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Abstract

From an analysis of grid turbulence data, it was earlier confirmed
[1] that the average energy dissipation rate indeed scales on the energy-
containing length and velocity scales beyond a microscale Reynolds
number of about 100. In this paper, experimental data in various
shear flows are examined to determine the effects of mean shear and
nearness to boundaries on this scaling. For homogeneous shear flows,
it is shown that the shear has a weak but discernible effect— at least
at moderate Reynolds numbers—on the scaling of the dissipation rate.
For inhomogeneous and unbounded shear flows such as wakes and
Jets, the scaling of both the local dissipation rate and that integrated
across the flow are examined. For the latter, semi-theoretical estimates
are provided on the basis of the asymptotic form of development of
these flows. The low-Reynolds-number behavior is also examined for
wakes. For wall-bounded flows such as the flat-plate boundary layer,
the dissipation due to mean shear is shown to be a vanishingly small
fraction of the turbulent part. The contributions to the latter from
the near-wall region, the logarithmic region and the outer region of
the boundary layer are obtained. )



1 Introduction
1.1 The background

One of the characteristic features of turbulence is that it is dissipative. The

rate at which the turbulent energy gets dissipated per unit mass is given [2]
by

v | Ou; 3uj2
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where v is the kinematic viscosity of the fluid, u; is the turbulent velocity
component in the direction ¢, and repeated indices imply summation over 1,2
and 3. It is invariably assumed in the phenomenological picture of turbulence
that the average value (g) of the dissipation rate ¢ remains finite even in the
limit of vanishing viscosity [3], [4], [2]. If v and ¢ represent, respectively, the
characteristic velocity and length scales of the viscosity-independent features

of turbulence, one should expect a scaling of the form
(eye/v* = C, (2)

C being a constant of the order unity. The turbulent velocity gradients in this
picture diverge typically as the inverse-square-root of the viscosity coefficient
v or as the square-root of a characteristic Reynolds number.

In spite of the importance of Eq. (2), it has so far not been possible to
deduce it from the partial differential equations governing turbulent motion.
Formal bounds [5] differ from empirical observations by a few orders of mag-
nitude (see also [6]), and it appears, at least for the foreseeable future, that
the viability of Eq. (2) has to rest on the support it derives experimentally.

For grid turbulence, Batchelor [7] had collected data from experiments of



the 1940’s and concluded that they were in reasonable agreement with ex-
pectations. However, the scatter in the data was too large to be convincing:
for example, Saffman [8] saw it fit to remark that a weak power-law or log-
arithmic variation of C' could not be ruled out on the basis of those data.
Since that time, more data at much higher Reynolds numbers have become
available, and these have been analyzed in [1]. In that paper, we had col-
lected all usable experimental data in grid turbulence and shown that the
possible variation of C in Batchelor’s plot (aside from the scatter itself) was
a low-Reynolds-number effect, and that, for microscale Reynolds numbers?
above 100 or so, C' was indeed a constant. This constant was found to be
unity when £ was chosen as the longitudinal integral scale and v as the root-
mean-square velocity of turbulence. This was the principal result of Ref. 1],
from where it is reproduced as Fig. 1.

A few qualifications expressed in Ref. [1] are worth recapitulating. Data
from grids of somewhat unusual geometry yield slightly different numerical
values for C in Eq. (2), and there was even a suggestion from figure 3 of Ref.
(1] that its precise value would depend on the configuration of the grid. How-
ever, it is not clear that in all experiments one is far enough away from the
grid so as to be uninfluenced equally satisfactorily by the direct effects of the
grid; it is also not clear that the relevant length scale has always been mea-
sured according to a self-consistent procedure. We are therefore inclined to
think of these deviations as exceptions to the rule—though clearly important
and to be understood at leisure. It would undoubtedly have been desirable for

the measurements to have covered a much wider range of Reynolds numbers,

'This and other technical terms will be defined at appropriate places in the text.



but Fig. 1 seems convincing enough (recall that the microscale Reynolds
number is proportional to the square root of the large scale Reynolds num-
ber). For now, therefore, it appears prudent to take the result of Fig. 1 as
valid in the “ideal” case of grid turbulence (at least in experiments using
biplane grids of square mesh), and ask whether features such as different
initial conditions, shear, nearness to solid boundaries, and such other details,
have measurable effect on this scaling.? There would then be a comprehen-
sive understanding of the gross relation between large scales of motion and
dissipative scales. This is the purpose of the paper: we examine the scal-
ing of energy dissipation rate in shear flows—both homogeneous (section 2)
and inhomogeneous (sections 3 and 4) and, in particular, wall-bounded flows
(section 4) whose special feature is that the effects of viscosity are invariably
felt near the wall no matter how high the Reynolds numbers. Of particular
interest is the relation between the integrated energy dissipation across the
flow and the work done at the wall by friction. A few summary remarks are

contained in section 5.

