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ABSTRACT

This note summarizes the experimental ev-
idence in support of small-scale intermittency.
Separate consideration will be given to the inter-
mittency in dissipative and inertial ranges. Var-
ious measures of quantification proposed in the
literature will be highlighted, and the relations
between intermittency, anomalous exponents and
multifractality will be discussed briefly.

INTRODUCTION

Many years after the discovery of small-scale
intermittency (Batchelor and Townsend 1949),
doubts continue to be expressed about its very
existence in the inertial range (e.g., Grossmann
and Lohse 1993, 1994). Paradoxically, there is
at the same time a proliferation of measures pro-
posed to quantify intermittency. The relations
among these various measures are not always well
appreciated. This note will focus on two aspects:
{a) an assessment of the experimental evidence
for intermittency, and (b) the interrelation among
the various measures of intermittency. Some at-
tention will be paid to anomalous exponents and
multifractality.

The Central Limit Theorem (Feller 1966, sec-
tion VIIL.4) guarantees that the central part of
the probability density function (pdf) of all pro-
cesses with nearly independent and small in-
crements is Gaussian. Many processes have
non-Gaussian tails, and often the only relevant
question is this: how far from the mean does
one have to reach to observe departures from
Gaussianity? Equivalently, how high a moment
should one compute in order to observe devia-

tions from Gaussianity? If one has to consider
very high-order moments to find sizeable depar-
tures from Gaussianity, one can say that no sig-
nificant non-Gaussian behavior exists, or that the
non-Gaussian behavior that may exist is benign.

In turbulence literature, one usually measures
the normalized third and fourth moments (the
skewness and flatness factor respectively), occa-
sionally the fifth and the sixth. Substantially
higher-order moments have been measured for in-
ertial range structure functions, which we shall
not discuss explicitly. Suppose that a measured
quantity, such as a velocity increment in the in-
ertial range, has non-Gaussian tails and yields a
flatness factor that is significantly higher than the
Gaussian value of 3. We are entitled to say that
the quantity is non-Gaussian, but nothing more
can be said with assurance. In particular, the
immediate association of a long-tail behavior (re-
sponsible for large flatness) with intermittency is
unwarranted in general. For example, any non-
Gaussian noise (such as a squared Gaussian, see
Kennedy and Corrsin 1961) has a long-tail behav-
ior, but one does not a priors know if such noise
signals should be considered intermittent.

In small-scale intermittency, one always consid-
ers its scale-dependence. There are various other
forms of intermittency which we will not discuss
here. For example, a benign form is manifested
in an on-off process where the “on” process could
well be Gaussian and the “off” process might be
zero. This results in a Gaussian distribution with
a delta-function at the origin. (If the “off” pro-
cess is affected by noise, it can be treated by the
technique described by Bilger et al. 1976.)
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INTERMITTENCY OF THE DISSIPA-
TION SCALES

From the time of the experimental work of
Batchelor and Townsend (1949), the evidence for
the intermittency of dissipative quantitics has
been accumulating considerably. Specifically, one
may wish to inquire into the fraction of the spa-
tial volume occupied by vorticity or energy dissi-
pation. It should be stressed that even if that
fraction is smaller than unity for some chosen
experimental conditions, it does not follow that
there is scale-dependent intermittency. For the
latter to exist, this fraction should become smaller
as the Reynolds number increases (since we are
interested in the properties of turbulence in the
high-Reynolds-number limit). Equivalently, the
long-tail behavior in the pdf of either of these two
quantities (and of other related quantities) should
become increasingly conspicuous with increasing
Reynolds number. If one takes the square of a sin-
gle velocity derivative as illustrative of the behav-
ior of the energy dissipation itself, one should ob-
serve its flatness to increase with Reynolds num-
ber.

The best quantitative evidence for intermit-
tency comes in the form of the statistics of ve-
locity derivatives. For a recent collection of avail-
able data, see Antonia and Sreenivasan (19906).
The evidence appears incontrovertible that the
flatness of velocity derivative (also its skewness)
increases with Reynolds number at high Reynolds
numbers. The recent measurements of Tabeling
et al. (1994), which suggested the existence of a
more complex behavior at much higher Iy, seem
to have been affected by probe resolution prob-
lems (see Appendix). Quite aside from the visual
evidence that the square of the velocity derivative
becomes more spiky and spotty as the Reynolds
number increases—such plots were shown by Men-
eveau and Sreenivasan (1991)—the observed flat-
ness behavior is a clear indication that the dissi-
pative scales are indeed intermittent.

