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Properties of velocity circulation in three-dimensional turbulence are studied using data from high-
resolution direct numerical simulation of Navier-Stokes equations. The probability density function
(PDF) of the circulation depends on the area of the closed contour for which circulation is calculated,
but not on the shape of the contour. For contours lying within the inertial range, the PDF has a
Gaussian core with conspicuous exponential tails, indicating that intermittency plays an important role
in circulation statistics. The measured scaling exponents are anomalous and substantially smaller than
those implied by Kolmogorov's phenomenology.

PACS numbers: 47.27.Gs, 47.27.Ak, 47.27.Eq

Motivated principally by the phenomenological picture Kolmogorov’'s arguments, namely,
proposed by Kolmogorov [1,2], the scaling properties o 2n/3 an/3
of quantities such as velocity increments and locally (Ta)) ~ A T (2)
averaged dissipation in three-dimensional turbulence havghere we have used a square contour with= 2. (In
been studied extensively (e.g., [3—6]). Much effort hashis situation, one may refer 5, also asl’, without am-
been devoted to the understanding of the fundamentaiguity.) However, the experimentally measured [8] scal-
physics associated with the scaling behavior. On the othéng exponents ofl’, are substantially smaller than this
hand, vorticity-related quantities such as circulation havgghenomenological result. Sreenivasan, Junega, and Suri
not attracted much attention until very recently [7—9].argued that the discrepancy could be attributed to the domi-
In this Letter, we study various properties of circulation,nant effect of the mean shear on vorticity characteristics
with emphasis on scaling, using velocity data from high-at the low Reynolds number of the experimeR}, (= 40
resolution direct numerical simulation of Navier-Stokes[15]). They also argued that the circulation scaling can

equations in a periodic box [10]. be related to the transverse velocity scaling: the latter at-
The circulation,I’s, of the velocity fieldv, around a tains its asymptotic value in shear flows only at a very high
closed contour surrounding an atégis defined as Reynolds numberR, of the order of 1000; see [16]). To
see in a different way how deviations might arise from Kol-
L= jg" dt = ]A‘” " ndA. (1) mogorov scaling, assume that the loop integration is car-

. ried out along a square box in theY plane with ared =
HerendA is an element of an open surface bounded by12. The coordinates of the four corners of the box(@re@),

the closed curve, the vorticity = V X v, and the second ) .
equality in Eq. (1) follows from Stokes theorem. Using the(l’ 0). (l’. D, aqd(o, D). The C|r§:ulat|on around the loop can
be easily written asd'y = [ [va(l,y) — v2(0,y)]dy —

loop equation, Migdal [7] pointed out that the probability *;

density function (PDF) of’4 allows a scaling solution in  Jolvi(x, 1) = vi(x,0)]dx, where v, (x, /) represents the

the variablel'} /A2 [11], whereA is the minimal area of x-direction velocity alo'ng' the top bpundary Qf the box and

the surfaces enclosed by the loop. Sifdgeis a local other symbols _have similar meanings. This formula can

average of the vorticity field, Migdal [7] and Sreenivasan,b€ rewritten using the mean value theorem as

Juneja, and Suri [8] invoked the law of large numbersp, _ ® 1 * 7y *

[12] to suggest that the PDF of circulation should be cIoseFA o2ty = w20050] = 1 6. D) = il O()?]’)

to Gaussian ifA is large enough, such as in the inertial

range [13]. Further, Sreenivasan, Junega, and Suri [8] usedherex™ andy™* are some middle points with = x* =< [

the velocity data in a plane of a low-Reynolds-numberand0 = y* = [. We notice that the same valuexdf(y*)

turbulent wake, obtained by particle image velocimetry,on the upper and lower (left and right) sides of the box

and showed that the PDF was nearly Gaussian, though noan be assured by the theorem. vif(l, y*) — v,(0,y")

exactly so. Numerical simulation data at low Reynoldsandv,(x*,1) — v;(x*,0) scale as in Kolmogorov's theory

numbers have confirmed the approximate Gaussianity dfi], Eq. (2) is essentially exact. However, as we can see

the PDF [14]. from the procedure just discussed the statistics on points
If the circulation is distributed exactly as a Gaussianx™ andy™ are only a subset of the original field. Moments

its scaling should be close enough to that implied byof I'4 in Eq. (3) are equivalent to conditional statistics of
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the transverse velocity difference on a given local mean. L e M L e B B
Since this mean varies in space, it does not follow that the : ]
conditional statistics should have the same scaling as the -
original field. 0.1
The present research is related directly to that of
Refs. [7,8]. Our goal is to study the properties of circu-
lation using data from three-dimensional direct numerical
simulation of isotropic turbulence. The improvements
over the previous studies are the precise control of isotropy
(and absence of shear) and the higher Reynolds number 0.001
than was possible in Ref. [8]. Our major results are as
follows: (i) The PDF of circulation depends solely on

