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Scaling of Low-Order Structure Functions in Homogeneous Turbulence
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High-resolution direct numerical simulation data for three-dimensional Navier-Stokes turbulence
in a periodic box are used to study the scaling behavior of low-order velocity structure functions
with positive and negative powers. Similar to high-order statistics, the low-order relative scaling
exponents exhibit unambiguous departures from the Kolmogorov 1941 theory and agree well with
existing multiscaling models. No transition from normal scaling to anomalous scaling is observed.
[S0031-9007(96)01548-7]
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The intermittency effect of small scale dynamics on flu
turbulence has been an important issue in turbulence s
tistics for many decades. A lot of effort has been invest
towards the understanding of the departure from Gau
ian statistics and the related anomalous scaling behav
of velocity structure functions. At very high Reynolds
numbers, Kolmogorov’s 1941 similarity theory (K41) [1
predicts a normal (or regular) scaling for moments of th
velocity increment in the inertial range:kjDur j

ql , rqy3

for L ¿ r ¿ h, where the longitudinal velocity incre-
ment is defined asDur  usx 1 rd 2 usxd, k?l denotes
an ensemble average, andL and h are, respectively, the
integral scale and the Kolmogorov dissipation scale. F
convenience, we have considered here the moments of
absolute values of velocity differences—called the “ge
eralized structure functions” to distinguish them from th
classical ones. The normal scaling has been challen
often, and the departure from K41 has been reported fr
both experiments and direct numerical simulations [2–4
A recent paper [5] used data from a high-resolution simu
tion and demonstrated the existence of intermittency c
rection to K41without invoking the Taylor’s hypothesis
used in real-life experiments.

It has been believed traditionally that the deviations fro
K41 tend to be more pronounced when the moment o
derq becomes large. This is because the non-Gaussia
is more conspicuous at the tails of the probability de
sity function (PDF) which make increasingly significan
contributions to higher order statistics. Thus, experimen
and simulations have focused on structure functions w
q $ 2, say. With the exception of Refs. [6] and [7], little
attention has been paid to the scaling of low-order stru
ture functions (q , 2, say). The preliminary experimenta
results of a water flow in a pipe in Ref. [6] showed that e
ponents for moment orders as low as 0.25 departed fr
K41. However, a detailed study connecting large amp
tude events with structure functions and scaling expone
has not yet been made.

For one-dimensional Burgers turbulence in the sm
viscosity limit, a bifractal structure of velocity due to the
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formation of shock structures leads to a normal scalin
for q , 1 and a constant scaling exponent forq $ 1 [8].
This bifractal scaling has also been reported for turbule
convection with a constant temperature gradient [9]. On
cannot, in principle, rule out a somewhat similar situatio
in three-dimensional turbulence at very high Reynold
numbers. It is therefore both interesting and useful
examine the nature of low-order scaling exponents.

In this Letter, we present an analysis using data from d
rect numerical simulations for a fully developed isotropi
turbulence to study low-order moments of velocity struc
ture functions and the relation between structure functio
exponents and the PDF. The particular questions we a
dress here are as follows: (1) Are there intermittency co
rections to the scaling of low-order structure functions
(2) Is there a transition from regular scaling at low orde
to anomalous scaling at high order? (3) What aspects
turbulence make major contributions to low-order structu
function statistics?

Direct numerical simulation of the Navier-Stokes equa
tions [10] was carried out with5123 mesh points in a
cyclic cubic box for homogeneous isotropic turbulence u
ing the CM-5 machine at Los Alamos and the SP ma
chines at IBM. The simulation domain wasf0, 2pg in
each direction. A nominal steady state was maintained
a forcing confined to wave numbersk , 3. The Taylor
microscalel  s15ny

2
0 yed1y2 and microscale Reynolds

numberRl ; y0lyn were controlled by varying the vis-
cosity of the system. Herey0 is the root-mean-square
value of a single vector component of velocity. The analy
sis was carried out for forced statistically steady states
Rl  218. A spatial averaging over the whole physica
space was used to replace the ensemble average. The s
rationr was taken along thex direction, and the PDFs and
statistics shown below were averaged over 1.5 large-ed
turnover times.

