Refined similarity hypotheses for passive scalars mixed by turbulence

By G. STOLOVITZKY, P. KAILASNATH and K. R. SREENIVASAN

Mason Laboratory, Yale University, New Haven, CT 06520-8286, USA

(Received 17 March 1994 and in revised form 6 April 1995)

In analogy with Kolmogorov's refined similarity hypotheses for the velocity field, two hypotheses are stated for passive scalar fields mixed by high-Reynolds-number turbulence. A 'refined' Yaglom equation is derived under the new assumption of local isotropy in pure ensembles, which is stronger than the usual assumption of local isotropy but weaker than the isotropy of the large scale. The new theoretical result is shown to be consistent with the hypotheses of refined similarity for passive scalars. These hypotheses are approximately verified by experimental data on temperature fluctuations obtained (in air) at moderate Reynolds numbers in the wake of a heated cylinder. The fact that the refined similarity hypotheses are stated for high Reynolds (and Péclet) numbers, but verified at moderate Reynolds (and Péclet) numbers suggests that these hypotheses are not sufficiently sensitive tests of universality. It is conjectured that possible departures from universality are hidden by the process of taking conditional expectations.

1. Introduction

A substantial part of our understanding of high-Reynolds-number turbulence comes from the scaling theory proposed by Kolmogorov (1941a), relating the statistics of velocity increments to the average dissipation rate of kinetic energy. The necessity to account for strong fluctuations in energy dissipation rate (Batchelor & Townsend 1948; Landau & Lifshitz 1959), not taken into account in Kolmogorov (1941a), led Obukhov (1962) and Kolmogorov (1962) to reformulate the original theory. The refinements, stated succinctly by Kolmogorov (1962), have become known as refined similarity hypotheses. Even though some consequences of Kolmogorov's refined theory have been indirectly verified experimentally in the past (e.g. Anselmet et al. 1984; Meneveau & Sreenivasan 1991), it is only recently that the basic tenets underlying the refined hypotheses have been verified in some detail (Stolovitzky, Kailasnath & Sreenivasan 1992; Praskovsky 1992; Thorodsen & Van Atta 1992a, Chen et al. 1993; Hosokawa 1993). A theoretical approach to this problem was taken by Stolovitzky & Sreenivasan (1994).

The scaling theory of fluctuations of a passive scalar field has been developed by Obukhov (1949), Yaglom (1949), Corrsin (1951), Batchelor (1959) and Batchelor, Howells & Townsend (1959), along lines that are similar in various degrees to that for the velocity field. Hints about the modifications needed to account for strong fluctuations in the local rates of dissipation for both the velocity and scalar fields can be found dispersed in Monin & Yaglom (1975), and some consequences of
these modifications have been discussed in various forms, for example, by Van Atta (1971), Antonia & Van Atta (1975), Meneveau et al. (1990) and Sreenivasan (1991). Hosakawa (1994) proposed an extension of the refined hypothesis for the passive scalar and used this extension to compute the probability density function of temperature increments and gradients. His results compared reasonably well with the temperature increment data of Antonia et al. (1984) and with the temperature gradient data of Thoroddsen & Van Atta (1992b). This work therefore constitutes, albeit indirectly, a confirmation of the refined similarity hypotheses for the passive scalar. However, the refined hypotheses for the passive scalar have not yet been stated in their most general form, and have not been subjected to direct experimental scrutiny. In this paper we state them in a general way and present some experimental support; we further obtain specific results from the dynamical equation governing the passive scalar, and show that predictions of the hypotheses are consistent with them.

After providing the needed background and a description of notation in §2, we state in §3 Kolmogorov’s refined similarity hypotheses for the velocity field (henceforth denoted by KRSH) as well as the analogous refined similarity hypotheses for the passive scalar field (henceforth denoted by RSHP). The principal theoretical result deduced from the evolution equation for the passive scalar is described in §4, and the sense in which this result supports RSHP is pointed out. Experimental details and results are described in §§5 and 6 respectively. The paper concludes with a few summary remarks in §7.

2. Background and notation

Let \( \theta(x,t) \) denote a scalar field \( \theta \) at position \( x \) and at time \( t \). Imagine that this scalar is mixed by the velocity field \( u(x,t) \) of the fluid in turbulent motion. Let \( \nu \) and \( \chi \) denote, respectively, the kinematic viscosity and kinematic diffusivity of the fluid. We shall think of \( \nu \) as the temperature. Needless to say, other scalars such as the concentration of a dye are amenable to the same analysis. The Prandtl number \( Pr = \nu / \chi \). Two quantities that play main roles in this study are the energy dissipation rate per unit mass

\[
\epsilon(x,t) = \frac{v}{2} \sum_{i=1}^{3} \left( \frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_j} \right)^2
\]

(2.1)

and the scalar dissipation rate per unit mass

\[
\zeta(x,t) = \frac{1}{2} \sum_{i=1}^{3} \left( \frac{\partial \theta}{\partial x_i} \right)^2,
\]

(2.2)

Under the assumption of local isotropy (to which we shall return shortly), it is well-known that \( \langle \epsilon \rangle = 15v\langle (\partial u_i / \partial x_i)^2 \rangle \) and \( \langle \zeta \rangle = 3\chi \langle (\partial \theta / \partial x_i)^2 \rangle \), where \( \langle \ldots \rangle \) denotes an ensemble average. Relations (1) and (2) have been used extensively in the literature; also used extensively (sometimes under questionable circumstances) as surrogates of the local rates of energy and temperature dissipation are \( \epsilon' = 15v\langle (\partial u_i / \partial x_i)^2 \rangle \) and \( \zeta' = 3\chi \langle (\partial \theta / \partial x_i)^2 \rangle \). Clearly, if local isotropy prevails, \( \epsilon' = \epsilon \) and \( \zeta' = \zeta \). Because \( \epsilon' \) and \( \zeta' \) are both highly intermittent quantities (Batchelor & Townsend 1948; Sreenivasan & Meneveau 1988; Meneveau et al. 1990) the small-scale structure of the turbulence field is better related to local averages of the two dissipation rates rather than to their global averages. Denote by \( N_r(x_0,t) \), the local average of the scalar dissipation rate over a region of linear size \( r \) around the location \( x_0 \),

\[
N_r(x_0,t) = \frac{6}{\pi^2} \int_{B(x_0,r/2)} \mathrm{d}^3 \zeta \mathcal{N}(\xi,t)
\]

