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Gaussian nature of the COBE data from multipoint correlations
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Important information about the early universe can be obtained from a study of the cosmic backg
radiation~CBR! in the microwave range. We study high-order correlation and structure functions of temp
ture fluctuations collected from the first two years of Differential Microwave Radiometer~DMR! observations
from the Cosmic Background Explorer~COBE! satellite. The intent is to determine whether the radiation da
possess significant deviations from Gaussianity. The most difficult problem in drawing meaningful conclu
is the presence of instrumental noise, which is quite strong even after a two-year averaging has bee
formed. We have taken into account the noise in various ways. Within the limitations imposed by the n
our study shows that the fluctuations are quite likely to be Gaussian-like. The results can, therefore, be
favor the inflation scenario of the universe.@S0556-2821~96!02912-8#

PACS number~s!: 98.70.Vc, 98.80.Bp, 98.80.Cq
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I. INTRODUCTION

Experimental data on temperature fluctuations in cosm
background radiation~CBR! have been available for a few
years now~see, for example, Refs.@1–6#!. This radiation in
the microwave wavelengths is believed to be the remn
‘‘afterglow’’ of the early universe, corresponding to the re
combination time at which baryonic matter and radiatio
were decoupled. The properties of CBR are, therefore,
great interest in the context of the formation of the ear
universe. The data, obtained primarily from the Cosm
Background Explorer~COBE! satellite, have been used re
cently to obtain some insight into this question, in particula
to shed light on cosmology theories. There are two famili
of competing theories of formation of the universe at th
time of the matter-radiation decoupling: one of them in
volves expansion and structure formation due to gravitatio
instabilities~see, e.g.,@7#!, and the other involves symmetry
breaking processes, such as topological defects, resulting
textured and intermittent universe~see, e.g.,@8#!. Careful
analysis~see, for example, Refs.@4, 5#! shows that the fluc-
tuations in the COBE data are significant beyond the vario
uncertainties due to noise sources, but the question that
mains is whether such fluctuations represent genuine in
mittency~or strong deviations from Gaussianity! or are more
akin to fluctuations inherent in a Gaussian distribution. W
believe that the fundamental importance of these consid
ations needs no further elaboration here.

A one-point analysis of the background radiation revea
that it is essentially Gaussian; the probability distributio
function is also known to deviate little from Gaussian~see
Sec. II for details and some references!. Unfortunately, this
conclusion is not decisive because of the substantial con
bution of instrumental noise. Single-point statistics can
considered to represent the limit of multipoint statistics f
zero separation. It can be argued~see Sec. II! that, while all
correlations at zero separation are influenced by instrume
noise, the prospects for learning something useful are be
53/96/53~12!/6796~9!/$10.00
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if one considers multipoint statistics for nonzero separati
Low-order multipoint statistics have already been studie
The autocorrelation corresponding to the second moment
been obtained in Refs.@9,10# and the third moment, corre
sponding to the skewness, has been discussed in@11# and
obtained in Refs.@12,13#; see also Ref.@14# for a detailed
discussion of correlation properties of COBE data. The
two low-order moments are also consistent with a Gauss
multivariant distribution.

If the departures from Gaussianity are not pronounced
is clear that one should examine high-order correlations
arrive at a definitive conclusion. This is the goal of this p
per. The type of high-order statistics we consider is ana
gous to those used in the study of fluid turbulence where
issue of non-Gaussianity looms large. For example, e
though temperature fluctuations in heated homogene
flows are closely Gaussian, the smaller scales display str
deviations from Gaussianity. One of the principal aims
turbulence theory is the characterization of this sca
dependent deviations from Gaussianity, or the so-called ‘
termittency’’ effect. This effect is best explored by studyin
the so-called structure functions and correlations of mag
tudes of quantities of relevance such as velocity and te
perature. Motivated by these considerations, we compute
the COBE Differential Microwave Radiometer~DMR! data
these same quantities and compare them with Gaus
counterparts. We are, however, constrained in carrying
analogy with turbulence too far because of the strong effe
of instrumental noise in the COBE data. Despite this dif
culty, we explore ways of extracting useful informatio
about the temperature distribution on the sky. The infere
appears to be that statistically substantiated deviations f
Gaussianity do not exist.