1.2 Preliminary remarks

In grid turbulence, since no energy production occurs except at the grid itself,
the measurement of the turbulent energy at different downstream distances

allows one to estimate the dissipation rate quite accurately. Many authors

2The scaling supported by Fig. 1, however interesting, is different from the conventional
thinking in the Kolmogorov phenomenology that the energy dissipation scales on the
length and velocity scales characteristic of external stirring. This view would demand, for
instance, that (¢) should scale on the power lost due to pressure drop across the grid. Such
a suggestion has not been tested directly. One can imagine some interesting phenomenon
to manifest when the “drag crisis” occurs for each of the cylinders making up the grid.
There is some scope for interesting work here.



have measured the downstream development of all three components of tur-
bulent energy; even when this is not the case, the three components are suffi-
ciently close to each other that the accurate measurement of any one compo-
nent (usually the longitudinal component) can provide good estimates for the
energy dissipation. The main point is that such estimates are quite reliable
because they are based on turbulent energy measurements—which, unlike the
direct measurements of the energy dissipation itself, can be made quite ac-
curately. Dissipation measurements in shear flows cannot be made similarly
simply. One thus estimates dissipation rate by means of local isotropy as
well as Taylor’s frozen flow hypothesis (which supposes that turbulence ad-
vects with the local mean velocity without any distortion); the uncertainties
involved are large enough to make it difficult to compare numerical values
from one experiment with those from another. Secondly, the nearly isotropic
state of grid turbulence simplifies the specification of the length and velocity
scales: all the so-called longitudinal integral scales are equal to each other
(roughly twice the so-called transverse length scales) and all velocity com-
ponents are nearly the same. On the other hand, in shear flows—especially
wall-bounded flows—the choice of the length and velocity scales is non-trivial.
At the least, some consistent choice has to be made and justified. Finally,

there is the issue of spatial variation of all quantities in inhomogeneous shear

flows.



2 Homogeneous shear flows

The flow next in simplicity to grid turbulence is that with a linear mean
velocity distribution (or constant shear) in the direction x5, say, transverse
to the direction z; of the mean flow. Good approximations to such flows have
been created in several laboratories (see later) and their evolution has been
documented in various degrees of detail. Turbulent fluctuations in these
flows are essentially homogeneous in the transverse direction, z5. These
“homogeneous shear flows” are considered in this section.

We shall first consider only those experiments in which the energy dissipa-
tion was obtained directly, i.e., by measuring all other terms in the turbulent
energy balance equation, without resorting to local isotropy and Taylor’s

hypothesis. Some details of these experiments are listed in Table 1.

With the exception of Tavoularis and Corrsin [11] and Mulhearn and
Luxton [14] (see later), all experimenters have been content to measure the

longitudinal integral scale, L1;, defined by

Ly = 7drR (r) (3)

11
(uf) ’
where Ry; is the “correlation function” (ui(z1, 29, z3)uy (2 + 1, T, T3)), U
is the velocity component in the direction zy of the mean flow, and r; is the

separation distance® in the direction z;. We are therefore forced to use this

3Most often in practice, one does not measure the equal-time correlation function in
the integrand of Eq. (3) but approximates it by (u1(z1, @2, T35 t)us (21, 2, 235 + At)),
with At interpreted as 71/U1, Uy being the mean velocity in the z; direction at the fixed
point (z1,zg,23). It is clear that this can be done if Taylor’s hypothesis holds but, in
general, one does not have control on the errors introduced in this procedure. Further,
the integration in Eq. (3) is usually performed only up to the first zero-crossing of the
correlation function, Ry;(r). The rationale for this procedure is described in [15]
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length scale as representative. As already remarked, the question of which
energy component should be used is not clear either. The precise choice will
make a difference at least numerically. We shall use for v the quantity (u?)1/2,
mainly because the length scale Ly, corresponds to the velocity component
u1, and because it is this component that has been measured most often.
Other choices, such as (%{qQ))%, where ¢ = u;u;, have been examined, and
do not produce a qualitatively different result.

One additional remark is useful. The Reynolds number most suitable for

comparing different experiments is the microscale Reynolds number R, =

(u%)%/\/z/, based on the Taylor microscale A\ = (—~—<~u§3——)% A proper

<(3u1/3r1 )2>
. . . 2
non-dimensional measure of the shear is the parameter S = %f[%%—], whose

interpretation can be found, among other places, in [16] (see also the ap-
pendix in Ref. [12]): briefly, —i{% is a representative time scale of turbulence
and normalizes the mean rate of strain dU; /dzs.

