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Properties of Velocity Circulation in Three-Dimensional Turbulence
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Properties of velocity circulation in three-dimensional turbulence are studied using data from high-
resolution direct numerical simulation of Navier-Stokes equations. The probability density function
(PDF) of the circulation depends on the area of the closed contour for which circulation is calculated,
but not on the shape of the contour. For contours lying within the inertial range, the PDF has a
Gaussian core with conspicuous exponential tails, indicating that intermittency plays an important role
in circulation statistics. The measured scaling exponents are anomalous and substantially smaller than
those implied by Kolmogorov’s phenomenology.

PACS numbers: 47.27.Gs, 47.27.Ak, 47.27.Eq
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Motivated principally by the phenomenological pictu
proposed by Kolmogorov [1,2], the scaling properti
of quantities such as velocity increments and loca
averaged dissipation in three-dimensional turbulence h
been studied extensively (e.g., [3–6]). Much effort h
been devoted to the understanding of the fundame
physics associated with the scaling behavior. On the o
hand, vorticity-related quantities such as circulation ha
not attracted much attention until very recently [7–9
In this Letter, we study various properties of circulatio
with emphasis on scaling, using velocity data from hig
resolution direct numerical simulation of Navier-Stok
equations in a periodic box [10].

The circulation,GA, of the velocity fieldv, around a
closed contour surrounding an areaA, is defined as

GA ­
I

v ? d, ­
Z

A
v ? ndA . (1)

Here ndA is an element of an open surface bounded
the closed curve, the vorticityv ­ === 3 v , and the second
equality in Eq. (1) follows from Stokes theorem. Using t
loop equation, Migdal [7] pointed out that the probabili
density function (PDF) ofGA allows a scaling solution in
the variableG

3
AyA2 [11], whereA is the minimal area of

the surfaces enclosed by the loop. SinceGA is a local
average of the vorticity field, Migdal [7] and Sreenivasa
Juneja, and Suri [8] invoked the law of large numbe
[12] to suggest that the PDF of circulation should be clo
to Gaussian ifA is large enough, such as in the inerti
range [13]. Further, Sreenivasan, Junega, and Suri [8] u
the velocity data in a plane of a low-Reynolds-numb
turbulent wake, obtained by particle image velocimet
and showed that the PDF was nearly Gaussian, though
exactly so. Numerical simulation data at low Reynol
numbers have confirmed the approximate Gaussianit
the PDF [14].

If the circulation is distributed exactly as a Gaussia
its scaling should be close enough to that implied
16 0031-9007y96y76(4)y616(4)$06.00
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Kolmogorov’s arguments, namely,

ksGAdnl , A2ny3 , r4ny3, (2)

where we have used a square contour withA ­ r2. (In
this situation, one may refer toGA also asGr without am-
biguity.) However, the experimentally measured [8] sc
ing exponents ofGr are substantially smaller than thi
phenomenological result. Sreenivasan, Junega, and
argued that the discrepancy could be attributed to the do
nant effect of the mean shear on vorticity characterist
at the low Reynolds number of the experiment (Rl # 40
[15]). They also argued that the circulation scaling c
be related to the transverse velocity scaling: the latter
tains its asymptotic value in shear flows only at a very hi
Reynolds number (Rl of the order of 1000; see [16]). To
see in a different way how deviations might arise from Ko
mogorov scaling, assume that the loop integration is c
ried out along a square box in theX-Y plane with areaA ­
l2. The coordinates of the four corners of the box ares0, 0d,
sl, 0d, sl, ld, ands0, ld. The circulation around the loop ca
be easily written asGA ­

Rl
0fy2sl, yd 2 y2s0, ydg dy 2Rl

0fy1sx, ld 2 y1sx, 0dg dx, where y1sx, ld represents the
x-direction velocity along the top boundary of the box an
other symbols have similar meanings. This formula c
be rewritten using the mean value theorem as

GA ­ lfy2sl, ypd 2 y2s0, ypdg 2 lfy1sxp, ld 2 y1sxp, 0dg ,
(3)

wherexp andyp are some middle points with0 # xp # l
and0 # yp # l. We notice that the same value ofxp s ypd
on the upper and lower (left and right) sides of the b
can be assured by the theorem. Ify2sl, ypd 2 y2s0, ypd
andy1sxp, ld 2 y1sxp, 0d scale as in Kolmogorov’s theory
[1], Eq. (2) is essentially exact. However, as we can s
from the procedure just discussed the statistics on po
xp andyp are only a subset of the original field. Momen
of GA in Eq. (3) are equivalent to conditional statistics
© 1996 The American Physical Society
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the transverse velocity difference on a given local mea
Since this mean varies in space, it does not follow that t
conditional statistics should have the same scaling as
original field.