The rest of the paper is organized as follows. After
preliminary analysis of data in Sec. II, we explore their co
relations and structure functions in Sec. III and study amp
tude correlations of high-order statistics in Sec. IV. In Se
V, we introduce briefly the new topic of ‘‘high points’’ in the
6796 © 1996 The American Physical Society
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53 6797GAUSSIAN NATURE OF THE COBE DATA FROM MULTIPOINT . . .
sky, and conclude the paper with Sec. VI, where some pr
cipal results are reiterated.

II. PRELIMINARY CONSIDERATIONS

Single-point statistics are the simplest measures of
nature of the data. For the COBE data, these are best ev
ated as averages out of the galactic plane, i.e., for the gala
latitudeb satisfying the~somewhat arbitrary but reasonable!
constraintubu>15°. If t is the temperature fluctuation aroun
the mean value of about 2.736 K~to within a few mil-
likelvin!, direct calculations@15# result in

^t&52.07 mK, ^utu&5154.0 mK, ~1a!

^t2&53.833104 mK2, ~1b!

^t4&54.883109 mK4, ~1c!

^t6&51.1131015 mK6, ~1d!

^t8&53.5731020 mK8. ~1e!

From these numbers, one obtains

f5
^t4&

^t2&2
53.33,

f 65
^t6&

^t2&3
519.8,

and

f 85
^t8&

^t2&4
5166,

not very different from the Gaussian values of 3, 15, a
105, respectively~for more detailed calculations of this na
ture, see Refs.@13,14#!. However, because of instrumen
noise information about the real distribution cannot be a
sessed from one-point statistics.

Indeed, lett5 t̃1n, wheret̃ is the sky temperature, andn
is noise. Then, for homogeneous fluctuations,

K2~x2x8!5^t~x!t~x8!&5^ t̃~x! t̃~x8!&1^n2&dxx8 . ~2!

Here angular brackets denote an ensemble average~which, in
principle, implies an average over all experiments and
possible universes!. It was supposed above that the noise
uncorrelated at different points, and statistically independ
of the signal@16#. The last term in Eq.~2! cannot be ne-
glected if the noise is comparable to, or higher than, t
signal t̃; then, the correlation function at the origin i
strongly influenced by noise.

In the COBE satellite data we are using here, the ba
ground temperature has been obtained by averaging obse
tions at each pixel over a two-year period. One also has
each pixel, the root-mean-square~rms! fluctuation around the
pixel mean. Since the mean is constant over the period
observations, this is indeed the rms noise, calculated w
error propagation analysis; this is all we know about th
noise characteristics. The rms noise is a strong function
the position in the sky~i.e., it is inhomogeneous!; see
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@4,5,17#. The task is to eliminate noise effects, where po
sible, only from the knowledge of the distribution of its rm
value. As can be imagined, this imposes severe constra
on our ability to eliminate noise effects.

Returning now to the variance around the mean value
the second-order correlations, one can write the followin
more general expression for the correlation function by a
signing different weightswi to different pixels, because, as
mentioned above, the noise rms is different at different pi
els. We take the standard definition for the weights, name
wi51/̂ n i

2&. Then,

K2~r !5
1

M (
i ,i 8~r !

wit i t i 8~r !wi 8~r !

Mi~r !

5
1

M (
i ,i 8~r !

wi t̃ i t̃ i 8~r !wi 8~r !

Mi~r !
1DK2 ,

DK25
1

M (
i ,i 8~r !

1

Mi~r !
wi$ t̃ ini 8~r !1ni t̃ i 8~r !1nini 8~r !%wi 8~r ! .

~3!

Here, the indexi corresponds to any pixel,i 8(r ) to pixels
such that the angle between them and thei th pixel is r ,
M5( iwi , andMi(r )5(wi 8(r ).

Expression~3! tells us about the mean correlation func
tion, but nothing about the variances around the mean val
This variance iŝDK 2

2&, which can be written as

s2~r !5
1

M2 (
i ,i 8~r !, j , j 8~r !

wiwjwi 8wj 8
Mi~r !M j~r !

$^ t̃ i t̃ j&^n
2&d i 8 j 8

1^ t̃ i t̃ j 8&^n
2&d j i 81^ t̃ j t̃ i 8&^n

2&d i j 81^ t̃ i 8 t̃ j 8&^n
2&d i j

1^n2&2@d i i 8d j j 81d i jd i 8 j 81d i j 8d j i 8#%, ~4!

where we have already considered the noise to be Gauss
This expression is equivalent to the diagonal elements o
covariance matrix@3#.