0.01 A=8x128
A=16x64
A=32x32

Gaussian
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the magnitude of area around closed contours, with little 0.0001
dependence on whether the area is a square or a rectangle 4 2 02 ” 2 4
(i) The form of PDF varies as a function of magnitude of F/<Ty>

area, and has significant exponential tails in the inertiafg, 1. Normalized PDFs of'y when A = 1024 (in lattice
range. These tails can be fitted by a stretched exponentiahits) for different aspect ratios of rectangular contols,=
with the exponent nearly equal to unity for small areas and81.32 lattice units correspond to = 0.785.

to 2 for large areas. The form of the PDF varies also with

R,. (iii) The inertial-range scaling of circulation is anoma- . -
- (i) g g ‘?&m Gaussian more clearly, we have plotted in Fig. 2 the
I

lous and the exponents are smaller than those estimat f circulation (f ¢ ; f
using Kolmogorov scaling [1]. In fact, circulation appears atness of circulation (for square contours) as a function o
the linear scale for R, = 101 and216. The flatness tends

to be more strongly affected by intermittency than veloc—t the G ) | v wh hes the int |
ity increments, and thus shows a new class of anomaly. ‘© € ©>aussian vaiue only wherapproaches the integra

Direct numerical simulation of the Navier-Stokes equa_scale, and is substantially larger than 3 in the inertial range
[18] (0.2 = r = 0.8 wherer = 2 corresponds to the box

tions with normal viscosity [10] was carried out with .
256 and 5123 mesh points on the CM-5 machine at Los length). _For. comparison, we also plot t_he flatnesa of .
the longitudinal velocity increment (with the separation

Alamos and the SP machines at IBM. To obtain a steady,. 11
istancer matched toA'/?). Flatness ofl", appears to

state, a low mode forcing schemke € 3) was used [17]. ;
g € 3) [17] be larger than that ohu, over a considerable range of

The Reynolds number was controlled by varying the vis- - =9 X : .
indicating that the former is actually more intermittent than

cosity of the system. Analysis was carried out for statis he | Th . 4 for the | R d
tically steady states &, = 101, 181, and216. The first (he latter. There is some tendency for the lower Reynolds

number data to be closer to Gaussian, roughly consistent

two Reynolds numbers were obtained usg? lattices, : .
y with the observations of Refs. [8,14].

and the highest Reynolds number was obtained it
mesh points. Circulation was calculated according to the
second equality in Eqg. (1). For simplicity, only surfaces
parallel to axes were used. Statistical average was taken
over the whole simulation space and along all directions.
The PDFs of circulation were also computed using loop 8
integration in Eqg. (1), and excellent confirmation of the

10 LI N B R L | T T

0.8

06
04fF

02k

correlation coefficient

T 1 ] LN I l LELELEL I T 1T 1 7
pa
' TR R A B SR B A A AT

area-integral results was obtained. 0

One fundamental assumption in Migdal's paper is that ¢ 6 o2
the statistics of circulation along a loop depend only on 2 N a 002 005 01 02 08 1 2
the minimum area surrounded by the loop. To verify this & . . o 1 0o
area rule, we have calculated the PDF of circulation along ® 0004880000 5,
rectangles with different aspect ratios but with the same L esmr-20 ol dad
area. One set of these PDFs (8§ = 181) is shown 2 F © au, Ry=101 3
in Fig. 1 with both sides of each rectangle lying within [ LRkt ]

the inertial range. It is clear that the area rule is a good
approximation. One may argue that the rule applies in the
inertial range because of universality of that scale range, 005 01 02 0.5 1 2

but it holds empirically even when, and/orr, spill over '

to the dissipation range as well. These results are nd'_ﬂG. 2. Flatness of pirculation and the longitudinal velocity
shown here. increment as a function of for R, = 101 and 216. Both

