d only if there is a SUfﬁCi.ent statis-
ical ensemble. Its deviation from zero can be estimated by

clude instrumental noise. Consideration of noise is cruciaF dard . q hich ai h )
for these kinds of data because instrumental noise is a Iar%g?e ard error propagation procedure which gives the estl-

part of the signal. Another feature of processing these data
that we have taken explicit account of the inhomogeneity of ~ 12/ 12
the noise. Indeed, the noise is itself correlated over the sk Gt {t5"%n%

noise. Indeed, f correlated yas 2(t) ~2 "
a bipole structure and the correlation function is nonzero for \/N
nonzero lag. _

The main conclusion is that the calculations do not supThis error should be compared with the valueof). These
port, within the serious limitations imposed by the noise, anyerror bars are, in fact, depicted in Figgajland ib). Fortu-
substantial deviation from Gaussianity. The various correlanately, the two-year observations of COBE data do provide
tion functions computed are close to their Gaussian countedecent error bars. Recall that the zero-lag value has been
parts. Zero-lag data are especially vulnerable to instrumentalbtained by two independent methods. One of them consists
noise, and so no statistical significance can be attributed tof constructing a polynomial fit for the correlation function
the deviation seen on Fig. 6. atr#0, and extrapolating it to=0. This fit has information

It is worth exploring this last statement in more detail. Letabout all the points in different bins. An independent way of
us return to the estimation of the errors by Efj2). The obtaining this value is to use Egdl) and(12). It is inter-

(18
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TABLE I. Bright objects on the conventional COBE map.

Temperature Errors Latitude Longitude
12 0.864 377 0.189747  220.530 —-1.277 66
11 0.766 569 0.222 113  338.825 51.298 5
10 0.756 953  0.222592  193.933 45.117 4
9 0.745 256 0.218 814 7.12973 —19.1199
8 0.728 039 0.220 787 10.1429 -—-23.7151
7 0.690 435 0.207 147 156.761 —7.656 89
6 0.654 277 0.209 410 153.055 —18.5454
5 0.653849  0.208 033 19.4990 11.7G6 5
4 0.646 905 0.210 369 186.424 40.997 5
3 0.641 961 0.191 624 48.1382 65.625 2
2 0.552 024 0.150 714  264.266 —17.6650
1 0.482 502 0.149424  275.101 —12.6918
-1 —0.413 945 0.123104 304916 —37.9972
-2 —0.482978 0.137430 277.595 —7.252 1%
-3 —0.561 857 0.184 247  327.184 —4.244 02
-4 —0.585 290 0.180302  325.354 —7.804 58
-5 —0.590 034 0.193764  330.136 3.10737
-6  —0.590207 0.171709 323491 -50.9724
=7 —0.604 261 0.176383  324.126 —13.224 f
-8 —0.616 182 0.187684  218.101 —70.8038
-9 —0.636 579 0.208 835 170.747 —27.2791
—-10 -—-0.671884 0.221692 348.736 40.900 0
—-11  —-0.704625 0.211928 354.781 68.895 0
—12 —0.772 940 0.218 140  353.577 9.24354
—-13 —0.791 669 0.208439  346.031 1.529*15
—-14 —0.796 089 0.257 777 93.3616 —64.065 2

@bjects in the Galactic plane.

esting to note that this value is hightry 2.5 timeg than the
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a pixel, which is about 7°. The correlation length estimated
from Fig. 1b) is about 6.5°, suggesting that the scale of
cosmic variations is of that order. It should, however, be
recalled that the noise might influence this assessment quite
seriously, and that a better idea of cosmic variations can be
had from Fig. 8b) where dif(x) has been plotted.

Note addedWe have become aware of two unpublished
reports by Coulsort al.[20] and Grahanet al.[21]. These
papers address the issue of potential non-Gaussianity of the
COBE data and its possible interpretation. However, their
approaches are quite different from ours. Grahetral. de-
fine a quantity which is the average of neighboropglata
points in the COBE map, and especially examine the case of
the third moment. These quantities are different from the
structure functions used in this paper. Grahginal. suggest
that the observed non-Gaussianity is too strong to be attrib-
uted entirely to instrumentation noise. Coulsatnal. exam-
ine the possible texture of the background radiation by
means of cosmic string monopole theory. This interesting
work bears only weakly on the structures described in Sec.
V, and highlighted in Table | of this paper. The two papers
are complementary to the present discussion, although differ-
ent in spirit and detail.
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