If rÞ0, which means thatiÞ i 8 and jÞ j 8, a rough esti-
mation of ~4! ~which, for simplicity, also takes all the
weights to be comparable! gives

s~r !;
1

ANN~r !
A$K2~r !^n2&1^n2&2%, ~5!

where N is the number of pixels, N(r )5^Ni(r )&
5( iNi(r )/N, andNi(r ) is the number of pixels such that the
angle between them and thei th pixel isr . At the origin,r50,
i5 i 8, j5 j 8, andNi51, so that

s~0!5S ^n2&2F11
2

NG1
4^ t̃ 2&^n2&

N D 1/2'^n2&. ~6!

Equation~6! demonstrates the following. Not only is the cor
relation function atr50 determined strongly by noise@as
already seen from Eq.~2!#, but so also is the variance around
the mean. The correlation function atrÞ0 may have a closer
connection to the sky temperature, provided the noise is
ceptably low, or the productNN(r ) in ~5! is sufficiently
large, i.e., one has acceptable statistics. Therefore, in orde
find measures of the sky temperature, for example,
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T25^ t̃ 2&,

it is better to study the behavior ofK2 at rÞ0 and extrapolate
it to r50 in some sensible way, rather than studyK2~0!
itself.

The same situation holds for high-order moments. For t
fourth-order correlation

Š@ t~x!22^t~x!2&#@ t~x8!22^t~x8!2&#‹

5^t~x!2t~x8!2&2^t~x!2&^t~x8!2&

we can write, as in Eq.~2!, that

Š@ t~x!22^t~x!2&#@ t~x8!22^t~x8!2&#‹

5Š@ t̃~x!22^ t̃~x!2&#@ t̃~x8!22^ t̃~x8!2&#‹

1@4^ t̃~x!2t̃~x8!2&^n2&12^n2&2#dxx8 . ~7!

Changingx8→x1r , and averaging expression~7! over all
pixels positioned atx, we get

K4~r !5^t~x!2t~x8!2&2^t~x!2&^t~x8!2&.

We have two kinds of averages here. One is over differe
pixels~with index i !, and another one is over all pixels in on
bin, i.e., separated by a distancer , denoted in~3! with index
i 8(r ). The latter corresponds to the^•••& average in the ex-
pression above, and the first to the overbar. For a homo
neous process, we can do only with one kind of average, a
this can be written as

K4~r !5^t~x1r !2t~x!2&2^t2&2 ~8!

~no overbar needed!. Thus, for this correlation, the errors ar
not accumulated forxÞx8.

Since the distribution of the signal could be inhomog
neous~this being a conservative statement because the no
appears to be so!, we will use an expression equivalent to Eq
~7! and compare it with Eq.~8!. In order to get this equiva-
lent expression, consider again the correlation^t(x
1r )2t(x)2&, which can be written, analogously to Eq.~2!, as

^t~x!2t~x8!2&5^ t̃~x!2t̃~x8!2&1dn4~x,x8!,

dn4~x,x8!5^n~x!2&^n~x8!2&1^n~x!2&^ t̃~x8!2&

1^n~x8!2&^ t̃~x!2&14^ t̃~x! t̃~x8!&^n~x!2&dxx8

1@^n~x!4&2^n~x!2&2#dxx8 ,

where

^ t̃~x!2&5^t~x!2&2^n~x!2&,

and ^ t̃(x) t̃(x8)& is found from Eq.~2!.
Therefore the sky temperature correlation can be writt

for nonzeror as

R4~r !5^ t̃~x1r !2t̃~x!2&

5^t~x1r !2t~x!2&2dn4~r !

5Š@ t~x1r !22^n~x1r !2&#@ t~x!22^n~x!2&#‹, ~9!
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where dn4(r )5dn4(x1r ,x) is the average value of
dn4(x1r ,x) over all x. This formula expresses the fourth
order correlation through observed second- and fourth-ord
correlations and rms noise at each point.

Similarly, we have~for rÞ0!

R8~r !5^ t̃~x1r !4t̃~x!4&

5^t~x1r !4t~x!4&2dn8~r !

5Š@ t~x1r !426t̃~x1r !2n~x1r !22^n~x1r !4&#

3@ t~x!426t̃~x!2n~x!22^n~x!4&#‹

5Š@ t~x1r !426t~x1r !2n~x1r !215^n~x1r !4&#

3@^t~x!426t~x!2n~x!215^n~x!4&#‹. ~10!