INERTIAL-RANGE INTERMITTENCY

What can be said about intermittency in the
inertial range? The Reynolds number variation is
irrelevant in the inertial range, at any rate as we
understand the inertial range presently. Again,
the existence of non-Gaussian tails for some fixed
scale in the inertial range (or, for one wavenun-
ber band in the inertial range) is not a sufficient
indicator of intermittency. What is required is
that the pdf of wavenumber bands become in-
creasingly stretched out with increasing midband
value, or that the flatness of velocity increments
increase with decreasing scale size. This latter
can be seen to be true from experimental obser-

vations that
K@)~r~ H@E)~r P E(r)~r77, (1)

where N(r), H(r) and E(r) are the normalized
fourth, sixth and eighth moments of the velocity
increment Aw, over an inertial-range separation
distance 7, and «, 3 and v are approximately
0.1, 0.29 and 0.47, respectively, independent of
Reynolds number (Sreenivasan 1995).
Equivalently, if one considers velocity incre-
ments for increasingly smaller separation dis-
tances, all lying in the inertial range, one should
see their pdfs develop more and more flaring
tails. This aspect has been examined for the high-
Reynolds-unmber atmospheric boundary layer;
the measured pdfs of inertial-range velocity in-
crements were found to develop stronger tails
(Kailasnath et al. 1992) as the separation dis-
tance became smaller. To see this more clearly,
the tails were fitted with stretched exponentials
and the stretching exponent was plotted as a
function of the scale size. The exponent became
larger for smaller scales (until, in the dissipative
range, it attained a value of about 0.5 and re-
mained unchanged). These data, then, are in
strong support of inertial-range intermittency.

THE RELATION BETWEEN INER-
TIAL RANGE INTERMITTENCY AND
ANOMALOUS SCALING

From Kolomogorov’s (1941a) second similarity
hypotheses proposed for the inertial range, it fol-
lows that

n =
(Auly o 157 (2)
where (Au},‘) represents the n-th order structure
function and the scaling exponents (, = n/3.

Here, (.) represents a suitable average and n is
any positive integer. Any fractional Brownian
process with a Hurst exponent H possesses scal-
ing exponents for even-order moments, and they
vary with the order of the moment n as nH. (The
special case of the classical Brownian motion cor-
responds to the case H = 1/2.) Thus, if the scal-
ing exponents simply vary with the order of the
moment, n, as a linear power, one does not have
any intermittency. Such linear variation would
be considered trivial scaling. Intermittency de-
mands that the scaling exponents vary with the
order of the moment in some nonlinear fashion.
Because of the Holder inequality which guaran-
tees the concavity of the (,-n curve, the differ-
ence between the Kolmogorov value of n/3 and
the actual exponent should increase with the or-
der of the moment, if there is intermittency.

We shall now remark on the experimental evi-
dence for anomalous scaling in the inertial range.
Here, there are several difficulties of interpreta-
tion. The first is the finite Reyunolds effect—which



is not understood and cannot be calculated with-
out assumptions. There is therefore no guide to
an experimentalist as to how one might deduce
this correction. Just the same way, there are
effects of finite shear, whose effects on inertial-
range quantities are much more pronounced than
on dissipative ones. There are purely practical
questions on how one obtains scaling exponents
from log-log plots which are not as straight as
desired. These questions have been addressed in
various ways by various authors, among them by
Anselmet et al. (1984), Benzi et al. (1993, 1995),
Stolovitzky and Sreenivasan (1993), Stolovitzky
et al. (1993), and so forth. There are differences
among these various authors (and these differ-
ences need a separate discussion), but all of them
agree that there is anomalous scaling in turbulent
flows, and that deviations of the scaling expo-
nents from n/3 are real, non-trivial and increase
with the order of the moment.

As argued by Frisch and Parisi (1985), non-
trivial scaling of the structure functions implies
multifractality: that there is an infinity of local
Holder exponents and a corresponding infinity of
dimensions associated with the Holder exponents.

