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High-resolution direct numerical simulation data for three-dimensional Navier-Stokes turbulence
in a periodic box are used to study the scaling behavior of low-order velocity structure functions
with positive and negative powers. Similar to high-order statistics, the low-order relative scaling
exponents exhibit unambiguous departures from the Kolmogorov 1941 theory and agree well with
existing multiscaling models. No transition from normal scaling to anomalous scaling is observed.
[S0031-9007(96)01548-7]
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The intermittency effect of small scale dynamics on fluidformation of shock structures leads to a normal scaling
turbulence has been an important issue in turbulence stésr ¢ < 1 and a constant scaling exponent foe= 1 [8].
tistics for many decades. A lot of effort has been invested'his bifractal scaling has also been reported for turbulent
towards the understanding of the departure from Gausgonvection with a constant temperature gradient [9]. One
ian statistics and the related anomalous scaling behavi@annot, in principle, rule out a somewhat similar situation
of velocity structure functions. At very high Reynolds in three-dimensional turbulence at very high Reynolds
numbers, Kolmogorov’s 1941 similarity theory (K41) [1] numbers. It is therefore both interesting and useful to
predicts a normal (or regular) scaling for moments of theexamine the nature of low-order scaling exponents.
velocity increment in the inertial rangétAu,|9) ~ r4/3 In this Letter, we present an analysis using data from di-
for L > r > n, where the longitudinal velocity incre- rect numerical simulations for a fully developed isotropic
ment is defined adu, = u(x + r) — u(x), (-) denotes turbulence to study low-order moments of velocity struc-
an ensemble average, ahdand n are, respectively, the ture functions and the relation between structure function
integral scale and the Kolmogorov dissipation scale. Foexponents and the PDF. The particular questions we ad-
convenience, we have considered here the moments of tligess here are as follows: (1) Are there intermittency cor-
absolute values of velocity differences—called the “gen-+ections to the scaling of low-order structure functions?
eralized structure functions” to distinguish them from the(2) Is there a transition from regular scaling at low order
classical ones. The normal scaling has been challenged anomalous scaling at high order? (3) What aspects of
often, and the departure from K41 has been reported frorturbulence make major contributions to low-order structure
both experiments and direct numerical simulations [2—4]function statistics?

A recent paper [5] used data from a high-resolution simula- Direct numerical simulation of the Navier-Stokes equa-
tion and demonstrated the existence of intermittency cortions [10] was carried out witt5123 mesh points in a

rection to K41without invoking the Taylor's hypothesis cyclic cubic box for homogeneous isotropic turbulence us-
used in real-life experiments. ing the CM-5 machine at Los Alamos and the SP ma-

It has been believed traditionally that the deviations fromchines at IBM. The simulation domain w#8, 27 ] in
K41 tend to be more pronounced when the moment oreach direction. A nominal steady state was maintained by
derg becomes large. This is because the non-Gaussianity forcing confined to wave numbeks< 3. The Taylor
is more conspicuous at the tails of the probability den-microscaleA = (15»v3/€)!/2 and microscale Reynolds
sity function (PDF) which make increasingly significant numberR , = vyA/v were controlled by varying the vis-
contributions to higher order statistics. Thus, experimentsosity of the system. Here, is the root-mean-square
and simulations have focused on structure functions witlvalue of a single vector component of velocity. The analy-
q = 2, say. With the exception of Refs. [6] and [7], little sis was carried out for forced statistically steady states at
attention has been paid to the scaling of low-order strucR , = 218. A spatial averaging over the whole physical
ture functions § < 2, say). The preliminary experimental space was used to replace the ensemble average. The sepa-
results of a water flow in a pipe in Ref. [6] showed that ex-rationr was taken along the direction, and the PDFs and
ponents for moment orders as low as 0.25 departed fromtatistics shown below were averaged over 1.5 large-eddy
K41. However, a detailed study connecting large ampliturnover times.
tude events with structure functions and scaling exponents In the inset of Fig. 1, we present the generalized

has not yet been made. structure functions
For one-dimensional Burgers turbulence in the small
viscosity limit, a bifractal structure of velocity due to the Sy(r) = (|Au,?) ~ ré, Q)
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) . FIG. 2. Scaling exponents of structure functions as a function
FIG. 1. Velocity structure functios,(r) for ¢ = 0.4 and 0.8  of the order indexy compared with various models.
versusSi(r). The inset shows the velocity structure functions

versusr. The symbols are direct numerical simulation results,
and solid lines indicate slopes from the SL model.
positive and negative powers. Since the departure from

) ) ) K41 starts from very smally and the relative scaling
with ¢ = 0.4 and0.8. Here/, is the scaling exponent. exponents agree well with some intermittency models
A power law range can be identified f0r2 = r = 0.8.  for 4 from —0.8 up to 8 [5], there is no evidence to
In Ref. [6], we have shown that the third-order structuresypport a transition of scaling exponents and the bifractal
function in this region has the expected inertial rangéstrycture, in contrast to the case of Burgers equation [8]
behavior [11]. The structure functions are compared with,, pressureless turbulence [17].
a phenomenological multiscaling model proposed by She ag pointed out in [3], it is generally believed that the
and Leveque [12] (solid lines). To better calculate theppr of the velocity increment has a Gaussian core for
scaling exponents, in Fig. 1 we have utilized the so-calledma)| amplitude events and a stretched exponential shape
extended scaling similarity (ESS) hypothesis advocategyr the tail part. The intermittency effect presented in
by Benzi et al.[13], i.e., plotting S,(r) againstSs(r),  Fig. 2 for low-order moments may imply two possibilities:
and identified the relative scaling exponefi, From our (1) the low-order moments have substantial contributions
previous experiences [5] and the current study, we believgom the high amplitude (tail) events; (2) the core part of
that the ESS works well for velocity structure functions ihe ppFs is also sufficiently non-Gaussian. To shed light
in_homogeneous turbulence—meaning that the relativgp, these possibilities, we have enlarged in Fig. 3 the core
scaling shows a wider region than the direct scaling regiohart PDF ofAu, with the inset showing the whole PDF.
shown in the inset. We have studied many instances Qjypile the deviation from the Gaussian is evident at the
direct an(_j relative scalings for different power md_exesta”s, even the core part of the PDF displays departures
[14], ranging fromg = —0.8 to 12, and found the scaling  from Gaussianity. This departure may have significant
relations to be very similar to those presented in Fig. 1. contributions to low-order statistics.