. . cjrculation and the velocity increment show intermittency
Figure 1 S_hOWS that the PDFs have Ge}usglan core b% ects in the inertial range. The inset shows the correlation
stretched tails. Departures from Gaussianity were nogoefficient of vorticity and velocity derivative as a function of

ruled out in Migdal's analysis [7]. To quantify departures . In these unitsy = 27 is the box length.
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The non-Gaussianity of the PDFsIof andAu, is prob-  of r, wherea = 2 corresponds to a Gaussian distribution.
ably related to the intermittency of vortex structures andThe qualitative variation oP(I',) with r is similar to that
energy dissipation in three-dimensional turbulence. Thi®f P(Au,) [17,21]. On the other hand, the skewness of
is not difficult to understand given thdt, and Au, are I', appears to be smaller than thatfd,.
local averages of vorticity and pseudodissipation, respec- Since the PDF of', is non-Gaussian, one may expect an
tively [19]. Direct visualization [20] of three-dimensional anomalous scaling df,. To display the scaling behavior
vorticity and dissipation fields of high amplitude showsof I',, we have plotted the momentk”) for n = 2 and
that the vorticity field is more intermittent than the dissi-4 at Ry = 216 as a function of- in Fig. 4, both of which
pation field, consistent with the flatness data just discussedisplay nice power laws in the inertial range, as in Ref. [8].

The basic argument for the Gaussianity of the circu-The local scaling exponents for the two Reynolds numbers
lation PDF is the law of large numbers, one of whoseare presented in the inset to Fig. 4. They are constants
requirements is the independence among the random vatb a better approximation at the higher Reynolds number.
ables being summed. The vorticity field in three dimen-In the inertial range, it appears that scaling exponents at
sions shows very rich structures, some of them in thehe higherR, are somewhat higher, but this increase is not
form of tubes with lengths often comparable to the integrakignificant. It is thus generally in support of the claim that
scale. This leads to the decorrelation length comparablhe smaller exponent values observed in Ref. [8] might be
to the inertial range scale. To quantify this, we have plotprincipally due to shear effects.
ted in the inset to Fig. 2 the autocorrelation coefficients In Fig. 5 we present the scaling exponent for circula-
for vorticity componentw, and the longitudinal veloc- tion, A, as a function of power index. Here the scaling
ity derivative(du/dx), both forR, = 216. For vorticity, ~ exponent is defined throughl"4|") ~ A*/2 ~ yA. The
Co, = (w: (Y (y + 1r))/(wy)2,, With separationinthe other two symbols correspond to results from Refs. [1,2],
transverse direction; for the velocity derivative, the sepathe latter with the present estimate of the intermittency ex-
ration is along the longitudinal direction, i.eCy,/0x =  ponentu = 2/9 (see also Ref. [22]), assuming that the
((ou/ax(x)][ou/ox(x + r)])/(du/dx)%,,. Although the circulation scaling can be related by Eq. (2) to that of the
correlation is negligible inside the inertial range, the decorvelocity increments. The scaling exponents are smaller
relation length is comparable with, at least not substantiallghan those obtained on the basis of Ref. [2]. The discrep-
smaller than, the inertial-range scales. Therefore, the agncy between simulation and phenomenological models
gument of Gaussianity based on the law of large numbernsicreases aa increases. This might reflect real physi-
is questionable in the inertial range, due to the fact that theal difference between the original field and the condi-
circulationI'y consists of vorticity with all the scales up to tional statistics of a field, as discussed above. On the other
r= A2 hand, since the Reynolds numbers in numerical simula-

The PDFs ofl’, with R, = 216 at three typical scales tions are not as large as one would desire, one cannot ex-
in dissipation, inertial, and integral scale regions are givertiude the possibility that the present exponents are not in
in Fig. 3. The tails of the PDF are fitted to the stretchedthe asymptotic region and that intermittency models may
exponential of the formP(I',) = Aexp(—BI'¢), and the predict the scaling exponents well for circulation at very
stretching exponent is plotted in the inset as a function large Reynolds number.

We thank D. Martinez, A.A. Migdal, Z.-S. She, and
L.-P. Wang for useful discussions. Part of this work
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FIG. 3. Normalized PDFs off, at R, = 216 for A = r2 0.02 005 01 02 05 1 2

(square loop in lattice units) for = 4 (dissipation),r = 16 r

(inertial), andr = 84 (integral), corresponding te = 0.049, FIG. 4. Second- and fourth-order moment of circulation as a
0.196, and1.031, respectively. The inset shows the stretchingfunction of r, for Ry = 216. The inset shows local scaling
exponent for the tails of the PDF as a functionrof exponents of circulation foR, = 216 and101.
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FIG. 5. Scaling exponent for circulation as a function of the

moment orderp, compared with K41 and K62, the latter with

intermittency exponentw = 2/9, calculated from the same

numerical data as Fig. 4. Typical error bars are shown for th
ninth and tenth order momentd.] are experimental data from

Ref. [8].
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