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A study is made of the scaling of the positive part (PP) and the negative part (NP) of vel
increments in turbulent pipe flow and in simulated homogeneous turbulence in a box. For mo
orders above unity, the moments of NP are larger than those of PP for all separation distances,
scaling exponents for PP are larger than those for NP. For moment orders below unity, the ab
value of the velocity increment and of NP, as well as PP, possess scaling exponents which vary l
with the moment orderq, though apparently greater thanqy3. [S0031-9007(96)00976-3]
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The velocity fluctuationusx; td in a turbulent flow is
a large scale feature and nonuniversal. Kolmogorov
introduced the so-called structure functions to study
versal properties. Specializing to the velocity compon
u in the directionx, one defines (for integerq) the struc-
ture functions as

Sqsrd ; kDuq
r l ; kfusx 1 rd 2 usxdgql . (1)

It is expected that the structure functions in the iner
range [2] scale as some power of the separation dist
r; that is, Sq , rzq . A great deal of attention has be
paid to the scaling exponentszq.

Far less attention has been paid to another impo
aspect of structure functions, namely their asymmetry
It was pointed out in Ref. [4] that the asymmetry is b
studied by means of the plus and minus structure funct

S6
q srd ­ k 1

2 fSqsrd 6 Sqsrdgql , (2)

whereq is real and

Sqsrd ; kjDur j
ql ; kjusx 1 rd 2 usxdjql (3)

have been called [5] the generalized structure functi
Obviously, 1

2 fjDur j 6 Dur g is non-negative and repr
sents, for the1 and 2 signs, respectively, the positiv
part and the absolute value of the negative part ofDur . It
was suggested in Ref. [4] that the plus and minus st
ture functions are basic to studying both classical and
eralized structure functions (as well as others define
Ref. [5]). On the basis of a ramp model for velocity
was proposed in Ref. [4] that the scaling exponents
high order (i.e., largeq) would be numerically larger fo
the plus structure functions than for the minus struc
functions, and that the latter would eventually domin
the true scaling. In particular, it was argued that for
generalized dimensions [5–7], the relation

D2
q , D1

q (4)

holds; here the6 signs correspond to plus and min
structure functions.
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In this Letter, we obtain the plus and minus structu
functions and show that, for all separation distancesr, the
minus structure functions are larger than the plus struct
functions forq . 1, but smaller forq , 1. We provide
tentative evidence that the plus structure functions poss
larger scaling exponents than the negative ones forq . 1.
The low-order generalized structure functions, as well
NP and PP, possess scaling exponents that vary line
with the moment orderq but are measurably larger tha
the classical value ofqy3 even forq as low as 0.25.

Measurements were made in a pipe flow of wa
at a bulk Reynolds numberUDyn ­ 230 000, where
U is the average velocity for the pipe cross secti
and D is the pipe diameter andn is the kinematic
viscosity coefficient. The pipe, constructed in cooperat
with D.P. Lathrop (now at Emory University), had
diameter of 30.5 cm and a working length of abo
27 m to allow for the flow to be fully developed
The probe was located on the pipe axis. The b
mean velocity was 0.70 mys. A boundary layer hot-film
probe (Dantec 55R15), operated on Dantec Stream
anemometer system, was used for velocity measureme
The time sequence was treated as a spatial cut by invo
Taylor’s hypothesis, and velocity increments over tim
intervals were assumed to be the same as those over s
increments. The Taylor microscalel was estimated from
the root-mean-square velocity fluctuationu0 and the mean
energy dissipation ratek´l to be 0.88 cm. The Taylor
microscale Reynolds numberRl ; u0lyn was 270. The
Kolmogorov microscaleh ­ sn3yk´ld1y4 was estimated
to be 0.27 mm. Two data files of4 3 106 points, sampled
at a frequency of 4096 Hz, were obtained and process
Moments up to order six converged well.

Simulations of homogeneous turbulence were made
solving the Navier-Stokes equations in a periodic box
dimension 5123 by using a pseudospectral code [8]. T
achieve statistically steady state, forcing was introduc
in the first two shells of Fourier modes for the wav
© 1996 The American Physical Society
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numberk , 2.5. The total energy of all modes in ea
of the first two shells was maintained constant in tim
Simulations were carried out for ten eddy turnover tim
The velocity initial conditions were prescribed to hav
Gaussian phase distribution with compact spectral sup
at low wave numbers. The microscale Reynolds num
Rl ­ 220. Taylor’s hypothesis was not necessary.

