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Turbulent cascades at high Reynolds numbers are explained briefly in terms of 
multipliers and multiplier distributions. Two properties of the multipliers ensure 
the existence of power laws for locally averaged energy dissipation rate: (a) the 
existence of a multiplier probability density function that is independent of 
the level of the cascade, and (b) the statistical independence of multipliers at one 
level on those at previous levels. Under certain conditions described in the 
paper, the same two properties of multipliers guarantee that velocity increments 
over inertial-range separation distances also possess power laws. This work is 
specifically motivated by the need to understand the influence on scaling of the 
experimental observations that property (a) is true for turbulence, but property 
(b) is not; and additional motivation is the need to relate cascade models to 
intermittent vortex stretching (and folding). This effect has been modeled by 
allowing the multiplier distribution to depend on the magnitude of the local 
strain rate, and it is demonstrated that this rate-dependent model accounts for 
the statistical dependence observed in experiments. It is also shown that this 
model is consistent with the uncorrelated cascade models except for very weak 
singularity strengths (or for negative moments below a certain order), leading 
to the conclusion that, for all practical purposes, the uncorrelated level-inde- 
pendent multipliers abstract the essence of the breakdown process in turbulence. 

KEY WORDS: Turbulence; cascades; turbulent energy transfer; multiscale 
interaction; nonlinear interaction; multipliers; multiplier distributions; statistical 
physics of turbulence. 

1. I N T R O D U C T I O N  

T u r b u l e n t  m o t i o n  a t  h i g h  R e y n o l d s  n u m b e r s  is exc i ted  o v e r  a wide  r a n g e  

of  scales. S ince  t u r b u l e n t  e n e r g y  is c o n t i n u a l l y  d i s s i p a t e d  i n to  h e a t  by  

v iscous  a c t i o n  a t  sma l l  scales,  the  m a i n t e n a n c e  of  a s t e a d y  t u r b u l e n t  s ta te  
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requires a source of energy. This is usually provided by mechanical  or  ther- 
momechanica l  st irr ing at some large scale or  by the large-scale instabi l i ty  
character is t ic  of the basic state of the flow. It  then becomes necessary to 
imagine that  the energy injected at  the large scale, say L, somehow gets 
t ransmit ted  to the dissipative small  scales. The process of energy transfer 
from large to small  scales is a significant element of turbulence dynamics.  
Impor t an t  contr ibut ions  in this context  have come from Richardson,  c~ 
Kolmogorov ,  ~2~ Onsager ,  ~3~ von Weizs~icker, ~4) Heisenberg,  c5) and others. 2 

The first descr ipt ion of this energy transfer as both  "local" and a 
"cascade" is due to Onsager.  ~3) If one utilizes Four ie r  representa t ion of 
turbulence,  the quadra t ic  nonl inear i ty  of Nav ie r -S tokes  equat ions  shows 
that  the energy transfer between any two wave numbers  k and k '  depends  
on the ampl i tudes  of these wave numbers  and their differences k __+ k'. If the 
wave numbers  k and k '  are both init ially of the order  1/L, the largest  wave 
numbers  par t ic ipat ing  in the interact ion are typical ly of the order  2/L. 
This reasoning appl ied to subsequent  steps leads one to expect an energy 
transfer process in which wave numbers  increase geometr ical ly by a factor 
of the order  2 for each step of the p rocess - - th i s  being the ha l lmark  of 
"local" energy transfer in wavenumber  space. 3 

In general  usage, the term "cascade" has various meanings:  (a) elements 
ar ranged in series so that  each element is dr iven from the preceding 
element and in turn drives the succeeding one; (b) a series of  vessels, from 
each of which there is a successive overflow to the next; (c) a waterfall over 
a slope, descending with ever-increasing speed; (d) a connected arrange-  
ment  whose result is to produce  a mult ipl icat ive effect of some sort  that  
s tops at a certain stage. 4 The appropr ia teness  of the meanings  (a) and (b) 
to turbulence is obvious from the previous paragraph.  To see how (c) is 
appropr ia te ,  let us recall the empir ical ly  known fact t7) in high-Reynolds-  
number  turbulence away from solid walls that  the average rate of energy 
diss ipat ion per unit mass follows the relat ion 

(~)  = Au3/L (1.1) 

2 Von Weizs~icker and Heisenberg collaborated on their turbulence work in the isolation of 
Farnhall in the summer of 1945. By the time the papers appeared, the authors had become 
aware through G. I. Taylor of Kolmogorov's as well as Onsager's work. 

3 While the Fourier representation of the turbulent field is natural for infinitely extended 
homogeneous systems, a less contrived description is often in terms of scales in real space. 
The important point is that the scale interaction in turbulence is local in a suitable wavelet 
representation, 16~ thus implying some degree of simultaneous localization in both real and 
Fourier spaces. 