(2.3)

where \( B(x_0,r/2) \) is a sphere of radius \( r/2 \) centred at \( x_0 \). Alternatively, the local average in the case of the one-dimensional surrogate of \( N \) will be

\[
N'(x_0,t) = \frac{1}{r} \int_{x_0}^{x_0 + r} \mathrm{d} \xi \mathcal{N}'(\xi,t).
\]

(2.4)

Equivalent definitions for the local averages of the energy dissipation rate can be obtained by replacing \( N \) by \( \epsilon \) in equations (2.3) and (2.4). Obukhov (1962) argued that the small-scale structure of turbulence is related to turbulence performed over the pure ensemble: by the pure ensemble at a fixed \( r \) and \( x_0 \) Obukhov meant the set of realizations of turbulent velocity and scalar fields for which the dissipation of temperature and energy take values given by \( N_r(x_0,t) = \epsilon_r(x_0,t) = \epsilon \).

To describe features of turbulent flows that have any generality to them, we must restrict attention to scales \( r \) which are much smaller than a typical external scale \( L \) — this being the smaller of the integral scales for the velocity and scalar fields. The local structure of the flow is best described by quantities such as the instantaneous difference of the temperature and velocity between two points \( x_0 \) and \( x + r \); that is, in terms of temperature difference \( \Delta \theta(x,r) = \theta(x) - \theta(x + r) \) and the velocity difference \( \Delta u(x,r) = u(x) - u(x + r) \). For notational simplicity we shall at times write \( \Delta \theta \) instead of \( \Delta \theta(x,r) \) and \( \Delta \epsilon \) instead of \( \Delta \epsilon(x,r) \). We shall denote by \( \Delta u \), the scalar field produced by projecting \( \Delta u(x,r) \) onto the direction of \( r \), i.e., \( \Delta u_r = r/r \Delta u(x,r) \). With this as the background, the refined similarity hypotheses can now be stated.

3. The refined similarity hypotheses

3.1. Kolmogorov’s refined similarity hypotheses for the velocity field (KRSH)

Even though the KRSH are not the main point of this paper, it will later prove useful to state them here. In the form used here, KRSH for fully developed turbulence can be stated as follows:

The first hypothesis: For a range of scales \( r \) such that \( r < L \), the conditional probability density function (p.d.f.) of the stochastic variables

\[
V = \frac{\Delta u(x,r)}{(\nu \epsilon)^{1/3}}
\]

(3.1)

(where \( x + r \) are poles of the sphere \( B(x_0,r/2) \) given that \( \epsilon_r(x_0) = \epsilon_r \) independent of \( x \) and \( x_0 \) and depends only on the local Reynolds number \( Re = r^{1/3}(\nu \epsilon)^{-1/3} \).

The second hypothesis: For \( Re \gg 1 \) (or, equivalently, for \( r \gg \eta \), where \( \eta = (\nu / \epsilon)^{1/3} \) is the local Kolmogorov thickness), the conditional p.d.f. of \( V \) for a given \( \epsilon_r \) becomes independent of \( Re \), and is therefore universal.

There is also a third hypothesis concerning the lognormality of \( \epsilon \) about which we shall have nothing to say in this paper.

It turns out that these hypotheses, when stated in terms of the one-dimensional surrogate \( \epsilon' \), have to be modified to allow for an additional \( r \)-dependence of the p.d.f. of \( V \). The reason is the following. Consider a conditional ensemble of realizations of turbulence with a fixed \( \epsilon_r(x_0) = \epsilon' \). If the turbulence is assumed locally isotropic,
the direction \( r \) of the one-dimensional cut along which \( \epsilon \) is computed is irrelevant. This ensemble has a non-empty intersection with the ensemble of fixed \( \epsilon, x_0 \) = \( \delta \), for \( \delta \) between a minimum and maximum value (which may well be zero and infinity). In the ensemble of fixed \( \epsilon \), the statistics of \( V' = \Delta u_i / (r \epsilon_i)^{1/3} \) can be computed as an appropriate average of the statistics of \( V' = \Delta u_i / (\epsilon_i)^{1/3} \), weighted by the \( r \)-dependent relative contribution of \( \epsilon \) to the ensemble of fixed \( \epsilon_i \). Therefore, the statistics of \( V' \) will inherit its local Reynolds number dependence (now in terms of \( \epsilon \)) from the statistics of \( V \), and its \( r \)-dependence from the conditional statistics of \( \epsilon \) given \( \epsilon \).

In Stolovitzky & Sreenivasan (1994) and in Stolovitzky (1994) it was indeed shown that the \( \epsilon \)-based local Reynolds number \( Re_i' \) does not uniquely determine the conditional p.d.f. of \( V' \), and that an additional dependence on \( r/\eta \) (where \( \eta = (v^3/\epsilon)^{1/4} \) is the Kolmogorov thickness) enters the picture. Therefore, the appropriate statements of the refined similarity hypotheses for the velocity field when expressed in terms of \( \epsilon_i \) are the following:

The first hypothesis (in terms of \( \epsilon_i \)): For a range of scales \( r \) such that \( r < L \), the conditional p.d.f. of the stochastic variable

\[
V' = \frac{\Delta u_i(x, r)}{(r \epsilon_i)^{1/3}}
\]

conditioned on \( \epsilon_i \) is independent of \( x \) and depends only on \( r/\eta \) and the local Reynolds number \( Re_i' \). The second hypothesis (in terms of \( \epsilon_i \)): For \( r \gg \eta \) and \( Re_i' \ll 1 \), the conditional p.d.f. of \( V' \) given \( \epsilon_i \) becomes independent of \( r \) and \( Re_i' \), and is therefore universal.