Experiments on homogeneous shear flows have been made at different
shear rates as well as different Reynolds numbers, and both these parameters
could have an effect on the non-dimensional dissipation rate. The microscale
Reynolds number R, in these flows varies between about 110 and 440. We
have first searched for possible variation with respect to ) by examining data
in which sizeable variation in the Reynolds number occurred (120 < Ry <
360) without comparable variation in the shear rate (8.2 < 5 < 9.9); see
items with asterisks in Table 1. It appears from Fig. 2 that the Reynolds-
number variation in these data is essentially negligible. We thus conclude

that the Reynolds number effect is negligible at least for Ry > 100 or so,

consistent with our earlier finding (1] for grid turbulence.



We now analyze the scaling of the non-dimensional dissipation rate as a
function of the shear parameter, S. Figure 3 shows this behavior. In spite of
considerable scatter (thus the log-scale representation), it appears that there
is a weak but definite trend with shear. This becomes especially obvious if we
note that C for grid turbulence (S = 0) is unity. It is hard to be absolutely
certain of this trend (because the uncertainties in measurements are large
enough), but it would appear that the precise value of the non-dimensional
dissipation rate (g) Ly /(u?)3/? depends, if only weakly, on the shear; in other
words, C = C(S). We know of no theoretical effort to understand this
effect of finite shear. In the absence of theoretical guidance, it is difficult
to say what analytical form this finite-shear effect should take. Empirically,

however, a possible fit to the data is
C = Cy exp(—al) (4)

where Cy =1 is appropriate to grid (or shear-free) turbulence and an approx-

imate value of ais0.03.

This feature of a diminishing C with respect to S appears to be further
confirmed by the direct numerical simulation of a homogeneous shear flow
with high shear rate [17]. Although the various quantities needed had to be
inferred indirectly in this paper from a number of plots of non-dimensional
quantities, it appears that (s)Ln/(u%)g/2 for a shear rate S = 33.6 is approx-

imately 0.43 (taking that same Quantity for S = 0 to be unity). This is not
at variance with Fig. 3 or Eq. (4).4

‘Prudence demands some caution. At this stage, it is not possible to assert with full
confidence that this weak trend is unrelated to the possible experimental artifact that
flows with weak and strong shear differ in some systematic way in the degree to which
they approximate their asymptotic state.



There are a few other experiments on homogeneous shear flows which are
not included in Table 1. The reason, as already mentioned, is that the energy
dissipation rate in these experiments was estimated only indirectly via local
isotropy and Taylor’s hypothesis. Fortunately, one can assess the adequacy
of these latter estimates from the experiments listed in Table 1, where (&)
was obtained both directly and by local isotropy assumption. Figure 4 shows
the ratio of the isotropic estimate to that measured directly. The ratio does
not seem to vary significantly with Reynolds number. We believe that local
isotropy holds at very high Reynolds numbers (see, for example, [18], [19])
and that this ratio would tend to unity at very large Reynolds numbers; we
further tend to think that the ratio of Fig. 4 would have shown that trend
if it were not masked by the scatter. However, the systematic variability of
the ratio with respect to Reynolds number is probably small in the range
considered here, and we might as well take it as a constant = 0.75. Anyhow,
this should suffice for the limited purpose for which it is employed below.

Given this ratio, we might now “correct” the energy dissipation estimates
in experiments where local isotropy has been invoked. Some of these experi-
ments are listed in Table 2,% and the variation of the non-dimensional energy
dissipation rate is plotted against non-dimensional shear in Fig. 3. These

data are consistent with the trend of the rest of the data in Fig. 3.

SMulhearn and Luxton [14] have also obtained data in homogeneous shear flows. We
have analyzed those data but found the dissipation rate to be about half as large as that

in other comparable flows. We are not sure of the source of this discrepancy, and so do
not comment further on these data.



3 Free shear flows
3.1 Turbulent wakes

We consider symmetric wakes of objects with large aspect ratio. For some
distance behind the object, the details of its shape and other initial conditions
are important to various degrees, but our premise is that such effects are small
far from the body, or in the so-called far wake. The properties of nominally
far wakes have been studied extensively. We restrict attention to far wakes
without discussing details such as the downstream distance needed for this
asymptotic state to be attained. Such considerations were discussed in [22],
[23] and, in somewhat more specific detail, in [24]. We first consider, for the
wake of a circular cylinder, the scaling of the average dissipation rate as a
function of Reynolds number from low to moderately high Reynolds numbers.
This will automatically lead to scaling considerations at the high-Reynolds-
number end. Because of the inhomogeneity of the wake, properties such as
the average dissipation, velocity and length scales vary across the wake. We
therefore also obtain the scaling of the dissipation integrated across the wake,
and compare it with semi-theoretical estimates from energy balance.