THE RELATION BETWEEN INERTIAL
RANGE INTERMITTENCY AND DIS-
SIPATION SCALE INTERMITTENCY

Define the generalized dimensions Dy of the
dissipation field as follows. Denote by €, the dis-
sipation € averaged over a box of side r lying in
the inertial range. Write

S(re, ) oc r97 P (3)

where the sum is taken over all intervals of size r,
and ¢ is a real number. This defines the general-
ized dimensions Dy, whose meaning has been dis-
cussed at some length by Meneveau and Sreeni-
vasan (1991) and need not be repeated here. Us-
ing the Refined Similarity Hypotheses of Kol-
mogorov (1962), it can be shown that the gen-
eralized dimensions of the dissipation field and
the scaling exponents of the dissipation ficld are
related according to

(q = ((1/3 - 1)l)q/(i +D (4)

where D is the space dimension and ¢ is taken
as an integer. It is easily seen that if D, = D,
that is, the dissipation field is space-filling, (4 is a
linear function of g and there is no intermittency.
Further, if D — Dy is a constant independent of ¢,
one does not have intermittency either. Only if
the generalized dimensions vary with ¢ does one
have intermittency. This variation could well be
lincar (which, incidentally, corresponds to a log-
normal distribution).
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Thus, if the Refined Similarity Hypotheses are
valid, inertial range intermittency is insepara-
bly tied to dissipative scale intermittency: if the
various moments of velocity derivatives increase
as varying powers of the Reynolds number, one
can say that this reflects scale-dependent inter-
mittency in the inertial range as well. There
are strong indications that Refined Similarity Hy-
potheses are plausible approximations to real-
ity (Stolovitzky et al. 1992, Praskovsky 1992,
Thoroddsen and Van Atta 1992, Chen et al. 1993,
1994, Zhu et al. 1995, Wang et al. 1995, Borue
and Orszag 1995, and so forth). However, it is
not certain how seriously one should take them
in the context of high-order moments of energy
dissipation or of high-order structure functions.
It is thus not clear that one can relate simply the
intermittencies in the two ranges.

INTERMITTENCY AND ODD-ORDER
STRUCTURE FUNCTIONS

In previous paragraphs, we glossed over one
essential fact about Kolinogorov turbulence,
namely that exponents for odd moments of its in-
crements scale in a continuous fashion with even
ones. This would not be true of models of the type
of fractional Brownian motion, for which odd mo-
ments are zero by construction. All elementary
multifractal models (such as the p-model of Men-
eveau and Sreenivasan 1987) which focus on the
intermittency of the dissipation scales do not, and
cannot, say anything about the odd moments of
velocity increments. It is therefore intriguing to
ask if the odd moments tell us something about
inertial-range intermittency. Imagine a situation
in which odd moments of some high order are
large. The entire contribution to moments, both
positive and negative, can then come from one
side of the pdf. This is intermittency, although
it may not be the source of all the intermittency
just discussed.

The remarkable thing about turbulence is that
the scaling exponent for the third-order moment
is exactly unity (provided local isotropy holds);
we know not only the scaling exponent but also
the cocfficient in front. The question as to
whether this relation, known as Kelmogorov’s
structure equation (IXolmogorov 1941b), can tell
us anything about intermittency, was explored
by Vainshtein and Sreenivasan (1995). An im-
portant conclusion reached was that it would be
uscful to examine the scaling of the positive and
negative parts of velocity increments separately.
Other inferences were inconclusive. For example,
it was thought that one could not construct nou-
intermittent stochastic functions whose odd mo-
ments, in particular the third, were identical to
that in turbulence. This is appareutly not the
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case in general (Kraichnan 1995).

