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A study is made of the scaling of the positive part (PP) and the negative part (NP) of velocity
increments in turbulent pipe flow and in simulated homogeneous turbulence in a box. For moment
orders above unity, the moments of NP are larger than those of PP for all separation distances, and the
scaling exponents for PP are larger than those for NP. For moment orders below unity, the absolute
value of the velocity increment and of NP, as well as PP, possess scaling exponents which vary linearly
with the moment ordeq, though apparently greater thar3. [S0031-9007(96)00976-3]

PACS numbers: 47.27.Ak, 47.27.Jv

The velocity fluctuationu(x;t) in a turbulent flow is In this Letter, we obtain the plus and minus structure
a large scale feature and nonuniversal. Kolmogorov [1functions and show that, for all separation distangedke
introduced the so-called structure functions to study uniminus structure functions are larger than the plus structure
versal properties. Specializing to the velocity componenfunctions forg > 1, but smaller forg < 1. We provide
u in the directionx, one defines (for integag) the struc- tentative evidence that the plus structure functions possess

ture functions as larger scaling exponents than the negative onesg for 1.
The low-order generalized structure functions, as well as

= q = —_ q . ! .
Sq(r) = (Auf) = {ulx + r) —u@]). (1) \p'and pp, possess scaling exponents that vary linearly

It is expected that the structure functions in the inertialyith the moment ordeq but are measurably larger than
range [2] scale as some power of the separation distangge classical value af/3 even forq as low as 0.25.
r; that is, S, ~ ré. A great deal of attention has been Measurements were made in a pipe flow of water
paid to the scaling exponenss. at a bulk Reynolds numbet/D/v = 230000, where
Far less attention has been pald to another importar[y is the average Ve|ocity for the p|pe Cross section
aspect of structure functions, namely their asymmetry [3]and D is the pipe diameter and is the kinematic
It was pointed out in Ref. [4] that the asymmetry is bestyjscosity coefficient. The pipe, constructed in cooperation
studied by means of the plus and minus structure functiongith D.P. Lathrop (now at Emory University), had a
S;(}") — <%[§q(r) + 5,(r]9). ) diameter of 30.5 cm and a working length of about
27 m to allow for the flow to be fully developed.
The probe was located on the pipe axis. The bulk
S,(r) = (JAu, %) = (lulx + r) — u(x)|%) (3) mean velocity was 0.70 fis. A boundary layer hot-film

have been called [5] the generalized structure functionsc.)rObe (Dantec 55R15), operated on Dgntec Streamline
. 1 . . anemometer system, was used for velocity measurements.
Obviously, 5[|Au,| = Au,] is non-negative and repre-

sents, for the+ and — signs, respectively, the positive The time sequence was treated as a spatial cut by invoking

part and the absolute value of the negative patof. It Taylor's hypothesis, and velocity increments over time

was suggested in Ref. [4] that the plus and minus S,[ruci_ntervals were assumed to be the same as those over space
99 . e p . increments. The Taylor microscalewas estimated from
ture functions are basic to studying both classical and ge

eralized structure functions (as well as others defined ir{_he root-mean-square velocity fluctuatiahand the mean
r(lznergy dissipation ratés) to be 0.88 cm. The Taylor

Ref. [5]). On the basis of a ramp model for velocity, it . _
was proposed in Ref. [4] that the scaling exponents Oplcroscale ReY”O'dS numERrA : “ Al//f was 270_' The
high order (i.e., large) would be numerically larger for Klmogorov microscalen = (»° /(&))" was estimated

the plus structure functions than for the minus structurdo be 0.27 mm. Two data files éfx 10° points, sampled
functions, and that the latter would eventually dominateat a frequency of 4096 Hz, were obtained and processed.
the true scaling. In particular, it was argued that for theMoments up to order six converged well.