A note about notation: we denote the streamwise, normal and spanwise
directions by z, y and &z, respectively, and the velocities in those directions
by u, v and w, respectively. The mean velocity in z-direction will be denoted
by U = U(y). The streamwise velocity outside the wake will be designated
U,. The difference U, — U (y) is the defect velocity w. The maximum defect
velocity will be denoted by w,. The distance from the wake centerplane to
where the defect velocity is half the maximum will be denoted by §; that

is, w(d) = %wo. In the far wake, the mean and turbulence quantities attain
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self-preservation; in particular,

= = f(n only), (5)

Wo
where 7 = ¥ and the entire dependence on the streamwise direction comes
through the variables w,(z) and §(z).

In an experiment described in [25], the energy dissipation rate was mea-
sured in the wake of a circular cylinder at various Reynolds numbers 190 <
Rq = U,d/v < 4,500; here d is the diameter of the cylinder. The mea-
surements were made in the z-2z plane 50 diameters behind the cylinder by
measuring two velocity components U and W in that plane using Particle
Image Velocimetry. Experimental details will be described elsewhere, but
1t suffices to note that the measurement accuracy was deemed comparable
to that of hot-wire measurements. Also measured was the transverse length

scale L, defined as

L= 0/ PR (6)

(wi)
where 7 is the separation distance in the direction z.

Figure 5 plots (¢)6/w? and (e)L,/(w?)? as a function of the cylinder
Reynolds number. Both are plotted in the figure. It is clear that both
these quantities decrease with Reynolds number up to about 1,000, but seem
thereafter to attain a value that is independent of the Reynolds number. An
extension of these measurements to higher Reynolds numbers would have
been desirable. It is also true that the measurements should have been made
farther downstream, but the compromise was necessary for reasons of accu-
racy: much further downstream, velocity fluctuations become weaker render-

ing their accurate measurement increasingly difficult. Even so, it is believed

11



that the trend exhibited in Fig. 4 holds true for the far wake as well. Thus,

the best asymptotic estimates® for the centerline are:

(€)6 /w3 ~ 0.035 (7)

and
(e)L./{w)? ~ 0.55. (8)
The latter is again of order unity, as for other flows.

In another experiment at a cylinder Reynolds number Ry of 1,600 [26], we
had measured 100 diameters behind the cylinder on the wake centerline the
quantity (¢)L,/(u?)? using hot-wires. Here, L, is the longitudinal integral
scale which, except for the change of notation, is defined by Eq. (3). Our
estimate is

() L./ (u?)? = 0.70. (9)

Other published data (for example, [27], [16]) yield similar values, although
it is difficult to be precise because of uncertainties in reading data from pub-
lished small graphs: small uncertainties in velocity data could be a source of
disproportionately large error in the final result. Note that the characteristic
value of %?}%%I in the wake is of the order of 4.5, see appendix in Ref. [12].
For this shear parameter value, 0.7 would plot within the scatter of the data
in Fig. 2.

Dissipation measurements in wakes have been made also by a number
of other authors, for example [27], [16], (28], [29], [30]. The most detailed

among them is Ref. [20]; the authors of Ref. [29] examine the limitations of

-1

%For low Reynolds numbers, it appears that (£)6/w} ~ R} *. Noting that Ry ~ Wb /v ~

(u2)1/2L11/1/ ~ R3%, this observation is consistent with the —1 power-law appropriate to
low-Reynolds-number grid data; see Fig. 1.

12



local isotropy and Taylor’s hypothesis and measure as many terms in Eq. (1)
as possible. These measurements suggest that local isotropy underestimates
the true dissipation by about the factor seen already in homogeneous shear
flows. The cylinder Reynolds number R, was 1,170 for these measurements,

Just barely high enough according to Fig. 5. On the basis of these data, one

has

()6

w3

o
on the wake centerline, roughly consistent with Eq. (7).7 Since the measure-

~ 0.03 (10)

ments extend (more or less) all across the wake, we can obtain the scaling of

the integrated dissipation as

-+o00
/ dni)f ~0.1. (11)

Other data [25], (28] yield numbers as large as 0.12.
The integrated dissipation can be estimated from the energy integral
equation obtained by multiplying the Reynolds-averaged Navier-Stokes equa-

tions with the fluid velocity. By integrating the energy integral equation

across the wake, one obtains

1 [E% —-/dy<q;§UJ = UOVA +/dy<—U€3>-. (12)

2
Here, 7 is the streamwise distance from the wake-generator and all integrals

are carried out between —oo and +oo in the variable y, and the so-called

energy thickness &, is defined as

U U?
ée - /dyzj— [1 - "[j‘é’} . (13)

"Townsend’s measurements, when “corrected” for the underestimate due to the use of
local isotropy, are also consistent with Eq. (10). Thomas [28] obtained a slightly higher
value of 0.038. On the whole, a good average centerline value appears to be 0.035.