Basically, these two formulas,~9! and ~10!, are subtracting
the noise contribution ^n(x1r )2n(x)2& from
^t(x1r )2t(x)2& and^n(x1r )4n(x)4& from ^t(x1r )4t(x)4&;
the other terms in these equations are of higher order a
small.

Let us return to the variances. For the fourth-order corr
lation, expressions like~4!–~6! can be constructed by chang
ing variables tot̃ 21m from t̃1n, wherem is a new noise
variable. Thus, again,̂t4& would represent the statistics of
the noise, and one has to studyR4(r ) in order to get the
fourth-order moment for the temperature.

In principle, complete information about the errors give
the covariance matrix, including its off-diagonal element
This has been described in Ref.@9#, where the matrix has
been written down for the correlation functionK2(r ). An
attempt to construct a covariance matrix for the fourth-ord
correlation leads to cumbersome expressions; at the pres
stage it is not clear how to handle them when processing
data. Therefore we shall take account of only the diagon
elements when calculating the errors. While this procedu
does not guarantee complete estimation of noise effects,
x2 analysis of the deviations of the calculated correlatio
from these noise models shows that the error propagati
performed this way, correspond reasonably well to the
deviations—at least in the most important cases. Some ca
do show that the error model gives slightly greater erro
than the standard deviations, thus overestimating the inst
ment errors slightly. These cases are of less importance
the main results. Good consistency of error propagation d
to instrumental noise with the observed deviations from t
fitted lines, at least for the most important cases of hig
order correlations, suggests that the diagonal elements of
covariance matrix provide a sensible approximation for th
error estimation.

A potential problem with studying the high-order mo
ments is that the data analysis in making the DMR map h
been manipulated with data cuts@17#. In particular, this
means that the measured data in excess of three stan
deviations are excluded. This ‘‘bad data’’ flagging migh
have increasing influence on high-order statistics. Because
the dominance of the noise~see Sec. II A!, we may hope that
these limits exceed several more standard deviations of
sky temperature fluctuation, and therefore do not influen
the conclusions excessively. However, this artifact should
kept in mind while interpreting the results.
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III. CORRELATION AND STRUCTURE FUNCTIONS

A. Correlations

It is useful to start with the correlation functionK2(r ),
although it has been studied more than once for the CO
data@4,5,9,10#. We first note that the present calculations
the correlation function yield results identical with those o
tained before. Second, as is well known, the correlation fun
tion is almost zero except for small separation angles;
Fig. 1~a!. Hereafter, we will find a polynomial fit for all
correlations. For example, the best fit~least-square polyno-
mial weighted fit! for K2(r ) is depicted in Fig. 1~a! ~solid
line!. This function, denoted asf 2(r ), deviates to some de-
gree from zero, especially for small anglesr ~though the
errors are bigger in this region!. There is, of course, a vari-
ability to each data point in the figure, as determined throu
error propagation analysis.

That the correlation function possesses a weak, yet sta
tically significant, structure can be demonstrated as follow
Suppose we fit the function$K2(r )2 f 2(r )% to a straight line,
y5a1br. If f 2 is a proper representation of the correlatio
function, theny should be close to zero, within errors; that
to say,a5b50. Usingx2 analysis, we obtain

FIG. 1. Second-order correlation functionK2(r ), defined by Eq.
~3!, plotted against the angular separationr in degrees:~a! repre-
sents the whole COBE map while~b! shows data near the origin. In
these and all other figures to follow, diamonds represent avera
over 40 bins and dots averages over 400 bins. In~a!, the solid line
is the least-square polynomial weighted fit to the 400-bin data. T
dashed lines shown on either side of the full line represent o
standard deviation on either side of the fit. The same notation w
be used in all other figures as well. The asterisk in~b! represents the
value of the fit function extrapolated to zero lag, and the filled circ
is obtained independently by Eq.~11!. They represent the best es
timate for the ‘‘real’’ temperature variance over the sky.
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a526.1231029, b56.32310211,

x25291.3 ~nf5393!, Q50.999,

wherex2 represents the deviation from the straight line,nf
represents the number of degree of freedom, andQ is the
goodness of fit. Note that the latter is the probability that
value ofx2 as poor as

x2~a,b!5(
i

N S yi2a2bxi
s i

D 2
should occur by chance.

On the other hand, a white noise with no correlatio
would give a simple zero line,y50. Therefore we may try to
fit K2(r ) itself to a straight line, to see the significance of th
structures. Then,

a51.4931025, b522.5431027,

x25463.0 ~nf5393!, Q50.0064.