The present research is related directly to that
Refs. [7,8]. Our goal is to study the properties of circu
lation using data from three-dimensional direct numeric
simulation of isotropic turbulence. The improvemen
over the previous studies are the precise control of isotro
(and absence of shear) and the higher Reynolds num
than was possible in Ref. [8]. Our major results are
follows: (i) The PDF of circulation depends solely o
the magnitude of area around closed contours, with lit
dependence on whether the area is a square or a recta
(ii) The form of PDF varies as a function of magnitude o
area, and has significant exponential tails in the inert
range. These tails can be fitted by a stretched exponen
with the exponent nearly equal to unity for small areas a
to 2 for large areas. The form of the PDF varies also w
Rl. (iii) The inertial-range scaling of circulation is anoma
lous and the exponents are smaller than those estima
using Kolmogorov scaling [1]. In fact, circulation appea
to be more strongly affected by intermittency than velo
ity increments, and thus shows a new class of anomaly

Direct numerical simulation of the Navier-Stokes equ
tions with normal viscosity [10] was carried out with
2563 and5123 mesh points on the CM-5 machine at Lo
Alamos and the SP machines at IBM. To obtain a stea
state, a low mode forcing scheme (k , 3) was used [17].
The Reynolds number was controlled by varying the v
cosity of the system. Analysis was carried out for stat
tically steady states atRl ­ 101, 181, and216. The first
two Reynolds numbers were obtained using2563 lattices,
and the highest Reynolds number was obtained with5123

mesh points. Circulation was calculated according to t
second equality in Eq. (1). For simplicity, only surface
parallel to axes were used. Statistical average was ta
over the whole simulation space and along all direction
The PDFs of circulation were also computed using lo
integration in Eq. (1), and excellent confirmation of th
area-integral results was obtained.

One fundamental assumption in Migdal’s paper is th
the statistics of circulation along a loop depend only o
the minimum area surrounded by the loop. To verify th
area rule, we have calculated the PDF of circulation alo
rectangles with different aspect ratios but with the sam
area. One set of these PDFs (forRl ­ 181) is shown
in Fig. 1 with both sides of each rectangle lying withi
the inertial range. It is clear that the area rule is a go
approximation. One may argue that the rule applies in t
inertial range because of universality of that scale ran
but it holds empirically even whenr1 and/orr2 spill over
to the dissipation range as well. These results are
shown here.

Figure 1 shows that the PDFs have Gaussian core
stretched tails. Departures from Gaussianity were n
ruled out in Migdal’s analysis [7]. To quantify departure
.
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FIG. 1. Normalized PDFs ofGA when A ­ 1024 (in lattice
units) for different aspect ratios of rectangular contours,Rl ­
181.32 lattice units correspond tor ­ 0.785.

from Gaussian more clearly, we have plotted in Fig. 2 th
flatness of circulation (for square contours) as a function
the linear scaler for Rl ­ 101 and216. The flatness tends
to the Gaussian value only whenr approaches the integral
scale, and is substantially larger than 3 in the inertial ran
[18] (0.2 # r # 0.8 wherer ­ 2p corresponds to the box
length). For comparison, we also plot the flatness ofDur ,
the longitudinal velocity increment (with the separatio
distancer matched toA1y2). Flatness ofGr appears to
be larger than that ofDur over a considerable range ofr,
indicating that the former is actually more intermittent tha
the latter. There is some tendency for the lower Reynol
number data to be closer to Gaussian, roughly consiste
with the observations of Refs. [8,14].