13



We also have the so-called mean dissipation thickness given by

o U\
A7l = / dy [ == . 14
y(&ﬂ%) (14)
At high Reynolds numbers in the far wake, it is easy to show that, to the

lowest order in w,/U,,
37 1d 3A Il
/-—< 8 g = sbe=10 (12 - —2-) , (15)

+o0 400 i
where I = | (w/w,dn, I = | (@) /uR)dn, Q = (wo/UY(z/0)}, A

§/(z6)7, and 6 is the momentum thickness defined as

9:/@% [1—%]. (16)

Using from Ref. [24] the numerical values of Ip =151 4+0.02, Q=163+
0.02 and A = 0.3 £ 0.005, and noting that I} =~ 0.8, we obtain

Jonly

This estimate is substantially larger than that obtained from measure-

=0.17. (17)

ment (between 0.1 and 0.12). Corrections O(6/6) ignored in the estimate
(17) can bring them closer, but not nearly enough. It is well-known that the
asymptotic properties of the wake are attained only very far downstream,
and we therefore wonder if any dissipation measurements have been made
in the true far wake! Alternatively, slight streamwise pressure gradients in
wind-tunnel measurements could account for this discrepancy. In spite of
these pessimistic remarks, however, let us not lose sight of the degree of

closeness between the two estimates.
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3.2 Other unbounded shear flows

Similar analyses have been carried out for other unbounded shear flows and
the results are summarized below. These estimates are not as detailed nor
as solid as for homogeneous shear flows and wakes. Indeed, the question of
Reynolds number variation will not be addressed at all, and it will be assumed
that the values to be quoted below are representative of the high-Reynolds-
number limit. Local isotropy estimates will be used in some dissipation
measurements to follow, which probably means that the numbers below ought
to be somewhat higher. The length scale is not obtained with the same degree
of consistency as for homogeneous flows. Added to this, even elementary
features such as the ratio of the root-mean-square longitudinal velocity to the
mean velocity in two realizations of nominally the same flow configuration

are somewhat different from one flow to another.®

a. Agzisymmetric jets: The principal reference used is [31]. It would

appear that, on the centerline of the jet far away from the nozzle,

%)3—‘5 ~ 0.015 (18)

o

where U, is the velocity on the jet centerline and § is the radial distance
from the jet axis to the circle marked by half the excess mean velocity. The

integrated dissipation

QW/dn%L—(S n a~0.11. (19)

8This type of inconsistency between one experiment and another is a constant source
of concern. Among other implications that this may have, it results in uncertainties that
cannot be quantified with any confidence. This state of affairs indicates strongly that a
repetition of standard measurements (including dissipation) in high-quality canonical flows
will not be a wasted effort, especially if the measurements are accompanied by improved
instrumentation and data processing techniques.
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On the jet axis we have,
(e) Ly

(u2)?

consistent in order of magnitude with that in other flows.

~ 0.35, (20)

For the far field, the semi-theoretical energy integral estimate for the
integrated dissipation is about 0.15 instead of 0.11 from measurement. This

discrepancy is comparable to that noted earlier for wakes.

Two-dimensional jets: For two-dimensional jets, we have principally used
data from Refs. [32] and [33]. The two sources of data are not entirely
consistent with each other. However, a typical value is

(€)6
us

where U, is the velocity on the jet centerline and § is defined as the distance

~ 0.01 (21)

from the jet axis to the plane marked by half the excess mean velocity. We

also have

)l 693, (22)

(u?)*
consistent again only in the order of magnitude sense with other flows. The

integrated dissipation from measurement scales as

€)6
/ dr;<U>3 ~ 0.035. (23)

The number from energy balance is about 0.041, with comparable discrep-

ancies as before.

Two-dimensional mizing layers: For the mixing layers, we have used the

data from [34]. For this flow,

5 |
%- ~ 0.005 (24)

[
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where U, is the difference in velocity between the two sides of the mixing
layer and § is the distance between the planes where the mean velocities are

0.9U, and 0.1 U,. The integrated dissipation scales as

6
/ dn%%— ~ 0.05. (25)
On the central plane where the velocity is the mean of those on the two sides,
we have
L,
)l .43, (26)
(u?)>

The order of magnitude is consistent with that in other shear flows.
Table 3 summarizes the scaling relations for the turbulent flows considered

so far. We reiterate the tentative nature of the estimates for jets and mixing

layers.