whereqis real and

generalized dimensions [5—7], the relation Si_mulations of homogeneous Furbu!ence were made by
B N solving the Navier-Stokes equations in a periodic box of
D, <D, (4)  dimension 513 by using a pseudospectral code [8]. To
holds; here thet+ signs correspond to plus and minus achieve statistically steady state, forcing was introduced
structure functions. in the first two shells of Fourier modes for the wave
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numberk < 2.5. The total energy of all modes in each dimensional longitudinal spectrum extends to smaller
of the first two shells was maintained constant in timewave numbers than one should expect has been discussed
Simulations were carried out for ten eddy turnover timesin Monin and Yaglom [14], p. 357, but it has not
The velocity initial conditions were prescribed to have abeen noted before that different manners of forcing and
Gaussian phase distribution with compact spectral suppodonsequent anisotropies can change the extent of the
at low wave numbers. The microscale Reynolds numbescaling so drastically. This matter will be discussed
R, = 220. Taylor's hypothesis was not necessary. elsewhere in more detail. We have examinetiny
The microscale Reynolds number is only moderatelystructure function plots and consistently used least-square
large in both experiment and simulations, and a criticafits to the R range of Fig. 2 to obtain the numbers to
question concerns the scaling range. A traditional way—be quoted below, and verified that thaative trends are
see for example, Ref. [9]—is to obtain the scaling regiornrobust even for th& range as well as for the ESS method.
from the flat part okAwu>)/r versusr [3]. Unfortunately, One noteworthy feature of the plus/minus structure
it is not known if this procedure is valid exactly in the functions is shown in Fig. 3, which plots the logarithm
presence of strong anisotropies such as occur [10] in pipef the ratio S, /S, against log, r for various values
flows, or if some nontrivial correction is needed [11]. Weof g. It can be seen readily that the ratlfy /S, is
have examined the extent of scaling in the energy spectrgreater than unity for al- < L wheneverg > 1 and
density, considered the so-called extended scale similaritgmaller than unity whenevey < 1. Herel is the so-
(ESS) [12], and the notion of relative scaling [13] and,called integral scale of turbulence characteristic of the
in general, the sensitivity of the results to the scaling|arge scale turbulence. By definition, the ratio should be
region used. exactly unity for¢ = 1. For one-dimensional data such
Figure 1 shows a plot of the compensated spectrads those considered here, it follows from the definition of
density for the velocity data from the experiment; ingeneralized dimension®, that the ratio of the minus to
accordance with Taylor’s hypothesis, spectral frequency iglus structure functions scales as
treated as wave number. Scaling exists over a decade or (r /L)~ =Dy,
so. We shall indicate this as tiferange. Figure 2 plots
the ratio(Awu’)/r againstr for both the experiment and
simulations. The two flows are at comparable Reynold
numbers, yet the scaling region (to be called tRe
range) is substantially smaller for the experiment than for D, < Dq+
simulations; it is definitely smaller than tierange. The

For consistency with the observation thaf /Sq+ is
greater than unity forg > 1 and less forq < 1, one
should have

cutoff at the small-scale end is roughly the same in all 0.9 - r ]
cases, but thdk range in the homogeneous simulation - .
as well as theK range in the experiment extend to [ ]
much larger scales (or lower frequencies) than does 08 |- lijemm - 0. 0. 8.0 4 .
the experimentalR range. That the scaling in one- _ i ] ’
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bl FIG. 2. The quantit{Au?)/r as a function ofr. Squares,
experiment; circles, simulations; dots indicate Kolmogorov's
%th law. It is believed that the slight bump in the left
1075 - -z part of the experimental data is the bottleneck effect [see G.
10 10 10 Falkovich, Phys. Fluidss, 1411 (1994); D. Lohse and A.
frequency, f in Hz Mueller-Groeling, Phys. Rev. Let?4, 1747 (1995)]. While

the bottleneck effects discussed in these two papers refer
FIG. 1. The spectral density af multiplied by /3, wheref especially to second-order structure functions (or to energy
is the frequency, plotted to show the flat region. Scaling occurspectrum), a similar effect is likely to exist for the third-order as
over a decade (thk range). There is no perceptible difference well. This is typical of most measurements [see, for example,
even when a power-law exponent slightly different frof83s Y. Gagne, Docteur és-Sciences Physiques Thése, Université de
used to compensate for the frequency rolloff. Grenoble, France (1987)].
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0.2r FIG. 4. The logarithm of the ratioS,/S3, Si /S3, andSs /S5
l0g.(Ss7/Ss") plotted against log These ratios appear to scale, albeit in
r different ranges of. From top to bottom, the slopes of the
straight line fits and the least square errors are, respectively,
log(S:/S:") 7 —0.099 = 0.003, —0.098 = 0.004, and—0.070 = 0.002. This
shows that the plus exponent is larger than the minus exponent.
P o -oo - puwwTETy . . . .
0.0 ————— :__ __: g s atas gy This conclusion is also apparent in the ESS plots;