One of the implications of the second hypothesis is that a correlation exists between \( \Delta u_i \) and \( \epsilon_i \). As an experimental fact, this correlation depends on precisely which component of \( \epsilon_i \) is used as its surrogate. Thoroddsen (1995) pointed out that the use of the surrogate \( \epsilon' \propto \sqrt{\nu \partial_x \partial_y u(x, y, z)} \), where \( \nu \) is velocity component transverse to the \( x \)-direction, reduces the correlation from that obtained using \( \epsilon_i \). His work stresses that the choice of \( \epsilon_i \) in the previous work was somewhat fortuitous, besides having been simply convenient. Thoroddsen's point has been confirmed by Chen et al. (1995) in their numerical simulations and also in our own high-Reynolds-number experiments in the atmospheric surface layer (to be published). It should be stressed, however, that a demonstrable correlation between \( \Delta u_i \) and \( \epsilon_i \) persists even if the full definition of the dissipation, or any of its various other surrogates, is used (Chen et al. 1995); in particular, this correlation remains at a non-trivial level in high-Reynolds-number atmospheric turbulence even when Thoroddsen's surrogate is used.

### 3.2. The refined similarity hypotheses for passive scalars (RSHP)

The analogous hypotheses for a passive scalar mixed by fully developed turbulence can be stated now as follows:

The first hypothesis: For a range of \( r \) such that \( r < L \), the conditional p.d.f. of the stochastic variable

\[
V_i = \delta \theta(x, r) \frac{(r \epsilon_i)^{1/6}}{(r N_i)^{1/2}}
\]

\( \dagger \) For fixed \( r \), this relative contribution is ruled by the conditional probability \( P(e_i | x, r) \) of \( e \), given \( x \). That this conditional probability depends on \( r \) can be seen by studying its behaviour for large and small \( r \). For \( r \rightarrow L \), the probability that \( e_i \) be different from \( e \) tends to zero, while for very small \( r \) the same probability is different from zero. In effect, for very small \( r \), one has that \( e_i = e \) + \( x \), where \( x = 1 \sum \hat{u}_i \delta x_i + \hat{u}_i \delta x_i x^2 \) = \( \hat{X} \), where the sum is over all the indices \( i = 1, 2, 3 \) and \( j = 1, 2, 3 \) excluding the case of \( i = j \). The probability that \( e_i \) differs from \( e \) (i.e. the probability that \( X \) be different from zero) is clearly positive.

The second hypothesis: For \( Re_i \gg 1 \) and \( Pe_i \gg 1 \) (or what is the same, for \( r > R_{\text{max}}(\epsilon_i) \), where \( R_{\text{max}}(\epsilon_i) = \max(\nu^2/(\epsilon_i)^{1/4}, (\nu^2/\epsilon_i)^{1/4}) \), the conditional p.d.f. of \( V_i \) for given \( e_i \) and \( N_i \) becomes independent of \( Re_i \) and \( Pe_i \), and is therefore universal.

As already remarked, these hypotheses for the special case of unity Prandtl number have been advanced by Hosakawa (1994), who assumed that \( V_i \) was independent of \( r, e_i \), and \( N_i \) as a first approximation.

For reasons already discussed in the context of KRSH, it is reasonable to postulate an additional \( r \)-dependence of the refined similarity hypotheses for passive scalars when stated in terms of the one-dimensional surrogates of the dissipation of the energy and the scalar.

The first hypothesis (in terms of \( N_i \) and \( e_i \)): For a range of \( r \) such that \( r < L \), the conditional p.d.f. of the stochastic variable

\[
V_i = \delta \theta(x, r) \frac{(r \epsilon_i)^{1/6}}{(r N_i)^{1/2}}
\]

conditioned on \( \epsilon_i \) and \( N_i \) is independent of \( x \) and depends only on \( r/\eta \) and the local Reynolds number \( Re_i' \). The second hypothesis (in terms of \( N_i \) and \( e_i \)): For \( r > R_{\text{max}}(\epsilon_i) \), \( Re_i > 1 \) and \( Pe_i > 1 \), the conditional p.d.f. of \( V_i \) given \( e_i \) and \( N_i \) becomes independent of \( r \), \( Re_i' \), and \( Pe_i' \), and is therefore universal.

### 3.3. A remark on the \( r \)-dependence of the refined hypotheses

The standard practice in experiments, necessitated by convenience, is to use one term to represent the total dissipation. This calls for the introduction of some modifications in the context of KRSH. This suggests that experimental tests of the hypotheses (in which \( \epsilon \) is usually considered) can be usefully complemented by the direct numerical simulations (DNS) of turbulence in which both \( \epsilon \) and the full energy dissipation rate \( \epsilon \) can be obtained. Such studies have been made at moderate Reynolds numbers by Chen et al. (1993) and Wang et al. (1994). These latter authors have shown that the \( r \)-dependence introduced by considering KRSH in terms of \( e_i \) tends to disappear when the full \( \epsilon \) is considered as the conditioning parameter. One might expect that the effect of using \( N_i \) instead of \( N \) in RSHP should be more benign than the equivalent of considering \( e_i \) instead of \( \epsilon \) in KRSH: as argued in Sreenivasan, Antonia & Danh (1977), the approximation of using the one-dimensional surrogate is in general better for the scalar dissipation rate.

Our goal in the remainder of this paper is to provide support to RSHP. In the following section we will show that RSHP are consistent with results derived directly from the equations of motion under some reasonable assumptions. In §6, we will test RSHP as stated in terms of the one-dimensional surrogates \( e_i \) and \( N_i \). It would be highly desirable that similar tests be performed using DNS of passive scalars mixed by turbulence, considering the full expressions for both dissipation rates.
4. Theoretical analyses

4.1. The statement of the principal result

Under the assumptions of local isotropy in each of the conditional ensembles of fixed $\varepsilon_n$ and $N_\varepsilon$, we wish to prove that Yaglom's (1949) equation,

$$\langle \Delta u, (\Delta, \theta)^2 \rangle = -\frac{1}{2} \langle N \rangle R + 2 \frac{\partial}{\partial \tau} \langle (\Delta, \theta)^2 \rangle, \quad (4.1)$$

can be written in terms of conditional expectations in the pure ensembles. In equation (4.1), $\langle \ldots \rangle$ is the ensemble average in $G$, where $G$ is a global domain of size equal to the integral scale $L$ in which isotropy obtains. In the pure ensemble of fixed $\varepsilon_n = e$ and $N_\varepsilon = n$, the equivalent equation is

$$\langle \Delta u, (\Delta, \theta)^2 \rangle[e, n; R] = -\frac{1}{2} n R + 2 \frac{\partial}{\partial \tau} \langle (\Delta, \theta)^2 \rangle[e, n; R]. \quad (4.2)$$

In this equation, the ball of radius $R/2$ defining the pure ensemble contains the points $x$ and $x + r$ across which the increments $\Delta u_n$ and $\Delta \theta$ are taken.