4 For example, in cascade showers which produce high-energy photons and electron-positron 
pairs when high-energy electrons pass through matter, the multiplicative effect stops when 
the energy of individual particles falls below a threshold value. 
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where u2/2 represents the turbulent kinetic energy per unit mass and A is 
a constant of the order unity. Rewriting (1.1) as 

(5)  = AuZ/(L/u) (1.2) 

it is apparent that the energy injected 5 at the large scale L is lost by 
it in a time of the order L/u, which is its characteristic time scale. The 
energy transmission from any smaller scale r=2-"L ,  n being a positive 
integer greater than unity, to a scale half its size occurs at the fixed rate 
of ( e ) ,  so that the characteristic time for this process is of the order 
(5)-1/3 r2/3(L/u ) 2-2n/3. It follows that, even if there is an infinity of steps 
in the cascade, the time taken for energy transmission across the entire 
wavenumber spectrum is of the order L/u. It is thus clear that the first step 
in the energy transfer essentially decides the overall speed of the process, 
with subsequent steps increasingly accelerated. 

At all finite Reynolds numbers, the cascade terminates after a finite 
number of steps when scales of the order of the Kolmogorov scale r/ are 
reached. [The Kolmogorov scale is defined as q = (V3/(e)) 1/4, "9 being the 
kinematic viscosity of the fluid.] The energy density at all stages in the 
inertial range ( L -  1 ,~ k ,~ q - 1 or L ~> r >> r/, k and r being, respectively, the 
magnitude of the wavenumber vector and the representative scale of tur- 
bulent motion in real space) will be determined by the rate at which energy 
is being handed down from the first stage and eventually dissipated at the 
rate of ( 5 )  per unit mass. The results obtained on the basis of this physical 
picture are well known and associated most often with Kolmogorov. t2) 
These results will not be described here; they can be found, for example, in 
the encyclopedic work of Monin and YaglomJ 8) 

The physical picture just discussed has the important shortcoming that 
it neglects the intermittency of e - -by  which one means its extreme 
variability in spatial distribution (see Fig. 1). Note that the large peaks in 
Fig. 1 are of the order of a few hundred times the mean, which shows that 
the fluctuations of e from its average value cannot be ignored. 6 As the 
Reynolds number increases, the peaks in the distribution of e become more 
and more singular, eventually becoming ill-defined over most of the space. 
Following a suggestion of Obukhov, t13) one therefore considers instead of 
e its average er over a volume of linear dimension r; it is believed that er 

S This interpretation makes the assumption--plausible but not obvious-- that  the kinetic 
energy of turbulencg is of the order of the energy injected externally. 

6 The recognition of the importance of intermittency is usually traced c9~ to a comment by 
Landau, ~~ although Landau's  comment literally referred to the nonuniversality that may 
arise from averaging e over the nonuniversal large scales. For a good discussion of this point, 
see ref. 11. For a perspicacious review of the effects of intermittency, see ref. 12. 

822/78/1-2-22 
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Fig, I. A sample time trace of the square of the time derivative of streamwise velocity fluc- 
tuation in the atmospheric surface layer a few meters above the ground. By invoking Taylor's 
frozen flow hypothesis, the trace is interpreted as a one-dimensional spatial cut in the 
streamwise direction of one term of the energy dissipation rate, namely the square of 
the streamwise velocity derivative; for qualitative purposes, we shall treat the figure as 
representative of the distribution of the total energy dissipation rate as a function of a spatial 
coordinate. The abscissa spans a distance of about one integral scale. Note the tendency of the 
energy dissipation rate to cluster. The ordinate is normalized by its average over 100 integral 
scales; peaks which are several hundred times the global mean are not uncommon at this 
Reynolds number. The microscale Reynolds number based on the Taylor microscale and the 
root-mean-square velocity fluctuation is about 1500. 

is well-behaved for all r in the inertial range. Note that (rer)l/a/r represents 
the rate of strain experienced by a turbulent structure (loosely called a 
turbulent eddy) of size r. Intermittency of e therefore implies that eddies 
of the same size are subject to vastly different rates of strain at different 
positions in space. 

The broad task then is to determine the scaling properties of r e ,  and 
to model turbulent cascades in a manner that is both realistic and consis- 
tent with this scaling. Section 2 gives a brief account of simple uncorrelated 
cascade models whose outcome is in agreement with experiment; the 
notion of multipliers and multiplier distributions is described, as is their 
relation to the scaling properties of rer and Aur. The goals of the paper are 
more explicitly spelled out toward the end of Section 2 by drawing atten- 
tion to the somewhat paradoxical situation that these simple cascade 
models work better than can be expected reasonably. In particular, it is 
argued that uncorrelated cascade models do not take into account the 
complex process of eddy interaction and eddy splitting, which is the even- 
tual source of interscale energy transfer in turbulence. This complex inter- 
action is modeled in Section 3 by allowing the multiplier distribution to 
depend on the local rate of strain; the sense in which this rate-dependent 
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cascade model  is approx imated  by the uncorre la ted cascade models  is also 
discussed in this section. The paper  concludes with a restatement  of the 
principal  results. 