THE EVIDENCE AGAINST SMALL-
SCALE INTERMITTENCY

A thorough discussion of various scenarios
against intermittency was given by Kraichnan
(1974), but it must be said that their status is one
of plausibility~no more. Grossmann and Lohse
(1993, 1994) have used the so-called reduced wave
vector representation of the velocity field and
calculated the scaling exponents for “very high
Reynolds numbers”. Their approach admits only
a geometrically scaling subset of wave vectors in
the Fourier representation of the velocity field,
and the population of wavevectors becomes in-
creasingly sparse for large wavenumbers. They
find that the corrections to Kolmogorov scaling, if
any, are very small. In another paper, Grossmann
et al. (1994) had in fact found that these correc-
tions, small as they are, were Reynolds-number-
dependent and vanished at large Reynolds num-
bers. They are interesting conclusions, but their
relevance to actual turbulence remains obscure.
In fact, there are indications that the reduced
wave-vector representation suffers from various
shortcomings. For example, the normalized en-
ergy dissipation rate is smaller by about two or-
ders of magnitude compared to experimental val-
ues, and does not asymptote to a constant until
the effective Reynolds number is about two or
three orders of magnitude larger than that found
experimentally (Sreenivasan 1985). It is thus un-
clear how seriously one should take the conclu-
sions that follow from such calculations.

Yet another indication that there might be no
corrections to the Iolmogorov scaling came from
the recent diagrammatic perturbation theory of
L’vov and Procaccia (1994). They found that a
diagrammatic expansion converged order by or-
der, yielding no divergences at infrared or ultra-
violet ends. This leaves no reasons to expect the
appearance in inertial-range scaling of either the
large scale or the Kolmogorov scale, thus elimi-
nating any possibility of anomalous corrections.
However, the work has now undergone revisions
(essentially because of the realization that order
by order convergence does not guarantee the cor-
rect final result), and allows for anomalous scal-
ing.

CONCLUSIONS

It appears that there is indeed intermittency
in both dissipative and inertial ranges. However,
this conclusion should not mask potential uncer-
tainties from an experimental perspective: finite
Reynolds number effects, finite shear effects, am-
biguities agsociated with the precise identification
of a scaling region when it is not convincingly

large, are all serious factors which one hopes will
be addressed adequately sometime in the near fu-
ture. Perhaps when all of these factors are well
understood, one may be led eventually to con-
clude that there is no intermittency in the inertial
range. But it is fair to say that such a conclusion
would come as a surprise from the considered per-
spective available today.
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APPENDIX: A REEXAMINATION OF
THE SKEWNESS AND FLATNESS
DATA OF VELOCITY DERIVATIVES

As already mentioned, one manifestation of
dissipation-scale intermittency is the increase
with Reynolds munbers of high-order moments
of velocity derivatives. Van Atta and Anto-
nia (1980) compiled much of the data on the
skewness and flatness factor and provided tangi-
ble evidence that they continually increase with
Reyunolds number.  However, recent measure-
ments of Tabeling et al.  (1995) have thrown
some doubt into the situation. These authors
made measurements in a closed flow created by
two counter-rotating discs of 20 cm diameter en-
closed in a cylindrical envelope, with the discs 13
cm apart vertically. The fluid was helium gas at
5 deg . The microscale Reynolds number, Ry,
varied from about 180 to about 5,000. An ele-
gant feature was that this vast Reynolds number
range was covered in exactly the same apparatus
by changing carefully the temperature and pres-
sure of the working fluid. The derivative skewness
in these measurements followed the trend of other
measurements up to an Iy of about 900 and de-
creased thereafter, falling up to about 0.22 at the
highest Ity. The flatness too started a downward
trend from about 15 at Ry &~ 900 to about 6.5 at
5000. The authors inferred that, around an I?y
of 900, cither some new transition to a different
state of turbulence was occurring or the behavior
of skewness and flatness was non-universal. They
argued that the data complied by Van Atta and
Autonia were from several different flows under
uncontrolled conditions, and hence less reliable
than their own.

If Tabeling et al. are right, the implications
are far reaching and our general understanding of
intermittency will have to undergo major modifi-
cation. We have therefore spent much time trying
to answer the following questions. Are there some
obvious objections that can be levelled against



previous data? Are there are some problems with
the new data? Qur tentative conclusion is that
the previous trends are essentially correct (sub-
ject to considerations such as Taylor’s hypothe-
sis), and that the conclusions of Tabeling et al.
are likely to be artifacts of the probe inadequacy
at higher Reynolds numbers. We present some
considerations below; since these considerations
were first spelled out in February 1995, Lohse
{1995) has made a more detailed analysis and con-
firmed them.