Equation (4.1) was originally derived by Yaglom (1949) under the assumption that the velocity and temperature fields were jointly isotropic. In their derivation of Kolmogorov's (1941b) structure equation under the assumption of local isotropy, Monin & Yaglom (1975) pointed out that the same derivation could be used to obtain Yaglom's equation, without requiring the isotropy of the large scale. Later in this subsection we will derive equation (4.2) under the assumption of local isotropy in the pure ensembles, following the spirit of Monin & Yaglom's derivation of Kolmogorov's structure equation. Thus, equation (4.2) holds rigorously if the assumption of local isotropy in the pure ensembles were applicable. This assumption is more restrictive than the usual assumption of local isotropy within a global domain $G$. In effect, our assumption implies that the locally isotropic ensemble of realizations of turbulence in $G$ has subsets (the pure ensembles), which are locally isotropic in any of the spatial subregions given by the balls $B(x, R/2)$. A direct assessment of the validity of this assumption for 'urbulence' will have to await further work. If there were departures from local isotropy in pure ensembles, equation (4.2) would stand up only as an approximation. In the remainder of this section we shall assume that the hypothesis of local isotropy in the pure ensembles holds strictly and concentrate on its consequences.

The optimum way of using the information that the low averages of dissipation of energy and scalar in the domain $B(x_0, R/2)$ are $e$ and $n$ when computing the moments of $\Delta u_n$ and $\Delta \theta$, is to set $r = |r| = R$. Physically this means that the points $x + r$ and $x$ (across which the increment $\Delta u_n$ and $\Delta \theta$ are taken) are poles of the sphere $B(x_0, R/2)$. It can be proved easily that for $r = R$, the second term on the right-hand side of equation (4.2) can be written in the form

$$\frac{\partial}{\partial \tau} \langle (\Delta, \theta)^2 \rangle[e, n; R] = \frac{\partial}{\partial \tau} \langle (\Delta, \theta)^2 \rangle[e, n; R] - \frac{\partial}{\partial \zeta} \langle (\Delta, \theta)^2 \rangle[e, n; \zeta]. \quad (4.3)$$

In interpreting equation (4.3), it is important to note that $\langle (\Delta, \theta)^2 \rangle[e, n; R]$ is a function of $r$, $e$, $n$, and $R$, while $\langle (\Delta, \theta)^2 \rangle[e, n; \zeta]$ is a function of $e$, $n$ and $R$ only. In the former expression, $r$ can take any value between 0 and $R$, and the pure ensemble over which the average is taken, $\varepsilon_n = e$ and $N_\varepsilon = n$, is fixed. In the latter expression, the increments are taken across their saturated value (the diameter of the ball defining the ensemble), and in changing $R$ keeping $e$ and $n$ fixed, we are changing the ensemble. In the second term on the right-hand side of equation (4.3), we are taking a derivative with respect to the diameter $\zeta$ of the sphere that determines the pure ensemble, keeping fixed the two points across which the increment $\Delta \theta$ is taken, and evaluating the result in $\zeta = R$.

Using equation (4.3), we can rewrite equation (4.2) at $r = R$ as

$$\langle \Delta u, (\Delta, \theta)^2 \rangle[e, n; r] = -\frac{1}{2} n + 2 \frac{\partial}{\partial \tau} \langle (\Delta, \theta)^2 \rangle[e, n; r] - 2 \frac{\partial}{\partial \zeta} \langle (\Delta, \theta)^2 \rangle[e, n; \zeta]. \quad (4.4)$$

When the local Reynolds and Péclet numbers are much larger than unity, the right-hand side of equation (4.4) is dominated by the first term. In effect, noting from the second KRSF that for $Re \gg 1$, $\Delta u_n \sim (re)^{1/3}$, and that $\langle (\Delta, \theta)^2 \rangle[e, n; r] \sim (re)^{1/3} \langle (\Delta, \theta)^2 \rangle[e, n; r] \sim \frac{\langle (\Delta, \theta)^2 \rangle[e, n; r]}{r} \sim \frac{n}{P_{er}}$. Therefore, for $Re \gg 1$ and $Pe_r \gg 1$, we have

$$\langle \Delta u, (\Delta, \theta)^2 \rangle[e, n; R] \approx -\frac{1}{2} n. \quad (4.5)$$

Another interesting result can be obtained from equation (4.4) in the limit of $r \ll \eta_m$ where $\eta_m = \min(x^2/e, v^2/e)$. In such a case, the left-hand side of equation (4.4) can be neglected (for it is of third order in $r$ which is assumed very small), and the last term on the right-hand side is because for $\zeta > r$, $\langle (\Delta, \theta)^2 \rangle[e, n; \zeta] \approx \langle (\Delta, \theta)^2 \rangle[e, n; r] = n/3r^2$ and therefore $\partial \langle (\Delta, \theta)^2 \rangle[e, n; \zeta] / \partial \zeta = 0$. It follows that the second term on the right-hand side of equation (4.4) has to cancel the first term. Thus

$$\langle (\Delta, \theta)^2 \rangle[e, n; r] \approx \frac{n}{3} r^2. \quad (4.6)$$

The averages over $e$ and $n$ of equations (4.5) and (4.6) yield the known results (Yaglom 1949)

$$\langle \Delta u, (\Delta, \theta)^2 \rangle \approx -\frac{1}{2} \langle N \rangle r \quad (4.7)$$

and

$$\langle (\Delta, \theta)^2 \rangle \approx \frac{\langle N \rangle}{3} r^2 \quad (4.8)$$

for $r$ sufficiently large and small respectively.