The microscale Reynolds number is only modera
large in both experiment and simulations, and a crit
question concerns the scaling range. A traditional wa
see for example, Ref. [9]—is to obtain the scaling reg
from the flat part ofkDu3

rlyr versusr [3]. Unfortunately,
it is not known if this procedure is valid exactly in th
presence of strong anisotropies such as occur [10] in
flows, or if some nontrivial correction is needed [11]. W
have examined the extent of scaling in the energy spe
density, considered the so-called extended scale simi
(ESS) [12], and the notion of relative scaling [13] a
in general, the sensitivity of the results to the sca
region used.

Figure 1 shows a plot of the compensated spe
density for the velocity data from the experiment;
accordance with Taylor’s hypothesis, spectral frequenc
treated as wave number. Scaling exists over a deca
so. We shall indicate this as theK range. Figure 2 plot
the ratio kDu3

rlyr againstr for both the experiment an
simulations. The two flows are at comparable Reyn
numbers, yet the scaling region (to be called theR
range) is substantially smaller for the experiment than
simulations; it is definitely smaller than theK range. The
cutoff at the small-scale end is roughly the same in
cases, but theR range in the homogeneous simulat
as well as theK range in the experiment extend
much larger scales (or lower frequencies) than d
the experimentalR range. That the scaling in on
ur
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FIG. 1. The spectral density ofu multiplied by f5y3, wheref
is the frequency, plotted to show the flat region. Scaling occ
over a decade (theK range). There is no perceptible differen
even when a power-law exponent slightly different from 5y3 is
used to compensate for the frequency rolloff.
.
.

rt
r

y
l

e

al
ty
,

al

is
or

s

r

dimensional longitudinal spectrum extends to sma
wave numbers than one should expect has been disc
in Monin and Yaglom [14], p. 357, but it has n
been noted before that different manners of forcing
consequent anisotropies can change the extent o
scaling so drastically. This matter will be discuss
elsewhere in more detail. We have examinedmany
structure function plots and consistently used least-sq
fits to the R range of Fig. 2 to obtain the numbers
be quoted below, and verified that therelative trends are
robust even for theK range as well as for the ESS metho

One noteworthy feature of the plus/minus struct
functions is shown in Fig. 3, which plots the logarith
of the ratio S2

q yS1
q against log10 r for various values

of q. It can be seen readily that the ratioS2
q yS1

q is
greater than unity for allr , L wheneverq . 1 and
smaller than unity wheneverq , 1. Here L is the so-
called integral scale of turbulence characteristic of
large scale turbulence. By definition, the ratio should
exactly unity forq ­ 1. For one-dimensional data su
as those considered here, it follows from the definition
generalized dimensionsDq that the ratio of the minus t
plus structure functions scales as

sryLdsq21dsD2
q 2D1

q d.

For consistency with the observation thatS2
q yS1

q is
greater than unity forq . 1 and less forq , 1, one
should have

D2
q , D1

q

ll

s

s

FIG. 2. The quantitykDu3
r lyr as a function ofr. Squares

experiment; circles, simulations; dots indicate Kolmogoro
4
5 th law. It is believed that the slight bump in the le
part of the experimental data is the bottleneck effect [see
Falkovich, Phys. Fluids6, 1411 (1994); D. Lohse and A
Mueller-Groeling, Phys. Rev. Lett.74, 1747 (1995)]. While
the bottleneck effects discussed in these two papers
especially to second-order structure functions (or to en
spectrum), a similar effect is likely to exist for the third-order
well. This is typical of most measurements [see, for exam
Y. Gagne, Docteur ès-Sciences Physiques Thèse, Univers
Grenoble, France (1987)].
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FIG. 3. The ratioS2
q yS1

q plotted againstr in log-log coordi-
nates. Note that the ratio is less than unity for allr whenq , 1
and greater than unity whenq . 1. As argued in the text, thi
is consistent with ramplike structures in the velocity trace. T
bump in high-order moments is weaker for simulations data

for all r, which is precisely Eq. (4) inferred for the ram
model. This does not appear to be a coincidence.
physical interpretation ofDu1

r is that it corresponds t
regions of acceleration whileDu2

r corresponds to region
of deceleration, just as for the long and short legs of
ramp structure, respectively.