4 The turbulent boundary layer

We now turn attention to the dissipation in two-dimensional turbulent bound-
ary layer. This flow is special for many reasons, but an important aspect is
that the viscous effects are not negligible in the near-wall region (to be de-
fined more precisely later) no matter how high the Reynolds number. It
would therefore be useful to estimate the fraction of dissipation due to the
mean velocity gradient. So would it be to estimate separately the energy
dissipation in different parts of the boundary layer.

A convenient starting point is the energy integral equation, Eq. (12),

17



which can be rewritten as®

3 (6) & =3 [+ oo (R Tl on

IyU. fv) U3

Here, U, is the free-stream velocity; the viscous term is non-dimensionalized
by the kinematic viscosity v and the so-called friction velocity U, defined by
(Tw/p)%, Tw being the shear stress at the wall. For high Reynolds numbers,
the direct dissipation term due to the mean shear on the right hand side of Eq.
(27) is significant only in the near-wall region (defined by yU. /v < 30) where,
to an excellent approximation, the velocity scales on U, and the distance
from the wall scales on v/U,; the integral is therefore essentially a universal
number. An examination of several measurements near the wall'® (e.g., [35],
(361, [37], [38], [39]) yields an approximate value of the viscous term is 9.5
For convenience, the turbulent energy dissipation in the boundary layer
can be thought to consist of three mutually exclusive parts—that in the near-
wall region (yU. /v < 30, as already remarked), that in the logarithmic region
(30v/U, < y < 0.26, say) and that in the outer region of the boundary layer
(y > 0.26). In the near-wall region, (e) scales on wall variables v and U, and,

in the outer region, on U, and §. The integrated dissipation can be written

as
é

[oth=[4(2) G Tl u®) e o
0 * * 026 *

0 * 30v/U,

®The first term on the right hand side is the difference between integrated production
and dissipation.

'%Since the mean velocity in the near-wall region is essentially independent of the outer
region it seems reasonable to expect this number to be the same for all wall-bounded flows
such as pipe and channel flows, Taylor-Couette flow and so forth. This sanguine statement
cannot be made about all aspects of wall turbulence. ‘

18



Since %¥ is a unique function of yVL in the near-wall region and %2;- is a
unique function of £ in the outer region (at least for high enough Reynolds
numbers), the first and the third integrals on the right hand side are pure
numbers, C; and C,, say, independent of the Reynolds number. Estimates of
C; and C, suffer from uncertainties already mentioned in dissipation measure-
ments. However, the use of Klebanoff’s data for the outer region and those

from any of the sources mentioned above for the near-wall region yields
Ci=~3.6,C, =~ 2.1. (29)

Two remarks are useful. First, the present estimate for C; is decidedly
low. For example, turbulent dissipation estimate by 151/(—%)2 yields zero at
the wall whereas the true dissipation there, as given by Eq. (1), can be shown
to be finite because not all fluctuating velocity gradients vanish at the wall.
This estimate should therefore be treated with some reserve. In any case,
it is clear that the near-wall region, which constitutes a vanishingly small
part of the boundary layer (it is about one percent of the total thickness at
a momentum thickness Reynolds number of 10%), dissipates more than the
outer region constituting about 80% of the boundary layer thickness.

Secondly, if one is interested in the scaling of the dissipation in regions

not infested with direct viscous effects, that information is provided by the

/ czy§]€3> ~ 2. (30)

As already remarked, this is indeed independent of the Reynolds number. !

constant C,. That is,

HFor high Reynolds numbers, say Ry > 6,000, the characteristic velocity scale may
be thought be about 2.5U,, see [41]. The rescaled integrated dissipation will then be
about 0.13, not very different from that in two-dimensional wakes. This result is more
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Returning to Eq. (28), one may assume in the logarithmic region of the
boundary layer that (e) = %%’3— , where & is the so-called Karman constant
~ 0.41, and the second integral'? can be written as %ln(l—é@%—é) We thus
have

6
O/dy% =C;+C,+ —i;ln (1—51—0 X U;é) . (31)
It is clear that the integrated dissipation in the logarithmic part of the bound-
ary layer increases without bound (albeit slowly), while those in the near-wall
and outer regions remain finite and become diminishingly small fractions
of that in the logarithmic region. As the Reynolds number increases, the
near-wall viscous dissipation due to the mean shear becomes a vanishingly
small fraction of the turbulent dissipation. However, even for reasonably
high Reynolds numbers encountered in the boundary layer of Ref. [40], this
fraction is about one half of the turbulent dissipation.’® Finally, in the log-
arithmic region,

(e)Ly/(u?)32 s 9, (32)

essentially independent of the distance from the wall.
The left hand side of Eq. (27), i.e., dé./dz, has been evaluated for the
boundary layer of Weighardt [40] in the range 450 < Ry < 15,500. The

difference between this term and the direct dissipation term (both normalized

than a coincidence given the similarities between the plane wake and the outer part of the
boundary layer [42].