It is interesting to discuss an important difference between the similarly looking equations (4.5) and (4.7). Physically, Yaglom's relation $\langle \Delta u, (\Delta, \theta)^2 \rangle = -\frac{1}{2} \langle N \rangle$ indicates that the flux of scalar fluctuations $\langle \Delta, \theta^2 \rangle$ at scale $r$ towards the small scales is controlled by the global mean of scalar dissipation rate $\langle N \rangle$. This is the expression of a global balance of scalar fluctuations: the size of the fluctuations transferred.
(towards smaller scales) across any given inertial-convective scale is only dissipated at the smallest scales. The relation \( \langle \Delta u_\alpha(\Delta \theta) \rangle = \frac{-1}{\Delta \rho} \Delta \theta \) expresses the same kind of balance of scalar fluctuations, but in a detailed fashion. By the latter, we mean that the mean flux of scalar fluctuations in the pure ensemble at fixed \( N = n \) is controlled not by the global average \( \langle N \rangle \), but by the local average \( N \).

Given that detailed balance implies global balance, we can derive equations (4.5) and (4.6) from equations (4.7) and (4.8). However, as global balance does not imply detailed balance, the validity of equations (4.7) and (4.8) does not, in principle, imply the validity of equations (4.5) and (4.6). These last two relations follow from equation (4.2), which in turn is warranted if the hypothesis of local isotropy in the pure ensemble is postulated. This assumption is stronger than the assumption of local isotropy in the global domain (as was pointed out before) and weaker than the assumption of global isotropy, in that it does not demand the isotropy of the large scales of motion. Therefore, and for the sake of completeness, it seems appropriate to derive equation (4.2) without using the assumption of global isotropy used in the classical derivation of Yaglom's equation, but with the assumption of local isotropy in pure ensembles.

4.2. The derivation of equation (4.2)

Let \( r' \) and \( r'' \) be two points within the domain \( G \) where the turbulence is locally isotropic. Denote \( \mathbf{u}' = u(r', t), \mathbf{u}'' = u(r'', t), \alpha' = \theta(r', t) \) and \( \alpha'' = \theta(r'', t) \). To derive equation (4.2), without any special assumption about the isotropy of the large-scale structure of the flow, we must transform the advection-diffusion equation into an equation that contains only velocity and temperature differences and their derivatives. We start by writing the advection-diffusion equation at the point \( r'' \):

\[
\frac{\partial \theta''}{\partial t} + u'' \frac{\partial \theta''}{\partial r''} = \nabla \cdot \left( \frac{\partial^2 \theta''}{\partial r''^2} \right).
\]  

(4.9)

Next, we add and subtract the left-hand side of equation (4.9) the term \( u'' \frac{\partial \theta''}{\partial r''} \), and obtain

\[
\frac{\partial \theta''}{\partial t} + u'' \frac{\partial \theta''}{\partial r''} + \left[ u'' - u' - u'' \right] \frac{\partial \theta''}{\partial r''} = \nabla \cdot \left( \frac{\partial^2 \theta''}{\partial r''^2} \right)
\]  

(4.10)

where we have used the fact that \( \frac{\partial \theta''}{\partial r''} = 0 \). Subtracting equation (4.9) evaluated at \( r' \) from equation (4.10) yields

\[
\frac{\partial}{\partial t} \left[ \theta'' - \theta' \right] + \left( u(x + r', t) - \frac{\partial}{\partial x} \right) \left[ \theta(x + r', t) - \theta(x + r', t) \right]_{r = r'}
\]  

\[+ \left[ u'' - u' - u'' \right] \frac{\partial \theta''}{\partial r''} - \theta'' - \theta'
\]  

\[= \nabla \cdot \left( \frac{\partial^2 \theta''}{\partial r''^2} \right)_{r = r''}
\]  

(4.11)

where we have utilized the identity that \( \frac{\partial^2 \theta''/\partial r''^2}{\partial r''^2} = \frac{\partial^2 \theta''/\partial r''^2}{\partial r''^2} \). Denote by \( r'' - r' \) the vector separating the two points \( r' \) and \( r'' \). Multiplying equation (4.1) by \( \theta'' - \theta' \), and denoting \( \Delta \theta = \theta'' - \theta' \), we find

\[
\frac{\partial (\Delta \theta)^2}{\partial t} = \left( u(x + r', t) - \frac{\partial}{\partial x} \right) \left[ \theta(x + r', t) - \theta(x + r', t) \right]_{r = r'}
\]  

\[+ \Delta \theta \frac{\partial \theta}{\partial r''} \]  

\[= \nabla \cdot \left( \frac{\partial^2 (\Delta \theta)^2}{\partial r''^2} \right)_{r = r''}
\]  

\[+ \frac{\partial \theta}{\partial r''} \left[ \theta(x + r', t) - \theta(x + r', t) \right]_{r = r'}
\]  

\[- 2 \Delta \theta \frac{\partial \theta}{\partial r''} \]  

\[= \nabla \cdot \left( \frac{\partial^2 (\Delta \theta)^2}{\partial r''^2} \right)_{r = r''}
\]  

\[+ \frac{\partial \theta}{\partial r''} \left[ \theta(x + r', t) - \theta(x + r', t) \right]_{r = r'}
\]  

\[- 2 \Delta \theta \frac{\partial \theta}{\partial r''} \]  

(4.12)

where we have used that

\[
2 \frac{\partial^2 f}{\partial x \partial \xi} = \frac{\partial^2 f}{\partial \xi^2} - \frac{\partial f}{\partial x} \frac{\partial f}{\partial \xi}
\]

At this point we take averages in the pure ensemble. We choose any point \( x_0 \) and any diameter \( R > |r| = r \) such that the points \( r' \) and \( r'' \) are contained in the ball \( B(x_0, R/2) \) which in turn is contained in \( G \), and proceed to take averages in the ensemble of fixed \( N_k(x_0, t) = n \), where \( n \) is any positive number. Under the hypothesis that the turbulence in the pure ensemble is stationary, locally homogeneous and isotropic, the average of the first term in equation (4.12) vanishes because of stationarity and the expectation of the second term vanishes because of local homogeneity. Therefore, from equation (4.12) we obtain

\[
\frac{\partial}{\partial r_k} \langle \Delta u_\alpha(\Delta \theta) \rangle_{|R} = 2 \frac{\partial^2}{\partial r_k \partial r_l} \langle (\Delta \theta)^2 \rangle_{|R} - 4 \chi \frac{\partial \Delta \theta}{\partial r_k} \frac{\partial \Delta \theta}{\partial r_l} \langle \Delta \theta \rangle_{|R}
\]  