In their measurements, Tabeling et al. used a 7
pm thick carbon fiber whose sensitive length, [,
varied between 7 and 25 pm in length, The ratio
n/l, varied between 45 at the lowest Reynolds
number and 0.3 at the highest Reynolds num-
ber. The length to “diameter” ratio for the “hot-
wire” probe was of the order unity, while the rec-
ommended ratio is generally of the order 100 or
larger. The precise effects of this non-standard ra-
tio are unknown, but it is almost certain that high
frequencies {as opposed to small spatial scales)
could be affected strongly. Large overheats were
used, and their effects are not understood either.
Finally, the hot-wire was operated beyond the
usually accepted range of Reynolds number (the
probe shed its own vortices), and these effects
could be rather important. The probe was oper-
ated at constant temperature on homemade elec-
tronics, and the frequency response was deemed
to be good up to 50 kHz. Data processing seemed
free of any problems. Velocity was digitized by a
16 bit A/D converter with a “typical” sampling
rate of 125 kHz. A typical acquisition time was 5
minutes, so the typical sample size was 10 million.

Some remarks now follow about the older mea-
surements. They are presented here to show that
the results, while by no means fool-proof, are rea-
sonable.

Wyngaard and Tennekes (1970), and Wyngaard
and Cote (1971) Note: Some additional details
were supplied by J.C. Wyngaard in recent con-
versations.

Measurements were made in the atmospheric
surface layer at heights of 5.7, 11.3 and 22.6 m
above flat ground. It is not clear if the authors
distinguished among the different stability con-
ditions of the atmosphere. Wind speeds varied
over a wide range, but are not given. The fric-
tion velocity varied, among different experimen-
tal runs, from 10 cm/s to about 50 cm/s. The
sensor was a hotwire, 5 pm in diameter, 1.2 mm
long. In the worst case, the Kolmogorov length
scale, 7, 1s about half the wire length, [,; it is
larger for most cases. DISA 55D05 constant tem-
perature units with linearizers were used. Veloc-
ity was recorded on analogue tape. Data were
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digitized subsequently at 3000 Hz, and analyzed
up to about 2000 Hz. Velocity signal was differ-
entiated, filtered and recorded on analogue tape
recorder for later processing. Some prewlitening
of the velocity derivative was done, and its effects
are difficult to estimate. Some correction for Tay-
lor’s hypothesis was made according to Heskestad
(1965).

Data records were about an hour long each, and
consisted of ten million samples. The microscale
Reynolds number Ry varied between about 4,000
and 25,000 (after multiplying the authors’ num-
bers by a factor 2.5 to bring them in conformity
with the usual definition of the Reynolds num-
ber).

Derivative skewness varied from about -0.6
on the low end to about —1.0 on the high end.
Derivative flatness factor varied from about 20
on the low end to about 50 on the upper end.

Gibson et al. (1970)

Measurements were made at heights between
2 and 12 meters above the mean water level in
the Atlantic ocean. The boundary layer, formed
by steady light wind characteristic of Caribbean
trade winds, was nearly neutral. Wind speed was
of the order of 5 m/s. The sensor was a hotwire,
3.8pum diameter, 1.25 mm long. The Kolmogorov
scale varied between about 0.9 and 1.5 times the
wirelength. Velocity was measured by a Thermo-
Systems counstant temperature anemometer. Lin-
earizers were used as well. Frequency response
of the set-up was good up to 5 kHz. Data were
filtered between 2 Hz and 2 kHz. Hotwire signals
were recorded on analogue tape, and later digi-
tized at about 2000 Hz. Roughly speaking, each
sampling unit, translated via Taylor’s hypothesis,
was about 2 Kolmogorov scales long. Velocity sig-
nals were differentiated analogue and were also
recorded on the tape. Differentiator introduced
some phase shift at higher frequencies. Its effects
are unknown. They were later digitized and ana-
lyzed. A total of about 20 minutes worth of data
was used. This translates to about 2 million data
points.