An examination of the dissipation data from various sources shows that they do not

3
exactly follow the relation (e) = %Qy& in the logarithmic region. For some boundary layers,
this relation holds in the lower part of the logarithmic region while, in some others, in the
upper part. This estimate is good to within a factor 2. Note that, if one uses for £ the

mixing length = sy, and U* for the velocity scale v, one would have the result (e)t/v3=
1 ,

B3 This ratio is related to the quantity optimized in Ref. [43].
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as in Eq. (27)) is plotted in Fig. 6; we have used for the abscissae the more
natural Reynolds number U,§ /v, where § is the boundary layer thickness,
instead of the more conventional Ry. Even though there is some scatter, the
data clearly show an increasing trend with respect to the Reynolds number.
Figure 6 also plots the total dissipation (that is, sum of viscous and turbulent
parts of the dissipation) evaluated according to Eqs. (31) and (29). This sum
is similar in trend to the data on (d6,/dz — direct dissipation). Note that
the imbalance between the data points and the total dissipation must be the
second term on the right hand side of Eq. (27). The difference appears to
be essentially independent of the Reynolds number and we have

/ <q;i3Udy ~ 2.4, (33)

Figure 7 plots the same data as a fraction of the work done at the wall
against friction, the latter being given by 7,U,. The ratio is close to unity,
nearly always slightly smaller, decreasing weakly with the Reynolds number.
The fact that the ratio is close to unity is non-trivial (because it is not
constrained to be so) and suggests that the rate of change of energy at any
streamwise position is balanced essentially by the work done by the friction
locally.

Finally, Fig. 8 plots the quantity %f[(dée/dx) —direct dissipation)]. This
is the fraction of the local rate of change of energy that occurs entirely due to

turbulent dissipation. This ratio is a Reynolds-number-independent constant

of about 0.55.
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5 Conclusions

We have examined the question of whether energy dissipation scales in a
unique way in all turbulent flows. The answer is not as satisfactory as one
would desire, yet some broad conclusions can be drawmn. These are summa-
rized below.

For homogeneous shear flows, it appears that (e)L11/(u2)5 is a weak
function of the shear, approaching the value appropriate to grid turbulence in
the limit of vanishing shear. Normalization by alternative length and velocity
scales does not alter this conclusion in a significant way. If this conclusion is
correct, we can imagine a situation in which various exponents in turbulence
are also weakly dependent on the shear. Strictly speaking, then, the effect of
mean shear might never disappear but manifest itself weakly at all Reynolds
numbers.

For inhomogeneous flows, the basic question is one of how much energy
is dissipated across the entire flow width. We have tried to answer this
question for a few canonical flows. The numerical values for the integrated
dissipation are different from one flow to another if one uses the natural
velocity and length scales (for the wake, for example, these could be the
maximum defect velocity and the half-defect thickness). Even if one uses the
integral length scale (measured in nominally the same way) and the root-
mean-square velocity in the streamwise direction, the numerical values are
not the same in all flows, although they are all of order unity. This is true
even in the case of the boundary layer when the outer region is considered.
This conclusion, although weak and not different from prevailing wisdom, is

already interesting. As is well known, in Kolmogorov’s phenomenology [4]
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without intermittency effects, one has the relation
(Au7) = Cple) ) (34)

where the velocity increment Au, = u(z +r) — u(z), u is the fluctuating
velocity in the direction z, r is the separation distance along z, and C, is a
universal constant. If we assume that the scaling formula given by Eq. (34)
extends all the way up to the longitudinal integral scale L,, we would have
(since (Au2) — 2(u?) for large 7, for reasons of statistical independence and

statistical homogeneity at the scale L,)

()L, ( 2 )3/2'

(u2y32 ~ \Cy (35)
It is known empirically that Cy lies between 1.8 and 2.2 (see [2]), which gives
(e)L,

This variation is not large enough to account for the variability of C observed
in Table 2. In practice, however, there is no reason to expect the scaling to
extend exactly to L,; more likely, it holds up to an L.sy which is a fraction
(or multiple) of L,. Further, if (Au2) lr=r.,,= B(u?), where § is of order 2
(but not exactly so), we would have, instead of Eq. (35),
Lo (2)"
(w232~ T\, ’
where o = (Ly/Lefs)(2/B8)*% If Les < Ly, it is conceivable that 8 < 2 and
@ > 1. On the other hand, if L.ss > L,, one might have & < 1, as observed.