A second point to note is that all curves forq . 1
show, by and large, a decreasing trend with increa
r. If there were power laws to these curves, one m
conclude that the scaling exponents for the plus struc
functions are larger than for the minus structure functio
It is difficult to quantify this feature because of th
uncertainty in identifying the scaling region precise
Some additional information can be had by plotting
ratiosSqyS

qy2
2 , S1

q yS
qy2
2 , andS2

q yS
qy2
2 against logr. This

is shown in Fig. 4 forq ­ 4. The scaling region in eac
of these plots is somewhat different. However, if we
those regions, we note that the minus exponent is alm
identically equal to that for the full structure functio
whereas the plus exponent is larger than the m
exponent. Simulations data confirm this observa
qualitatively.
1490
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FIG. 4. The logarithm of the ratiosS4yS2
2 , S2

4 yS2
2 , andS1

4 yS2
2

plotted against logr. These ratios appear to scale, albeit
different ranges ofr. From top to bottom, the slopes of th
straight line fits and the least square errors are, respecti
20.099 6 0.003, 20.098 6 0.004, and20.070 6 0.002. This
shows that the plus exponent is larger than the minus expo

This conclusion is also apparent in the ESS plo
here, one plots theqth order structure function again
the third-order structure function and determines sca
exponents. Our experience is that ESS in this fo
does not work to well for the pipe flow, consiste
with our previous experience in another shear fl
[15]. However, if the third-order structure function
replaced by the generalized third-order structure func
(following Ref. [12]), there is much more convincin
scaling, for which the plus exponent is, as alrea
noted, larger than the minus exponent. Numerical d
are in agreement. We have refrained from giving
precise exponents because the latter procedure cann
justified easily. It would be most desirable to confir
these conclusions at higher Reynolds numbers.
atmospheric data available to us (Rl ø 2000, see [15]),
for which the convergence is reasonably satisfactory
the fourth order, corroborate the basic conclusion.

The results so far suggest that there is a basic differe
between the plus and minus parts of the velocity inc
ments. The Kolmogorov law is an expression of part
this fundamental difference. The negative part becom
more dominant with the moment order and overwhe
the positive part asymptotically. Two related pieces
evidence presented in earlier work are worth recalli
(a) The odd exponents of high-order structure functi
consistently lie above a smooth curve that can be dr
through even-order exponents [15]; in particular, they
different for the classical and generalized structure fu
tions (Table I, Ref. [4]). (b) The ratiojkDun

r ljykjDur j
nl

is comparable to unity for large oddn (Table II, Ref. [4]).
Whether the emphasis on these differences will lead us
better theoretical understanding of inertial scaling rema
to be seen.
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FIG. 5. (a) Low-order scaling exponents for generalized str
ture functions compared withqy3 as well as with outcomes o
the intermittency models of [19] and [21]. The inset shows
scaling of the generalized structure function of order 0.5. T
full line is for the model of Ref. [21]. (b) Comparison of th
plus and minus exponents with those of generalized struc
functions.

As already remarked, the present work reveals so
correspondence with the ramp model for the veloc
and draws attention to a change in behavior of
structure functionsat q ­ 1. This naturally suggests
potential connection to the work recently carried out
randomly forced Burger’s equation [16], for turbulen
without pressure [17], and for passive scalars adve
by a rapidly varying velocity field [18]; these pape
show that the scaling exponents transition from a reg
behavior for small q to an anomalous behavior fo
large q. While there have been many measurements
exponents for largeq, no such measurements exist f
low q below unity. Here, we have obtained low-ord
scaling exponents (q as low as 0.25) forSqsrd as well as
the positive and negative structure functions. Figure 5
shows the simulations data. The inset is an example o
plots from which these exponents have been determi
Both experiment and simulations yield nearly identi
results. The exponents vary linearly withq for low-
order moments, but are measurably different fromqy3
expected from Kolmogorov’s universality [1]. Instea
they agree well with the refined similarity hypothesis [1
if one takes a value of 0.25 for the intermittency expon
[20], and with the intermittency model of Ref. [21]. I
the limit q ! 0, the intermittency models just consider
yield exponents about 10% different fromqy3.
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The fact that some intermittency models agree with m
sured exponents forq both below and above unity sugges
that theexponentspossess no transitional behavior env
aged in Refs. [16–18]. This is so even though the p
and minus structure functions themselves show a cha
in behavior atq ­ 1 (see Fig. 3). Figure 5(b) shows th
the exponents for the generalized structure functions
not too different from those for the plus and minus stru
ture functions (although, in general, the minus expone
are the largest and the plus exponents are the smalles
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