Thus $K2(r )2 f 2(r )% definitely fits the zero line better than
K2(r ).

Figure 1~b! also depicts the extrapolation to zero separ
tion, or lag, of the functionf 2(r ). The zero-separation value
can be calculated independently from Eq.~2! as

^ t̃ 2&5^t2&2^n2&, ~11!

which yields

K2~r50!5^ t̃ 2&522976269 mK2. ~12!

This quantity is presented with its error bars in Fig. 1~b!
~filled circle at zero lag!. Remarkably, it almost coincides
with the extrapolated value of the correlationf 2~0! ~asterisk
on the figure!, increasing our confidence in the estimate.

We note that both these values, given by the extrapola
fit and by Eq.~12!, are still small compared with~1b!, sug-
gesting a large effect of the noise. Indeed, the ratio at t
origin of [ t̃ 2/(t22 t̃ 2)] 1/2 is a measure of the sky-
temperature-to-noise ratio. From the present estimates,
number is of the order of 0.25—which clearly emphasize
the need to examine the four-year average COBE data,
which this ratio can be expected to improve by a factor
about 1.4.

We now consider the higher order correlatio
K13(r )5^t(x1r )t(x)3&, shown in Fig. 2. It is clear that
there is no correlation at large distances. Figure 2~b! depicts
this correlation at the origin and, for comparison, the Gaus
ian counterpart@53K2(r )

2#. The correlation does not really
deviate from Gaussian.

B. Structure functions

Structure functions were introduced by Kolmogorov@18#
for the study of the ‘‘universal’’ aspects of high-Reynolds
number turbulence. Theqth-order structure function is de-
fined as

Sq~r !5^@ t~x1r !2t~x!#q&,

ges

he
ne
ill

le
-



e

r
-

.

ky

6800 53VAINSHTEIN, MALAGOLI, AND SREENIVASAN
for any positive integerq. The principal point of studying
structure functions is that they focus on scales of sizer . The
structure functions can be reduced to a combination of
more familiar correlation functions. In particular, ifq52,

S2~r !52@^t2&2K2~r !#. ~13!

Thus, increasing correlation for somer corresponds to de-
creasingS2(r ), and vice versa. It follows from the definition
of Sq(r ) that this feature is also true for structure function
of arbitrary order~i.e., anyq!.

We have to construct, however, ‘‘noiseless’’ structu
functions. Analogous to Eqs.~9! and ~10!, we get, for the
second order:

S̃2~r !5^@ t̃~x1r !2 t̃~x!#2&5^@ t~x1r !2t~x!#2&

2^n~x1r !2&2^n~x!2&. ~14!

Figure 3 depictsS2(r ). It clearly reflects the correlation on
Fig. 1~a!, as expected from Eq.~13!. Substituting into Eq.
~13! of the correlation function obtained independently with
out ‘‘noise subtraction,’’ one obtains the structure functio
which practically coincides with that depicted on Fig. 3
~Note that there is no need to do the noise subtraction wh
constructing the correlation function.! This coincidence sim-

FIG. 2. The correlation̂ t(x1r )t(x)3&. Solid line corresponds
to the best polynomial fit, –– is the best fit6 errors.~a! and ~b!
have the same meaning as for Fig. 1. It can be seen that the be
is practically a zero line, which varies even less than the Gauss
counterpart. This means that this correlation essentially vanishe
nonzero lag. This behavior would be expected for a process w
small departure from Gaussianity.
the
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ply means that the calculations with noise subtraction are
self-consistent. Another consistency check is provided by th
asymptotic value of the structure function: at infinity the cor-
relation vanishes, andS2(r )→2^ t̃ 2&. Indeed, the structure
function quickly approaches this value, defined by Eq.~12!
~the dash-dot line in Fig. 3!.

Fitting $S2(r )2 f 2S(r )%, wheref 2S(r ) is a polynomial fit,
to a straight line results inx25305.4 ~nf5367! and
Q50.989. For a white noise, the structure function would be
zero atr50 and constant~coinciding with the dash-dotted
line on Fig. 3! elsewhere. Fitting the structure function itself
to a straight line, i.e., treating it as a noise, results in
x25382.7~nf5367!, andQ50.252. Thus the goodness of fit
is statistically poorer if we treat the structure function as
white noise.