(4.13)

where we have implied that \( \theta \) is a locally homogeneous random field. Therefore,

\[
\langle \frac{\partial^2}{\partial r_k \partial r_l} \langle (\Delta \theta)^2 \rangle_{|R} \rangle = \frac{\partial}{\partial r_k} \left( \frac{\partial}{\partial r_l} \langle (\Delta \theta)^2 \rangle_{|R} \right) = \frac{\partial^2}{\partial r_k \partial r_l} \langle (\Delta \theta)^2 \rangle_{|R}
\]  

(4.14)

and

\[
\langle \theta(x, t) \theta(x, t) \rangle = \chi \langle \frac{\partial^2}{\partial r_k \partial r_l} \langle (\Delta \theta)^2 \rangle_{|R} \rangle
\]  

(4.15)

Because \( u(x, t) \) and \( \theta(x, t) \) are locally isotropic random fields, we have

\[
\langle \Delta u_\alpha(\Delta \theta) \rangle_{|R} = \langle \Delta u_\alpha(\Delta \theta)^2 \rangle_{|R} \frac{r^2}{r}
\]  

(4.16)

(recall that \( \Delta u_\alpha = \rho \Delta u_\alpha \), where \( \langle \Delta u_\alpha(\Delta \theta)^2 \rangle_{|R} \) depends on \( r \) only through its absolute value \( r \). Local isotropy also implies that \( \langle (\Delta \theta)^2 \rangle_{|R} \) is a function of the absolute value of \( r \). Therefore, in \( d \) dimensions, we have

\[
\frac{\partial}{\partial r_k} \langle \Delta u_\alpha(\Delta \theta)^2 \rangle_{|R} = \frac{1}{r^{d+1}} \frac{\partial}{\partial r} \left( r^{d+1} \langle \Delta u_\alpha(\Delta \theta)^2 \rangle_{|R} \right)
\]  

(4.17)

and

\[
\frac{\partial^2}{\partial r_k \partial r_l} \langle (\Delta \theta)^2 \rangle_{|R} = \frac{1}{r^{d+1}} \frac{\partial}{\partial r} \left( r^{d+1} \langle \Delta \theta)^2 \rangle_{|R} \right)
\]  

(4.18)

Further, \( (\Delta \theta)^2_{|R} / \langle (\Delta \theta)^2 \rangle_{|R} = n \). Thus equation (4.13) can be rewritten as

\[
\frac{1}{r^{d+1}} \frac{\partial}{\partial r} \left( r^{d+1} \langle (\Delta \theta)^2 \rangle_{|R} \right) = -2 \chi \langle (\Delta \theta)^2 \rangle_{|R}
\]  

(4.19)

which can be integrated easily to yield

\[
\langle \Delta u_\alpha(\Delta \theta)^2 \rangle_{|R} - 2 \chi \langle (\Delta \theta)^2 \rangle_{|R} = -\frac{4 \pi}{\pi r}
\]  

(4.20)

Note that this derivation would not have changed if we had assumed that the pure ensemble was determined not only by \( N_k \), but also by \( \xi_k \). In such a case, and for \( d = 3 \), equation (4.20) yields equation (4.2).
4.3. Consistency between RSHP and the equations (4.5) and (4.6)

A sensible theoretical test of RSHP is to show that they are consistent with equation (4.5). To do this, let us rewrite the first RSHP as

\[ (\Delta u)^2 = V^2 \left( \frac{rN_r}{(r_N)^{3/2}} \right) \tag{4.21} \]

From the second KRSHP, namely that \( \Delta u = V(r_e)^{3/2} \), we can write \( \Delta u (\Delta u)^2 = (V^2 r_N N_r) \). Taking averages in the pure ensemble we obtain

\[ \langle \Delta u (\Delta u)^2 \rangle = (V^2 r_N N_r) \]

\[ \langle \Delta u (\Delta u)^2 \rangle = (V^2 r_N N_r) \]

(4.22)

Now using the second RSHP, we find (for \( Re \gg 1 \) and \( Pe \gg 1 \)) that \( (V^2 \langle \Delta u \rangle r_N N_r) \) is independent of \( r_N \) and \( N_r \), and is therefore a universal number. Thus, we have shown that the hypotheses are consistent with equation (4.5). Furthermore, this consistency also demands that \( (V^2 \langle \Delta u \rangle r_N N_r) = -\frac{1}{4} \frac{Pe}{3} \). It is clear that the precise values of \( \Delta u \) and \( N_r \) do not follow from the hypotheses. The reason is simply that the second refined hypothesis postulates the existence of a universal p.d.f. for \( V_0 \), but not its functional form.

In the limit of \( Re \ll 1 \) and \( Pe \ll 1 \), on the other hand, we can use equation (4.6) to study the dependence of \( (V^2 \langle \Delta u \rangle r_N N_r) \). It can be easily checked from the definition of \( V_0 \) that equation (4.6) yields

\[ (V^2 \langle \Delta u \rangle r_N N_r) \sim \frac{Pe}{3} \]

indicating a dependence on \( Pe \), only, consistent with the RSHP.

We now turn to the experimental assessment of RSHP.

5. Experimental details

For the experimental verification of the refined hypotheses, one needs to measure simultaneously the dissipation rates of energy and scalar variance. Such measurements were attempted in the wake of a circular cylinder mounted in a subsonic wind tunnel. The cylinder had a diameter of 1.9 cm and a length of 76 cm (spanning the width of the wind tunnel), and was heated uniformly by internal heating elements. Measurements were made at a streamwise distance of 80 diameters behind the cylinder on the wake centreline. The maximum excess temperature at the measuring station was about 2.5°C, so that the heating can be considered effectively passive. The velocity of the incoming uniform stream was 9.5 m s\(^{-1}\). The Reynolds number based on the cylinder diameter was 12000, and the monoaxial Reynolds number based on the root-mean-square velocity \( (u' = 40 \text{ cm s}^{-1}) \) and the Taylor microscale \( (\lambda = 0.6 \text{ cm}) \) was 160. The flow is thus only of moderate Reynolds number. The limitations imposed by the moderate Reynolds number of the wake flow will be discussed later. (Unfortunately, the joint atmospheric velocity/temperature data, obtained about 6 m above the ground, had convergence problems and so could not be used.) On the wake centreline, the estimated Kolmogorov scale, \( \eta \), was 0.023 cm, and the dissipating scale for the temperature field, \( \eta_T = (1/\langle z \rangle)^{3/2} \), was 0.028 cm.