------------------------------- here, one plots theth order structure function against
06 08 10 12 1.4 16 18 2.0 the third-order structure functi(_)n and determines_scaling
log.o(r) exponents. Our experience is that ESS in this form

does not work to well for the pipe flow, consistent

FIG. 3. The ratioS, /S, plotted against in log-log coordi- ~ with our previous experience in another shear flow
nates. Note that the ratio is less than unity foraltheng <1  [15]. However, if the third-order structure function is

and greater than unity when> 1. As argued in the text, this ohlaced by the generalized third-order structure function
is consistent with ramplike structures in the velocity trace. The

bump in high-order moments is weaker for simulations data. (ollowing Ref. [12]), there is much more convincing
scaling, for which the plus exponent is, as already

noted, larger than the minus exponent. Numerical data

are in agreement. We have refrained from giving the
for all r, which is precisely Eq. (4) inferred for the ramp precise exponents because the latter procedure cannot be
model. This does not appear to be a coincidence. Thgystified easily. It would be most desirable to confirm
physical interpretation ofAu," is that it corresponds t0 these conclusions at higher Reynolds numbers. The
regions of acceleration whil&u," corresponds to regions atmospheric data available to ug,(= 2000, see [15]),
of deceleration, just as for the long and short legs of thgor which the convergence is reasonably satisfactory for
ramp structure, respectively. the fourth order, corroborate the basic conclusion.

A second point to note is that all curves fgr> 1 The results so far suggest that there is a basic difference
show, by and large, a decreasing trend with increasingetween the plus and minus parts of the velocity incre-
r. If there were power laws to these curves, one maynents. The Kolmogorov law is an expression of part of
conclude that the scaling exponents for the plus structurghjs fundamental difference. The negative part becomes
functions are larger than for the minus structure functionsmore dominant with the moment order and overwhelms
It is difficult to quantify this feature because of the the positive part asymptotically. Two related pieces of
uncertainty in identifying the scaling region precisely. evidence presented in earlier work are worth recalling:
Some additig)nal inforzmation can tz)e had by plotting the(a) The odd exponents of high-order structure functions
ratiosSq/Sg/ , S;/Sg/ , andSq‘/Sg/ against log. This  consistently lie above a smooth curve that can be drawn
is shown in Fig. 4 fory = 4. The scaling region in each through even-order exponents [15]; in particular, they are
of these plots is somewhat different. However, if we usdlifferent for the classical and generalized structure func-
those regions, we note that the minus exponent is almosions (Table |, Ref. [4]). (b) The ratiXAu”)|/{|Au,|")
identically equal to that for the full structure function, is comparable to unity for large odd(Table Il, Ref. [4]).
whereas the plus exponent is larger than the minusVhether the emphasis on these differences will lead us to a
exponent. Simulations data confirm this observatiorbetter theoretical understanding of inertial scaling remains
qualitatively. to be seen.
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0.6 Tt The fact that some intermittency models agree with mea-
[ sured exponents fayboth below and above unity suggests
that theexponentgossess no transitional behavior envis-
aged in Refs. [16—18]. This is so even though the plus

and minus structure functions themselves show a change
| in behavior aly = 1 (see Fig. 3). Figure 5(b) shows that
M

® experiment
o DNS

- —— Ka1
04F sl

the exponents for the generalized structure functions are
. not too different from those for the plus and minus struc-
E 1 ture functions (although, in general, the minus exponents
] 002 00501 02 05 1 2] are the largest and the plus exponents are the smallest).
0 —_— We have benefited enormously from discussions with

L o el b) s ] Vadim Borue, Leo Kadanoff, Robert Kraichnan, Mark
+ plus part 4 Nelkin, Evgeny Novikov, Sasha Polyakov, Gustavo
o[ O mnuepat # ] Stolovitzky, Akiva Yaglom, and Victor Yakhot. The
T 8 1 work was supported by the Air Force Office of Scientific
N r 1 Research, and K.R.S. was supported at the Institute for
I ] Advanced Study by the Sloan Foundation.
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