It is clear from Fig. 3 thatS2(r→`)→2^ t̃ 2& has been
achieved over many bins. It may at first be thought that this
asymptotic value provides a more reliable estimate of^t̃ 2&
than that given in Fig. 1~b!. But this is deceptive because the
correlation function is averaged overN2 points while the
structure functions are averaged simply over the numberN
itself. In any case, the estimate^t̃ 2& from structure functions
is close to that from Fig. 1~b!.

In summary, we may conclude that the second-orde
structure function shows consistency with the noise subtrac

st fit
ian
s at
ith

FIG. 3. The second-order structure function, defined by Eq
~14!. The solid line corresponds to the best fit and the –– line to fit
6 errors. The -•••- line corresponds to the asymptotic value. Note
that the fit corresponds to the correlation function depicted in Fig. 1
and that the asymptotic value is rather close the mean-square s
temperature 2̂t̃ 2&. This means that the noise subtraction is self-
consistent.



d
r
-

-
ts

e

-
-

e

53 6801GAUSSIAN NATURE OF THE COBE DATA FROM MULTIPOINT . . .
tion method, i.e., bothS2(r ) and its asymptotic value corre
spond to the correlation function given by~13!, and to the
independent estimate given by Eq.~12!.

The first indication of the deviation from Gaussianit
would be a nonvanishing value of the skewness@11,12#.
Consider the structure function of the third order,

^@ t~x1r !2t~x!#3&,

and define skewness, in analogy with turbulence theory,

S5
^@ t~x1r !2t~x!#3&

^@ t~x1r !2t~x!#2&3/2
.

This quantity, which in general may depend onr , is depicted
in Fig. 4 for the COBE data. The skewness is essentia
zero. More precisely, it is within the Gaussian variance. O
conclusion, based on the structure function, is in agreem
with that of Ref.@12# based on three-point correlation stud
ies. We again fit the function by a polynomial and denote
by f 3(r ). Now, x

2 for $S(r )2 f 3(r )% is 21.63,nf5362, even
less than for the case when we fit the skewness itself to
zero line@19#. In that casex2526.19. That is to say, the zero
line fits the skewness values marginally better. This impl
that the multipoint distribution function is actually symme
ric.

Analogous to Eq.~14!, we can construct a ‘‘noiseless’
fourth-order structure function:

FIG. 4. The skewness defined in Sec. III B. All deviations fro
zero are clearly within errors.
-
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S̃4~r !5^@ t̃~x1x!2 t̃~x!#4&

5^@ t~x1x!2t~x!#4&2^n~x1r !4&2^n~x!4&

16@^n~x1r !2&21^n~x!2&21^n~x1r !2&^n~x!2&#

26^@ t~x1x!2t~x!#2&@^n~x1r !2&1^n~x!2&#.

~15!

Figure 5 shows that this structure function is embedde
within errors and that noise effects are too strong. Four-yea
observations of COBE could presumably give a more sub
stantial result, and it would be interesting to study them from
this point of view.

IV. CORRELATIONS OF MAGNITUDES

In this section, we study the correlations of absolute val
ues of temperature fluctuations. We consider even momen
~and so do not explicitly write the absolute value signs! and
turn to the fourth-order correlationR4(r ) defined in Eq.~9!.
The results are shown in Fig. 6. One glance at the figur
suffices to show that the statistics are far from perfect. In
fact, x25167.1~nf5374!. This small value ofx2 means that
the errors are somewhat overestimated, which might be re
lated to the neglect of off-diagonal elements in the covari
ance matrix; see the end of Sec. II.

In spite of this limitation, the~weighted! average ofR4(r )
~which essentially corresponds to the asymptotic value of th
fourth-order correlation! gives for R4(r→`)5^ t̃ 2&2 the
value

m
FIG. 5. The fourth-order structure function,^[ t̃(x1r )2 t̃(x)] 4&,

defined by Eq.~15!.
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^R4&5~5.5131.45!3106 mK4.

The ratio of this value to the square of^t̃ 2& given by Eq.~12!
is 1.04 which, being close to unity, is another check on se
consistency.

The second realistic feature of this correlation is that t
‘‘smoothed value,’’ i.e., the 40-bin presentation ofR4(r ),
does not really deviate from its Gaussian counterp
@5^ t̃ 2&212K2(r )

2#. Indeed, if we prescribe the value of^t̃4&
to be the first diamond in Fig. 6, the flatness factor will b

f5
^ t̃4&

^ t̃ 2&2
52.76.

If, on the other hand, we trust the fitf 4(r ) and prescribe
^ t̃4&5 f 4(0), oneobtains

f58.30.