The measurement probe consisted of a probe support on which were mounted a hot wire (5 \( \mu \text{m} \) diameter, 0.5 mm long) for measuring the velocity fluctuations and a cold wire (0.6 \( \mu \text{m} \) diameter, 0.5 mm long) for measuring temperature fluctuations. Several detailed tests were conducted on the optimal distance between the two probes: too small a distance would result in the interference of the hot wire on the cold wire, but too large a distance would render the assumption of spatial simultaneity invalid. These tests, available in the form of two unpublished documents by Kailasnath (1986a,b), showed that the optimal separation distance was 1.2 mm for the wake; mounting the two wires closer would produce perceptible distortion of the temperature signal. By increasing the distance even further and studying the effect on the joint statistics of the measured velocity and temperature signals, it was determined that this distance, although longer than is ideal, was not unacceptably large. The hot wire had a flat frequency response up to 40 kHz, the corresponding number for the cold wire was 4 kHz. The hot wire was operated on a DANTEC constant-temperature anemometer typically at an overheat of 1.3; larger overheat, while desirable for better signal/noise ratio, would produce unacceptable cross-talk between the signals from the two wires. The signal-to-noise ratio for these operating conditions was estimated to be 55 dB. The cold wire was operated on a constant-current anemometer built in-house on the basis of a design by Peattie (1987); the operating current of 120 \( \mu \text{A} \) produced a temperature signal/noise ratio of 40 dB. The signals from the hot and cold wires were sampled at a frequency of 8 kHz. Thirty-two data files, each consisting of \( 1.2 \times 10^5 \) data points, were obtained.

From these velocity and temperature time traces, derivatives were obtained by digitally differentiating the signals. The time derivatives were in turn treated as space-derivatives in the direction of the mean motion of the fluid by invoking Taylor’s frozen flow hypothesis. Much literature exists on the validity or otherwise of Taylor’s hypothesis (see, for example, Antonia, Chambers & Phan-Tien 1980 and the papers cited there), but its use is generally accepted as reasonable for small scales (such as the derivative quantities) if the turbulence level is small (see, e.g., Monin & Yaglom 1971). In this instance, the turbulence level (as estimated by the ratio of the measured root-mean-square streamwise velocity fluctuation to the mean velocity) was 4.2%, and may be considered small enough.

6. Experimental results

6.1. The extent of the inertial range

Since the Reynolds number of the wake is modest, the extent of the inertial range – if one exists – should be examined explicitly. This can be done by testing the degree to which the well-known relation due to Kolmogorov (1941b), exactly valid in a limiting sense in the inertial range, is satisfied by the wake measurements. This relation is

\[ <(\Delta u)^3> = \frac{4}{3} \langle \epsilon \rangle r \]

(6.1)

For notational convenience we will drop the primes in \( V_0 \), \( \epsilon \) and \( N \) in this section (including figures). The use of primes will be resumed in §7, where we present our conclusions.

Figure 1 shows a plot of \( <(\Delta u)^3>/N(r) \) versus \( r/\eta \). An optimistic guess is that the inertial range is about half a decade, roughly as marked in the figure. Note that the plateau in figure 1 is somewhat less than the 4/5 required by equation (6.1). This is not an unusual feature of several other measurements in the literature (e.g. Anselmet et al., figure 10), and could have a variety of causes such as the moderate value of the Reynolds number, use of discrete derivatives in the estimation of \( \epsilon \), use of the Taylor hypothesis in treating time increments as spatial increments, and, finally, the use of \( \epsilon \) instead of \( \epsilon' \).
6.2. Experimental test of RSHP

To test RSHP, we proceed as follows. For given windows of \( \epsilon_i \) and \( N_r \), we compute the normalized histograms of \( V_0 = \Delta \theta (r) \) for various values of \( r \). According to the hypotheses, we expect that \( V_0 \) will depend on both \( \epsilon_i \) and \( r \) for small values of \( r \). If \( r \) is large enough (still much smaller than \( L \)), so is the local Reynolds number (recalling that \( R_e = r^{2/3} \epsilon_i^{-1/3} \)). (Note that because \( \Pr = 0.7 \sim O(1) \) for our experimental conditions, taking \( R_e \gg 1 \) also implies \( \Pr = \text{Re} R_e \geq 1 \).) For this case, according to the second hypothesis, the p.d.f.s are expected to become independent of \( \epsilon_i \) and \( r \).

Figure 3 shows plots of the p.d.f. of \( V_0 \) for \( r \eta = 78 \), which, according to figure 1, corresponds roughly to the upper end of the inertial range. Each of figure 3(a), 3(b), 3(c) corresponds to different windows of \( N_r \), as indicated; within each, different p.d.f.s correspond to different windows of \( \epsilon_i \). In spite of the scatter, it appears reasonable to say that for \( Pr(\epsilon_i, N_r, r) \), the conditional p.d.f. of \( V_0 \) for given \( \epsilon_i \) and \( N_r \) shows a modest collapse onto a unique p.d.f., which is Gaussian-like in shape. The existence of such a unique p.d.f. which is independent of \( \epsilon_i \), \( r \), and \( N_r \) in the inertial range, for which the local Reynolds number is sufficiently high, is the substance of RSHP.