In the inset of Fig. 1, we present the generalize
structure functions

Sqsrd  kjDur j
ql , rzq , (1)
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FIG. 1. Velocity structure functionSqsrd for q  0.4 and 0.8
versusS3srd. The inset shows the velocity structure function
versusr. The symbols are direct numerical simulation result
and solid lines indicate slopes from the SL model.

with q  0.4 and 0.8. Here zq is the scaling exponent.
A power law range can be identified for0.2 # r # 0.8.
In Ref. [6], we have shown that the third-order structu
function in this region has the expected inertial rang
behavior [11]. The structure functions are compared w
a phenomenological multiscaling model proposed by S
and Leveque [12] (solid lines). To better calculate th
scaling exponents, in Fig. 1 we have utilized the so-call
extended scaling similarity (ESS) hypothesis advocat
by Benzi et al. [13], i.e., plotting Sqsrd against S3srd,
and identified the relative scaling exponent,zq. From our
previous experiences [5] and the current study, we belie
that the ESS works well for velocity structure function
in homogeneous turbulence—meaning that the relat
scaling shows a wider region than the direct scaling regi
shown in the inset. We have studied many instances
direct and relative scalings for different power indexe
[14], ranging fromq  20.8 to 12, and found the scaling
relations to be very similar to those presented in Fig. 1.

In Fig. 2 we have compared the ESS scaling expone
for 20.8 , q , 2 with predictions from K41, a lognor-
mal model by Kolmogorov (K62) [2] which giveszq 
qy3 1 qs3 2 qdmy18 where m  2y9 is the dissipa-
tion scaling exponent [15], and a log-Poisson model by S
and Leveque (SL) [12] which giveszq  qy9 1 2y3f1 2

s2y3dqy3g. To be more quantitative, we list here five sca
ing exponents from direct numerical simulations:z20.8 
20.32 6 0.01, z0.2  0.074 6 0.002, z0.4  0.150 6

0.002, z0.6  0.223 6 0.002, and z0.8  0.296 6 0.002.
For very smallq, zq should be a linear function ofq
following a Taylor expansion. The difference of the slop
of scaling exponents whenq ! 0 between K41 and SL
model (or K62) is about12% [3]. It is evident that the
scaling exponents deviate from K41 even for very sma
q, in favor of the intermittency models [2,12,16] for both
3800
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FIG. 2. Scaling exponents of structure functions as a functi
of the order indexq compared with various models.

positive and negative powers. Since the departure fro
K41 starts from very smallq and the relative scaling
exponents agree well with some intermittency mode
for q from 20.8 up to 8 [5], there is no evidence to
support a transition of scaling exponents and the bifrac
structure, in contrast to the case of Burgers equation
or pressureless turbulence [17].

As pointed out in [3], it is generally believed that th
PDF of the velocity increment has a Gaussian core f
small amplitude events and a stretched exponential sh
for the tail part. The intermittency effect presented
Fig. 2 for low-order moments may imply two possibilities
(1) the low-order moments have substantial contributio
from the high amplitude (tail) events; (2) the core part o
the PDFs is also sufficiently non-Gaussian. To shed lig
on these possibilities, we have enlarged in Fig. 3 the co
part PDF ofDur with the inset showing the whole PDF
While the deviation from the Gaussian is evident at th
tails, even the core part of the PDF displays departu
from Gaussianity. This departure may have significa
contributions to low-order statistics.

To probe this further, we define a cumulative structu
function,

Sqsr, fd 
Z f

2f

jf0jqPsf0d df0 , (2)

and the cumulation ratio

gqsfd 
Sqsr , fd

Sqsrd
, (3)

where f0  DurySrmssrd and Srmssrd  S2srd1y2 is the
root mean square for a given separationr; Psf0d is the
probability density function off0; and f is the bound
of truncatedf0 domain. The ratiogqsfd quantitatively
defines a cumulative contribution from events with am
plitude up tof for the qth-order structure function. In



VOLUME 77, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 28 OCTOBER 1996

nd
ss

g
to

s
es

o-
ts

is-

41.
ing

ntal
d
-
1
h
e
es

of
er-
e”
ed

h

FIG. 3. The core part of the PDF for velocity increment (solid
line) compared with Gaussian distribution (dotted line). Th
inset shows the whole distribution for the PDFs. All curves ar
normalized by the root mean square.