2. MULTIPL ICATIVE PROCESSES, MULTIPLIER 
D ISTRIBUTIONS,  A N D  S IMPLE UNCORRELATED 
CASCADE MODELS 

2.1. The Scaling of rer 

Turbulence is three-dimensional  in nature,  but  it is instructive to 
examine one-dimensional  cuts of the three-dimensional  field. In any case, 
this is useful p ragmat i sm because exper imental  information,  to which the 
outcome of the models  is ul t imately compared ,  is often in the form of 
one-dimensional  cuts. Typical  one-dimensional  cuts miss certain types of 
structures (e.g., vortex filaments, such as those observed in the numerical  
s imulat ions of ref. 14) or other  rare events, and lead to nons tanda rd  results 
such as negative dimensions;  ~15~ they are, however,  adequate  for most  o ther  
purposes.  We proceed with the examinat ion  of one-dimensional  cuts below; 
the general izat ion of the following phenemenology  to three dimensions 
does not  seem difficult in principle. 

The underlying theme of cascade models  is that  the energy transfer 
occurr ing in the inertial  range may  be abs t rac ted  by a cascade process in 
which, typically,  each eddy of size r subdivides into b pieces of size rib in 
such a way that  the energy flux per unit mass is redis tr ibuted unequal ly  
among b subeddies. The unequal  split of the energy flux is modeled as the 
source of intermittency.  7 That  being the case, the i th subeddy (1 <~i<~b) 
will receive a fraction M i ( r )  of the energy flux carried by its parent  eddy; 
the conservat ion of energy flux implies that  M l ( r ) +  - . .  + M b ( r ) =  1. (Note  
that, at high Reynolds  numbers,  the energy flux in the inertial  range is 
strictly conserved in three dimensions.  We are assuming that  conservat ion 
holds also in one dimension.  This introduces some formal difficulties which, 
however, lie outside the scope of this paper  and will not  be considered 
here.) In this manner ,  if we traced the history of all forefathers (up to the 

7 A special version of this model was developed in ref. 16; see also refs. 17 and 18. Other inter- 
mittency models such as the /3-model of ref. 19, the random ,g-model of ref. 20, and the 
a-model of ref. 21 have been reviewed in ref. 22; see also ref. 23. A qualitatively different 
multiplicative process can be constructed by splitting an interval into a known number of 
unequal subintervals each of which inherits the same fraction of the energy flux. 124~ This will 
not be pursued here even though it has some advantages of its own. In a different spirit, an 
intermittency model called the two-fluid model has also been developed recently, c-'5~ 
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large scale L) of a given scale r, we would find that the energy flux E(r) 
transmitted to a scale r is related to the flux E(L) at scale L according to 

E(r) = E(L)EM, (L) Mz(L/b).. .  M.(L/b" - ' )3 (2.1) 

where r/L = b-". Since the energy flux at scale r can be written down as a 
product  of the Mr, the latter will be called multipliers--first introduced by 
Novikov ~26~ and later discussed in greater detail by Mandelbrot .  m~ As 
indicated in Section 1, the base b is expected to be about  2, and so we shall 
henceforth restrict our considerations to the binary case of b = 2. 

The energy flux cascading down to smaller and smaller scales is con- 
verted into energy dissipation at the smallest scales, and so it is reasonable 
to suppose that the locally averaged energy dissipation rer can also be 
described analogously in terms of multipliers. Thus, the energy dissipation 
rer contained in an eddy (or scale or structure) of size r can be written in 
terms of the energy dissipation contained in an eddy of size L by 

rSr= (L<e>) 121 M, (2.2) 
i = 1  

where, for economy of notation, we have used the same symbol Mr in both 
(2.1) and (2.2); in any case, the symbol Mi will henceforth be used in the 
context of Eq. (2.2), and should not cause any confusion. 8 Note  further 
that we have assumed that <e> = e  L, which amounts  to ignoring fluctua- 
tions in eL. The q-order moment  of rer can be written as 

((rSr)q> = (L<e>)  q M 
i 

(2.3) 

where the angular brackets < .> indicate averages over multipliers 
associated with all scales of size r. By definition, the multipliers Mr in 
Eq. (2.2) can only range in magnitude between 0 and 1. Barring a deter- 
ministic energy transfer process (see Section 2.4), it is reasonable to 
suppose that the multipliers are random variables distributed on the unit 
interval, and to treat the averages in Eq. (2.3) as probability averages with 
respect to the joint probability density function (pdf) of the Mi. 