In Fig. 2 we have compared the ESS scaling exponents 1q probe this further, we define a cumulative structure
for —0.8 < ¢ < 2 with predictions from K41, a lognor- function,
mal model by Kolmogorov (K62) [2] which giveg, = s
q/3 + q(3 — q)u/18 where u = 2/9 is the dissipa- _ / N
tion scaling exponent [15], and a log-Poisson model by She Sq(r, ) = [¢ $717P(gDd e’ (2)
and Leveque (SL) [12] which gives, = ¢/9 + 2/3[1 — _ _
(2/3)43]. To be more quantitative, we list here five scal-2nd the cumulation ratio
ing exponents from direct numerical simulatiogsyg = S,(r, )
—0.32 + 0.01, o = 0.074 = 0.002, o4 = 0.150 = Yo(P) = S )
0.002, {pe = 0.223 = 0.002, and {ps = 0.296 = 0.002. 1
For very smallg, {, should be a linear function of  where ¢’ = Au,/Sims(r) and Si(r) = S,(r)'/2 is the
following a Taylor expansion. The difference of the sloperoot mean square for a given separatignP(¢’) is the
of scaling exponents wheq — 0 between K41 and SL probability density function ofp’; and ¢ is the bound
model (or K62) is aboul2% [3]. It is evident that the of truncated¢’ domain. The ratioy,(¢) quantitatively
scaling exponents deviate from K41 even for very smalldefines a cumulative contribution from events with am-
g, in favor of the intermittency models [2,12,16] for both plitude up to¢ for the gth-order structure function. In
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tics for the flatness starts frogh = 1, which might there-
fore usefully define the boundary between the core and
the tail of the PDF. Both the skewness and the flatness
converge to constants (3.6 and.32, respectively) when

¢ = 4, consistent with the inset in Fig. 4. Itis interesting
to note that the skewness has a crossover from positive to
negative atp = 2, indicating that the negative skewness

basically comes from events of intermediate amplitudes
between about 2 and 4 standard deviations.

In order to see the effects of the PDF on scaling expo-
nents, in particular, on the variation of scaling exponents
7 with the variation of the upper bound, it is useful to
. rewrite Eq. (1) ag,(r) = dInS,(r)/dInr. We first note
L that the scaling exponents representlative variationof
the structure function as a function of the separation dis-
tance. Asin Eq. (2), we can now define th-order cu-
mulative scaling exponent as

dInS,(r, ¢)
dinr '

In Fig. 6, we show{,(¢), the average ot,(r, ¢) over
inertial range, as a function ap for ¢ = 0.4, 2, and 8.
Two features in this plot are worth noting: First, fér=

1, the scaling exponents for all three cases are close to K41.
Second, all three cases converge to the SL multiscaling
model whenp = 6. This resultimplies that—as far as the
scaling exponents are concerned—there is no fundamental
difference in the relation between structure function and
the PDF of the velocity increment for high-order and low-
order statistics. Note that the transition in Fig. 6 from K41
& the SL (or other) multiscale results is smooth, which

S,(n"P(a,u)

AU/S, ("

FIG. 3. The core part of the PDF for velocity increment (solid
line) compared with Gaussian distribution (dotted line). The
inset shows the whole distribution for the PDFs. All curves are
normalized by the root mean square.

gq("s d)) =

Fig. 4, we showy,(¢) as a function of¢ for a separa-
tion distance in the inertial range & 0.29). For fixed
v4(#), we see that the larger thethe larger thep, con-
sistent with the fact that the peak h?P(¢) shifts to
larger values of¢ for increasingly high-order moments.
We provide in the inset the complementary datafofihe
inverse function ofy in Eq. (3)] as a function ofy when
')’q(d’) =09.

The aspect just discussed has been made more spec

in Fig. 5 for the flatness and skewness of the V?IOCity INseems to support the multifractal picture in which the
crement { = 0.29). The data are compared with those

L : - correction to anomalous scaling comes from all amplitudes
of a Gaussian field. The departure from Gaussian statisy;iih gifferent fractal dimensions

It is not often appreciated that the non-Gaussianity of
PDF of velocity increments is related to the phase coher-
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FIG. 4. The cumulatlon_ratlwq(q&) as a function of¢ for 0 2 4 6 8
different ¢ (from left to right): ¢ = —0.8, —0.5, —0.1, 0.1, o

0.5, 1, 2, 4, 6, 8. The separation distance= 0.29 lies within

the inertial range. The inset showsvalues corresponding to FIG. 5. The skewness and flatness factor as functionp of
the intersections of the curves by the horizontal line given byfor r = 0.29 calculated from the data (bullets), compared with
v4 = 0.9. Gaussian values (solid lines).
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