FIG. 2. Flatness of circulation and the longitudinal velocity
increment as a function ofr for Rl ­ 101 and 216. Both
circulation and the velocity increment show intermittenc
effects in the inertial range. The inset shows the correlatio
coefficient of vorticity and velocity derivative as a function of
r. In these units,r ­ 2p is the box length.
617
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The non-Gaussianity of the PDFs ofGr andDur is prob-
ably related to the intermittency of vortex structures a
energy dissipation in three-dimensional turbulence. T
is not difficult to understand given thatGr and Dur are
local averages of vorticity and pseudodissipation, resp
tively [19]. Direct visualization [20] of three-dimensiona
vorticity and dissipation fields of high amplitude show
that the vorticity field is more intermittent than the diss
pation field, consistent with the flatness data just discuss

The basic argument for the Gaussianity of the circ
lation PDF is the law of large numbers, one of who
requirements is the independence among the random v
ables being summed. The vorticity field in three dime
sions shows very rich structures, some of them in
form of tubes with lengths often comparable to the integ
scale. This leads to the decorrelation length compara
to the inertial range scale. To quantify this, we have pl
ted in the inset to Fig. 2 the autocorrelation coefficien
for vorticity componentvx and the longitudinal veloc-
ity derivatives≠uy≠xd, both forRl ­ 216. For vorticity,
Cvx

­ kvxs ydvxs y 1 rdlysvxd2
rms, with separation in the

transverse direction; for the velocity derivative, the sep
ration is along the longitudinal direction, i.e.,C≠uy≠x ­
kf≠uy≠xsxdg f≠uy≠xsx 1 rdglys≠uy≠xd2

rms. Although the
correlation is negligible inside the inertial range, the dec
relation length is comparable with, at least not substantia
smaller than, the inertial-range scales. Therefore, the
gument of Gaussianity based on the law of large numb
is questionable in the inertial range, due to the fact that
circulationGA consists of vorticity with all the scales up t
r ­ A1y2.

The PDFs ofGr with Rl ­ 216 at three typical scales
in dissipation, inertial, and integral scale regions are giv
in Fig. 3. The tails of the PDF are fitted to the stretch
exponential of the formPsGr d ­ A exps2bGa

r d, and the
stretching exponenta is plotted in the inset as a functio

FIG. 3. Normalized PDFs ofGA at Rl ­ 216 for A ­ r2

(square loop in lattice units) forr ­ 4 (dissipation),r ­ 16
(inertial), andr ­ 84 (integral), corresponding tor ­ 0.049,
0.196, and1.031, respectively. The inset shows the stretchi
exponent for the tails of the PDF as a function ofr.
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of r , wherea ­ 2 corresponds to a Gaussian distributio
The qualitative variation ofPsGr d with r is similar to that
of PsDur d [17,21]. On the other hand, the skewness
Gr appears to be smaller than that ofDur .

Since the PDF ofGr is non-Gaussian, one may expect a
anomalous scaling ofGr . To display the scaling behavio
of Gr , we have plotted the momentskGn

r l for n ­ 2 and
4 at Rl ­ 216 as a function ofr in Fig. 4, both of which
display nice power laws in the inertial range, as in Ref. [8
The local scaling exponents for the two Reynolds numb
are presented in the inset to Fig. 4. They are consta
to a better approximation at the higher Reynolds numb
In the inertial range, it appears that scaling exponents
the higherRl are somewhat higher, but this increase is n
significant. It is thus generally in support of the claim th
the smaller exponent values observed in Ref. [8] might
principally due to shear effects.

In Fig. 5 we present the scaling exponent for circul
tion, ln, as a function of power indexn. Here the scaling
exponent is defined throughkjGAjnl , Alny2 , rln . The
other two symbols correspond to results from Refs. [1,
the latter with the present estimate of the intermittency e
ponentm ­ 2y9 (see also Ref. [22]), assuming that th
circulation scaling can be related by Eq. (2) to that of t
velocity increments. The scaling exponents are sma
than those obtained on the basis of Ref. [2]. The discr
ancy between simulation and phenomenological mod
increases asn increases. This might reflect real phys
cal difference between the original field and the con
tional statistics of a field, as discussed above. On the ot
hand, since the Reynolds numbers in numerical simu
tions are not as large as one would desire, one cannot
clude the possibility that the present exponents are no
the asymptotic region and that intermittency models m
predict the scaling exponents well for circulation at ve
large Reynolds number.

We thank D. Martinez, A. A. Migdal, Z.-S. She, an
L.-P. Wang for useful discussions. Part of this wo

FIG. 4. Second- and fourth-order moment of circulation as
function of r, for Rl ­ 216. The inset shows local scaling
exponents of circulation forRl ­ 216 and101.
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FIG. 5. Scaling exponent for circulation as a function of t
moment order,n, compared with K41 and K62, the latter wit
intermittency exponentm ­ 2y9, calculated from the same
numerical data as Fig. 4. Typical error bars are shown for
ninth and tenth order moments.h are experimental data from
Ref. [8].
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