(37)

In this perspective, o would be a function of the flow.
Finally, we have dealt with a few other specific questions. Among them
are the low-Reynolds-number behavior of this scaling for wakes, the appli-

cation of energy balance for obtaining the integrated energy dissipation, the
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contribution of viscous dissipation to the total energy dissipation in turbu-
lent boundary layer, and so forth. We have particularly pointed out that,
even in the boundary layer, the viscous contribution near the wall vanishes
as the Reynolds number increases, but this rate of decrease is quite slow:
Even at an R, of about 15,000, this fraction is still about a third of the total
energy dissipation. The contributions to the turbulent energy dissipation
from the near-wall region and the outer region are estimated, and the latter
1s shown to be comparable to that in plane wakes. The logarithmic region
eventually dominates the boundary layer dissipation. We also find that the
rate of change of energy at any streamwise position is balanced essentially

by the work done locally by the friction at the wall.
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source | Ry S <<5$>>L31/12 <§§/>31;‘31/2

Champagne et al. [9] | 150 | 6.0 1.20 1.90
Harris et al. [10] | 300 | 11.7 0.67 1.24
Tavoularis and Corrsin [11] | 245 | 12.5 0.55 1.15
Sreenivasan [12] | 250 | 9.0* 0.65 1.10
Tavoularis and Karnik [13] | 440 | 6.4 0.75 1.47
71360 | 9.6* 0.50 0.90

71270 1 9.0 0.65 1.16

71120 9.9* 0.66 1.18

71140 | 9.2* 0.62 1.09

71160 | 8.2* 0.70 1.25

? -1 5.9 0.73 1.54

? -1 6.2 0.70 1.56

7 -1 8.0 0.69 1.51

” -] 8.3* 0.70 1.64

7 -1 9.3* 0.45 0.94

7 - | 8.5* 0.45 0.95

Table 1: Principal results from experiments in which all the needed quantities
were measured. Asterisks are explained in the text.

source | Ry| S :j;;% s

Rose [20] | 120 | 6.5 1.05 1.67
Rohr et al. [21] | 110 | 11.0 0.53 1.10
71130 | 12.0 0.55 1.15

Table 2: Typical data deduced by “correcting” the measured energy dissipa-
tion rate, as described in the text.
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flow v ¢ C= %)3_@ integrated
dissipation
grid turbulence | (u2)7 | Ly; 1.0 -
homogeneous shear flows | (u2)z | Ly, [ C = C(S) -
two-dimensional wake | (u2)z | Ly; 0.7
two-dimensional wake Wo ) 0.035 0.10-0.12
two-dimensional jet | (u2)2 | Ly 0.35
two-dimensional jet U, o 0.015 0.11
axisymmetric jet (uf)% Ly 0.23
axisymmetric jet U, o 0.01 0.035
2-D mixing layer | (u?)7 | L, 0.43
2-D mixing layer U, ) 0.005 0.05

Table 3: Summary of dissipation results for unbounded shear flows. For
inhomogeneous flows, the values quoted are for the centerline. The length and
velocity scales have been defined in the text. Note that C(S) = exp(—0.035)
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Figure 1: The average energy dissipation rate scaled on the energy-
containing scales of turbulence, plotted against the microscale Reynolds num-
ber Ry = (u?)!/2Ly; /v. The data are for biplanc square-mesh grids. The line
to the left corresponds to the weak turbulence in the final period of decay in
grid turbulence, and is valid in the limit of vanishing Reynolds number. The

figure is reproduced from Ref. [1], where the data sources and other details
can be found.
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Figure 2: The average energy dissipation rate normalized on Ly; and
(u})/? as a function of Ry for flows with the shear parameter S in a narrow
range, as described in the text. Within this range of R, no clear trend with

Reynolds number is apparent.
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Figure 3: The average cnergy dissipation rate normalized on Ly and

(u2)!/2 as a function of S. The squares correspond to the experiments listed

in Table 1, and the diamonds to those listed in Table 2. The line corresponds
to ezp(—-0.035).
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Figure 4: The ratio of the 1sotropic dissipation rate to that measured
via cnergy balance in homogencous shear flows. To a first approximation,

this ratio can be treated as a constant within the Reynolds number range
considered here.
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normalized dissipation rates
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Figure 5: The quantities (Ju%%‘;, diamonds, and (%f—)%;, squares, plotted

against the cylinder Reynolds number, R;. For the latter, the data at low
Reynolds numbers seem to show a R;l/z dependence and settle down to a
constant of about 0.035 for R; > 1000. The power-law behavior (if one exists)
for the former quantity has a substantially smaller exponent (as should be
expected from the relation between the two varictics of scalcs).
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Figure 6: The quantity (dé,/dz — direct dissipation) for the Weighardt
boundary layer, normalized as in Eq. (27). The line indicates the turbulent
energy dissipation rate given by Egs. (31) and (29). The difference between
the two corresponds to fclyﬁq—;%gﬂ.
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Figure 7: The ratio of (db./dz — direct dissipation) to the work done at
the wall by friction.
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