However, because of the uncertainties inherent in this
trapolation as well as due to the large noise, we cannot cl
that this represents a reliable deviation from the Gauss
value ~f53!.

Finally, Fig. 7 depicts the eighth-order correlationR8(r )
defined by expression~10!. It is clearly within the error. It is
hard to say that the correlation deviates significantly from
Gaussian counterpart @572̂ t̃ 2&2K2(r )

2124K2(r )
4

19^ t̃ 2&4#.

V. BRIGHT OBJECTS IN THE SKY

We now introduce the quantity

dif~x!5t~x!22n~x!2, ~16!

FIG. 6. The fourth-order correlation of magnitude
R4(r )5^ t̃(x1r )2t̃(x)2&, defined according to Eq.~9!.
lf-

he

art

e

ex-
aim
ian

its

which, at any position in the sky, corresponds to the squ
of the temperature above the background noise. It is cl
that Eq. ~16!, when averaged over the whole sky, yield
^t̃ 2&. However, Eq.~16! has the advantage that it show
positions in the sky where thelocal temperature exceeds th
local noise. If we prescribe, for instance, that the local tem
perature exceed three standard deviations of the noise
cally, t(x)2>9n(x)2 so that dif(x)>8n(x)2, we will be
looking at exceedingly large temperature fluctuations, cor
sponding to either very low or high density variations. Whi
one hopes that these ‘‘outstanding objects’’ in the sky a
real, there is no guarantee that they do not arise from
fluctuations of the instrumental noise itself. One may ho
that at least some of them would survive in the four-ye
observations, in which case they would deserve more tru
The situation is the same as with the structures on the c
ventional COBE map. The latter is given in Fig. 8~a!, with
all the bright objects drawn on it. These objects are listed
Table I.

Another interpretation of the quantity dif(x) is that, when
it is averaged over a few neighboring pixels, say of the ord
10, it may reflect cosmic variations of temperature fluctu
tions better than the noise-affected temperature itself. T
quantity, denoted bŷdif(x)& has been computed. This i
presented, for the ten-pixel average, as a map in Fig. 8~b!.
The contour lines are set to the zero value of^dif(x)&, so that
the measured temperature in the positive regions exceeds
standard deviation~for the locally averaged quantity!. We
again hope that this map of temperature excess, or varia
of fluctuations, would reemerge more or less in the same w
in maps from four-year averages. Only then could it
trusted. The main point, however, is that there appear to
some small number of regions in the sky where very lar
temperature variations exist—despite our major conclus
that the temperature fluctuations are by and large Gauss

Finally, in analogy with Eq.~16!, it would be tempting to
calculate the fourth-order moment with subtracted noise,

^ t̃4&5^t4&2^n4&26^n2&~^t2&2^n2&!.

Unfortunately, the errors are large for present data. Inde
we find that the error is mostly defined by the variance of t
term 4t̃n3. For the present signal-to-noise ratio, the err

s,

FIG. 7. The eighth-order correlation of magnitude
R8(r )5^ t̃(x1r )4t̃(x)4&, defined by Eq.~10!.
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FIG. 8. ~a! Conventional
COBE map, except that the bright
‘‘objects’’ of Table I are added.
Contour line corresponds to zero
temperature fluctuation. The high-
est number corresponds to the
highest temperature~fluctuation!,
down to the negative numbers cor-
responding to the negative tem-
perature~fluctuation!. The galactic
plane,b<15°, is separated by two
horizontal lines.~b! The map of
the locally averaged temperature
excess^dif(x)& according to the
definition ~18!. Contour lines are
set to zero value, and the numbers
have the same meaning as in~a!.
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would exceed the quantity of̂t̃4&, rendering these calcula
tions meaningless. Four-year observations may present a
ter opportunity for these studies, but nothing of conseque
can be said with the two-year data.

VI. SUMMARY AND DISCUSSION

We have constructed correlations and attempted to
clude instrumental noise. Consideration of noise is cruc
for these kinds of data because instrumental noise is a la
part of the signal. Another feature of processing these dat
that we have taken explicit account of the inhomogeneity
the noise. Indeed, the noise is itself correlated over the sk
a bipole structure and the correlation function is nonzero
nonzero lag.

The main conclusion is that the calculations do not su
port, within the serious limitations imposed by the noise, a
substantial deviation from Gaussianity. The various corre
tion functions computed are close to their Gaussian coun
parts. Zero-lag data are especially vulnerable to instrume
noise, and so no statistical significance can be attributed
the deviation seen on Fig. 6.