Fig. 4, we showgqsfd as a function off for a separa-
tion distance in the inertial range (r  0.29). For fixed
gqsfd, we see that the larger theq the larger thef, con-
sistent with the fact that the peak infqPsfd shifts to
larger values off for increasingly high-order moments.
We provide in the inset the complementary data onf [the
inverse function ofg in Eq. (3)] as a function ofq when
gqsfd  0.9.

The aspect just discussed has been made more spe
in Fig. 5 for the flatness and skewness of the velocity in
crement (r  0.29). The data are compared with those
of a Gaussian field. The departure from Gaussian stat

FIG. 4. The cumulation ratiogqsfd as a function off for
different q (from left to right): q  20.8, 20.5, 20.1, 0.1,
0.5, 1, 2, 4, 6, 8. The separation distancer  0.29 lies within
the inertial range. The inset showsf values corresponding to
the intersections of the curves by the horizontal line given b
gq  0.9.
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tics for the flatness starts fromf . 1, which might there-
fore usefully define the boundary between the core a
the tail of the PDF. Both the skewness and the flatne
converge to constants (3.6 and20.32, respectively) when
f . 4, consistent with the inset in Fig. 4. It is interestin
to note that the skewness has a crossover from positive
negative atf  2, indicating that the negative skewnes
basically comes from events of intermediate amplitud
between about 2 and 4 standard deviations.

In order to see the effects of the PDF on scaling exp
nents, in particular, on the variation of scaling exponen
with the variation of the upper bound,f, it is useful to
rewrite Eq. (1) aszqsrd  d ln Sqsrdyd ln r. We first note
that the scaling exponents represent arelative variationof
the structure function as a function of the separation d
tance. As in Eq. (2), we can now define theqth-order cu-
mulative scaling exponent as

zqsr, fd 
d ln Sqsr, fd

d ln r
.

In Fig. 6, we showzqsfd, the average ofzqsr, fd over
inertial range, as a function off for q  0.4, 2, and 8.
Two features in this plot are worth noting: First, forf .
1, the scaling exponents for all three cases are close to K
Second, all three cases converge to the SL multiscal
model whenf . 6. This result implies that—as far as the
scaling exponents are concerned—there is no fundame
difference in the relation between structure function an
the PDF of the velocity increment for high-order and low
order statistics. Note that the transition in Fig. 6 from K4
to the SL (or other) multiscale results is smooth, whic
seems to support the multifractal picture in which th
correction to anomalous scaling comes from all amplitud
with different fractal dimensions.

It is not often appreciated that the non-Gaussianity
PDF of velocity increments is related to the phase coh
ence among velocity mode in Fourier space (“structur
in real space): when a pseudovelocity field is generat

FIG. 5. The skewness and flatness factor as function off
for r  0.29 calculated from the data (bullets), compared wit
Gaussian values (solid lines).
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FIG. 6. Scaling exponentszqsfd versusf for q  0.4, 2, and
8 for truncated structure functions. The values for complet
structure functions from K41 and SL are also plotted fo
comparison.

by randomizing the phase for each mode (but not alterin
its amplitude), the resulting scaling exponents agree wi
K41. Although this result is not surprising, it confirms the
direct link of intermittency and anomalous scaling to rea
space structures [18].

To summarize, we have reported a study of low-orde
scaling for the direct numerical simulation data on isotropi
turbulence. The scaling exponents for low-order structu
functions clearly deviate from K41 but agree well with
existing multiscaling models. No transition from regula
scaling to anomalous scaling can be identified. The depe
dence of structure functions and scaling exponents on a
plitudes of the velocity increment are investigated. Whil
the low- and high-order structure functions have primar
contributions from small and large amplitude events, re
spectively, the scaling exponents for structure function
regardless of the power indexq, seems to have some con-
tribution from all events.
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