The authors quote Reynolds numbers, It,
based on local mean velocity and the height from
the water surface. Translating this Reyuolds
number to 7y is non-trivial. For a smooth surface
over a modest Reynolds number range, the rela-
tion R:/Ré can be shown to be roughly constant,
which the authors assumed was 0.48. The cou-
stant is now known to be of the order 5 (Bradley
et al. 1981). The revised R varies between about
2,600 to 8,700. The use of these numbers com-
pletely removes the anomalous points in the Van
Atta/Antonia compilation and puts them right
on the general trend.
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Champagne et al. (1977), Champagne (1978)

Two experiments are described in the 1978 pa-
per. The GUMBO experiment was over a flat
land in the atmospheric surface layer in Min-
nesota, 4m above the ground, described in greater
detail in Champagne et al. (1977). The other,
called FSII, was also in the atmosphere in Den-
mark, at a height of 56 m above the ground. No
information is available in the 1978 paper about
the stability of either boundary layer, but the
1977 paper has some details. It appears that
the conditions were neutral to unstable. Wind
speed was of the order of 9 m/s in GUMBO (as
inferred from other data provided) and 11 m/s in
FSII. Some corrections were applied for Taylor’s
hypothesis. Although they seem to have 10 or
15 percent correction, it is hard to estimate the
precise effects.

The sensors were hotwires, 2.3 pum diameter
0.4 mm long (FSII), or 5 pm diameter and 1.25
mm long (GUMBO). In the GUMBO experiment,
the ratio of the I{olmogorov scale to wirelength
was about 0.68; this ratio in FSII was 0.82. Ve-
locity measured by DISA 55M01 constant tem-
perature anemometer, in conjunction with DISA
55D10 linearizer. Frequency response was good
up to 2 kHz. Data were filtered between dc
and 5 kHz. (Different values appear in differ-
ent places but these are typical.) Hotwire signals
were recorded on analogue tape, later digitized
at about 4170 Hz. (Some slow sampled data were
also acquired.) Roughly speaking, each sampling
unit, translated via Taylor’s hypothesis, was less
than a Kolmogorov scale. Velocity signals were
differentiated analogue, and were also recorded:
a total of about 15 minutes in GUMBO, and 40
minutes in FSIIL

Williams and Paulson (1977)

This paper gives no derivative flatness and
skewness data directly, but Van Atta and Anto-
nia obtained an estimate by using the isotropic
relation for the skewness from the spectral data,
but they appear to have recorded the Reynolds
number incorrectly. For example, according to
Williams and Paulson, the spectral data (set
RY25¢) given in their figure 2 corresponds to an
Ry of 4,170—see their Table 1—instead of about
1000 used by Van Atta and Antonia.

Yule experiments

Measurements were made in the atmospheric
surface layer 6 m above the ground at the edge
of a uniform wheat canopy. Wind speed varied
between 4 and 8 m/s; only records correspond-
ing to constant velocity were used for later analy-
sis. Some information was also available about
the stability of the boundary layer, which was

nearly neutral. For preliminary investigations,
some data were also acquired on the roof of a four-
storey building, about 18 m above the ground.
Velocity data were recorded with hotwires 5 ym
diameter, 0.6 mm long. The ratio 7/l,, varied be-
tween 0.5 and 1.1. DISA 55M01 constant temper-
ature anemometer was used for velocity measure-
ments. Mean velocity was also recorded nearby
with a cup anemometer. Hot wires were cal-
ibrated before measurements, and their output
was later checked against the cup anemometer
output. The signal from the hotwire anemometer
was passed through a buck and gain amplifier and
filtered from dec to 3 kHz, and were constantly
monitored on an oscilloscope. Digitization was
done with a 12 bit digitizer at 6,000 Hz or 10,000
Hz, and the data were stored on a magnetic tape.
Some data were also digitized at 200 Hz, but were
not used for derivative statistics. Linearization
was done subsequently on the computer. Various
record lengths were used at various times from a
total recorded duration of several hours. Most of
the time, 3 or 5 minute records were used (roughly
on the order of a million samples).

The microscale Reynolds number varied be-
tween 1,500 and 2,500. The derivative skew-
ness and flatness were computed from the digi-
tized data. The skewness varied between —0.5
and —0.6, while the flatness was about 20. If
the derivatives were performed analogue and an-
alyzed, there are reasons to think that one would
have obtained slightly higher numerical values for
both.

Different types of corrections were applied for
Taylor’s hypothesis as described by Zubair (1993)
and Stolovitzky (1994), but they seem to have no
big effect on the results. Since the corrections
are somewhat arbitrary, only uncorrected skew-
ness and flatness data are provided.
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