It is worth exploring this last statement in more detail. L
us return to the estimation of the errors by Eq.~12!. The
-
bet-
nce

ex-
ial
rge
a is
of
y as
for

p-
ny
la-
ter-
ntal
to

et

exact expression for the second moment can be written as

^ t̃ 2&5^t2&2^n2&22^ t̃n&. ~17!

The last term in Eq.~17! vanishes because the sky tempera
ture is statistically independent of the noise, and^ t̃&50,
^n&50. This happens, however, only on the average. That
to say, it can be neglected only if there is a sufficient statis
tical ensemble. Its deviation from zero can be estimated b
standard error propagation procedure which gives the es
mate

2^ t̃n&;2
^ t̃ 2&1/2^n2&1/2

AN
. ~18!

This error should be compared with the value of^t̃ 2&. These
error bars are, in fact, depicted in Figs. 1~a! and 1~b!. Fortu-
nately, the two-year observations of COBE data do provid
decent error bars. Recall that the zero-lag value has be
obtained by two independent methods. One of them consis
of constructing a polynomial fit for the correlation function
at rÞ0, and extrapolating it tor50. This fit has information
about all the points in different bins. An independent way o
obtaining this value is to use Eqs.~11! and ~12!. It is inter-
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esting to note that this value is higher~by 2.5 times! than the
first-bin value of the correlation function in the 40-bin cas
This suggests, as can be clearly seen from Fig. 1~a!, that the
correlation length is somewhat smaller than the resolution

TABLE I. Bright objects on the conventional COBE map.

Temperature Errors Latitude Longitude

12 0.864 377 0.189 747 220.530 21.277 66a

11 0.766 569 0.222 113 338.825 51.298 5
10 0.756 953 0.222 592 193.933 45.117 4
9 0.745 256 0.218 814 7.12973 219.119 9
8 0.728 039 0.220 787 10.1429 223.715 1
7 0.690 435 0.207 147 156.761 27.656 89a

6 0.654 277 0.209 410 153.055 218.545 4
5 0.653 849 0.208 033 19.4990 11.706 5a

4 0.646 905 0.210 369 186.424 40.997 5
3 0.641 961 0.191 624 48.1382 65.625 2
2 0.552 024 0.150 714 264.266 217.665 0
1 0.482 502 0.149 424 275.101 212.691 8a

21 20.413 945 0.123 104 304.916 237.997 2
22 20.482 978 0.137 430 277.595 27.252 15a

23 20.561 857 0.184 247 327.184 24.244 02a

24 20.585 290 0.180 302 325.354 27.804 55a

25 20.590 034 0.193 764 330.136 3.107 37a

26 20.590 207 0.171 709 323.491 250.972 4
27 20.604 261 0.176 383 324.126 213.224 1a

28 20.616 182 0.187 684 218.101 270.803 8
29 20.636 579 0.208 835 170.747 227.279 1

210 20.671 884 0.221 692 348.736 40.900 0
211 20.704 625 0.211 928 354.781 68.895 0
212 20.772 940 0.218 140 353.577 9.243 54a

213 20.791 669 0.208 439 346.031 1.529 15a

214 20.796 089 0.257 777 93.3616 264.065 2

aObjects in the Galactic plane.
e.

of

a pixel, which is about 7°. The correlation length estimate
from Fig. 1~b! is about 6.5°, suggesting that the scale o
cosmic variations is of that order. It should, however, b
recalled that the noise might influence this assessment qu
seriously, and that a better idea of cosmic variations can
had from Fig. 8~b! where dif(x) has been plotted.

Note added. We have become aware of two unpublishe
reports by Coulsonet al. @20# and Grahamet al. @21#. These
papers address the issue of potential non-Gaussianity of
COBE data and its possible interpretation. However, the
approaches are quite different from ours. Grahamet al. de-
fine a quantity which is the average of neighboringq data
points in the COBE map, and especially examine the case
the third moment. These quantities are different from th
structure functions used in this paper. Grahamet al. suggest
that the observed non-Gaussianity is too strong to be attr
uted entirely to instrumentation noise. Coulsonet al. exam-
ine the possible texture of the background radiation b
means of cosmic string monopole theory. This interestin
work bears only weakly on the structures described in Se
V, and highlighted in Table I of this paper. The two paper
are complementary to the present discussion, although diff
ent in spirit and detail.
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