The predictive power of the hypothesis can be tested by analysing experimental data further. It would have been ideal to test equation (4.5) directly from the data, but the convergence of the third-order moment is poor in the experimental data. So we shall test an alternative feature of the refined hypotheses, namely, that for large enough values of the local Reynolds number, the conditional expectation of \( \langle \Delta u_i \rangle \langle \Delta \theta \rangle^2 \) in the pure ensemble is proportional to \( N_r \) and independent of \( \epsilon_i \). That is,

\[
\langle \Delta u_i \rangle \langle \Delta \theta \rangle^2 \langle \epsilon_i, N_r, r \rangle = K N_r
\]

where \( K \) is a constant. Thus, \( \langle \Delta u_i \rangle \langle \Delta \theta \rangle^2 \langle \epsilon_i, N_r, r \rangle \) should be independent of \( \epsilon_i \) for all values of \( N_r \), on which it depends linearly. Figure 4 shows the conditional expectation \( \langle \Delta u_i \rangle \langle \Delta \theta \rangle^2 \langle \epsilon_i, N_r, r \rangle \) as functions of both \( \epsilon_i \) and \( N_r \). It is seen from figure 4(a) that \( \langle \Delta u_i \rangle \langle \Delta \theta \rangle^2 \langle \epsilon_i, N_r, r \rangle \) depends linearly on \( N_r \), as expected. Figure 4(b) shows that the dependence on \( \epsilon_i \) is quite weak, also as expected. These results provide additional confirmation of RSHP.

For \( r \) in the dissipation region, the conditional p.d.f.s depend on both \( \epsilon_i \) and \( N_r \). These data are not shown in detail here. A quick indication of this is provided by figures 5(a) and 5(b) for \( r \eta = 13 \), which lies in the dissipation range. Not surprisingly, equation (6.2) is not verified: in this case we have the postulated proportionality of the moment on \( N_r \), but there exists an additional dependence on \( \epsilon_i \). This dependence is well fitted by a power law \( \epsilon_i^{-1/2} \) (figure 5b).

The dependence seen in figure 5(b) is related to the modest value of the local Reynolds number corresponding to \( r \eta = 13 \). To explain this dependence, note that, for small values of \( r \), a Taylor expansion of the left-hand side of equation (6.2) yields

\[
\langle \Delta u_i \rangle \langle \Delta \theta \rangle^2 \langle \epsilon_i, N_r, r \rangle = S \left( \frac{\langle \partial \theta \rangle}{\langle \theta \rangle} \right)^2 \langle \epsilon_i, N_r, r \rangle^{1/2} \times \left( \frac{\langle \partial \theta \rangle}{\langle \theta \rangle} \right)^2 \langle \epsilon_i, N_r, r \rangle^{1/2},
\]

where

\[
S = \left( \frac{\langle \partial \theta \rangle}{\langle \theta \rangle} \right)^2 \langle \epsilon_i, N_r, r \rangle^{1/2}.
\]
where
\[
S = \frac{\left( \frac{\partial u_1}{\partial x_1} \right)^2 (\varepsilon_r, N_r; r)}{\left( \frac{\partial \theta}{\partial x_1} \right)^2 (\varepsilon_r, N_r; r)}.
\]

For a pure ensemble, \( (\frac{\partial u_1}{\partial x_1})^2 (\varepsilon_r, N_r; r) = \varepsilon_r/15\varepsilon \) (see Stolovitzky 1994), and \( (\frac{\partial \theta}{\partial x_1})^2 (\varepsilon_r, N_r; r) = N_r/3\varepsilon \). Therefore, for small \( r \), we obtain the result that
\[
\langle |\Delta u_1| |\Delta \theta| (\varepsilon_r, N_r; r) \rangle \approx \frac{S \varepsilon_r^{3/2}}{3\varepsilon \sqrt{Pr}} r N_r.
\]

Figure 5, in combination with equation (6.5), suggests that \( S \) for small \( r \) is independent of \( \varepsilon_r \) and \( N_r \) or depends on them only weakly.

### 7. Summary and Conclusions

In this paper, we have stated for passive scalar fields mixed by high-Reynolds-number turbulence the formal equivalent of Kolmogorov’s refined similarity hypotheses for the velocity field. We have shown that the refined similarity hypotheses for passive scalars (RSHP) are consistent with two theoretical results obtained from the evolution equation for passive scalars. We have also shown that experimental data obtained in a moderate-Reynolds-number turbulent wake support RSHP.

The theoretical result is obtained from the assumption of local isotropy for Obukhov’s pure ensembles. This is a more restrictive assumption than that of con-
ventional local isotropy for the global domain; the result obtained, namely equation (4.4) (which in the appropriate limits yields equations (4.5) and (4.6)), is also stronger than the corresponding one due to Yaglom for global averages. From the present theoretical results, we have shown that the conditional expectation $\langle W V \rangle_{\varepsilon, N; r}$ is independent of $\varepsilon$ and $N$, as demanded by RSHP.

Experimentally, we have obtained the p.d.f.s of $V$ conditioned on $\varepsilon$ and $N$, and shown that they are essentially independent of $\varepsilon$ and $N$ in the inertial range. Also verified is the linear dependence of the conditional expectation $\langle \Delta u \rangle_{\varepsilon, N; r}$ on $\varepsilon$ and $N$, and its independence of $\varepsilon$ and $N$ in the inertial range. This dependence and linear dependence of the conditional expectation on $\varepsilon$ and $N$, and its independence of $\varepsilon$, $N$, and $r$ are consistent with RSHP. For smaller $r$, the latter result is not obeyed by the data (as expected from RSHP); we have examined this dependence and offered a simple explanation on the basis of Taylor series expansions valid for small enough $r$. While it is true that experiments at higher Reynolds numbers would have been desirable, it is our belief that RSHP can be considered to have been verified approximately in these experiments.

Finally, it is curious to note that the passive scalar fields, which exhibit various deviations from local isotropy at moderate Reynolds numbers, obey RSHP reasonably well. This would suggest that RSHP are not sensitive tests of universality. It is conceivable that departures from universality are hidden by the process of taking conditional expectations. This was our conclusion from another study (Stolovitzky & Sreenivasan 1994) were we showed that stochastic processes other than turbulence show most features of the refined similarity hypotheses for the velocity.

We are grateful to Robert Kraichnan for useful comments on the theory relating to pure ensembles, to the referees for a careful reading of the manuscript, and to the Air Force Office of Scientific Research for financial support.

REFERENCES

KAILASANATH, P. 1988a Simultaneous measurements of the velocity and temperature in a heated turbulent wake. Technical Report, Mason Laboratory, Yale University.
KAILASANATH, P. 1988b Correlation between the dissipation fields of temperature and velocity in turbulent flows. Technical Report, Mason Laboratory, Yale University.