Assume now that the multipliers at any given level are statistically 
independent of those in the previous level. Assume further that the 

s Equation (2.2) says that the variability of er is multiplicative, which justifies the usage of the 
term "cascade" in the sense (d) mentioned in Section 1. The multiplicative process stops 
when the Reynolds number of subeddies of size r/ is of the order of unity. Altogether, 
Onsager's choice of the word "cascade" seems to have been an inspired one. 



Turbu lent  Cascades 317 

multipliers at all levels in the inertial range have a unique pdfP(M).  
We can then drop the suffix i in M; in Eqs. (2.2) and (2.3) and rewrite 
Eq. (2.4) as 

((rer) q ) = ( L ( e ) )q (r/L) -Iog2< Mq> (2.4) 

recalling that r / L =  2-".  This shows that the moments of the energy dis- 
sipation contained in a piece (or an eddy) of size r vary as powers of r, 
with the scaling exponents given by the moments of the unique multiplier 
distribution. 

As an aside, we may note that the multiplicative model can be written 
as an evolutionary equation for er as 

de, er(2M(r) 1) (2.5) 
dr 

where M(r)  is the random multiplier at stage n given by log2(L/r). 

2.2. The Scaling of Velocity Increments 

Consider the so-called velocity increments in the inertial range defined 
a s  

Aur = u(x + r) -- u(x) (2.6) 

where u is the velocity component in the direction of the separation 
distance r. To relate the velocity increments to the locally averaged energy 
dissipation, recall the statement of the refined similarity hypothesis of 
Kolmogorov, c9~ which, for present purposes, relates Aur to the energy 
dissipation re, over the interval r as 

Aur = V(re,) 1/3 (2.7) 

where the stochastic variable V is independent of both r and rer for inertial 
range scales, and is hence universal. The validity of this hypothesis as a 
working approximation has been established experimentally ~2s) as well as 
by direct numerically simulations; ~29~ theoretical reasons for its validity 
have been explored in ref. 30. There are thus sufficient reasons to believe 
that Eq. (2.7) is correct (at least as a good approximation), and so we shall 
now use it with some confidence. If V is indeed independent of r and re,, 
we obtain from Eq. (2.7) that 

( (Aur)")  = ( V " ) ( L ( e ) )  "/3 (r/L) -I~ (2.8) 
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where n is an even integer. 9 Again, it is seen that moments of the multiplier 
distribution are central to the scaling properties of velocity increments in 
the inertial range. 

Equation (2.8) suggests that the intermittency of er is directly felt, via 
(2.7), by the velocity increments ,Jut as well. Experiments at all finite 
Reynolds numbers, including those characteristic of geophysical flows, 
show that velocity increments exhibit intermittency. The situation in the 
theoretical limit of infinite Reynolds numbers is obscure, however. There is 
indeed a body of literature that suggests that the intermittency of er is not 
felt by the velocity field. 13~ This latter conclusion is based on the analysis 
of structure functions in spectral space, using data generated numerically 
by the so-called shell models of turbulence, and their relevance needs to be 
assessed carefully. 

2.3. Level- Independent Mul t ip l ier  Distr ibutions 

The discussion so far shows that the existence of a unique level- 
invariant multiplier distribution, with multipliers at any level being statisti- 
cally independent of those at all previous levels, guarantees the existence of 
power-law scaling of both rer and Aur. We shall now consider experimental 
data on the multiplier pdf and explore both level invariance and statistical 
independence. In order to determine P(M), we may proceed as follows. 
Consider a long data string of e distributed over an interval which is N 
integral scales in extent, N being some large integer. Divide each interval 
of size L into b equal-sized subintervals, and obtain the ratios of the 
measures (i.e., rer) in each of the subintervals to that in the entire interval. 
These ratios are precisely the multipliers we want; they are clearly positive 
(since e is positive definite) and lie between zero and unity. Subdivide each 
subinterval into b pieces as before, and repeat the procedure. At the n th 
level of this process, there will be Nb" subintervals of size r/L = b -"  and an 
equal number of multipliers. Construct the histogram of the multipliers at 
each level, and repeat the procedure until the smallest subinterval reached 
is of the order of the Kolmogorov scale r/. 

The pdfs P(M) of the multipliers have been obtained in ref. 32 for 
different levels of subdivision; see also ref. 33. An important finding of 
ref. 32 is that the shape of the pdfs is independent of the scale r in the 
inertial range. This is shown in Fig. 2. (For very small r, this distribution 

9 ((zlur)q) cannot be defined for nonintegers q. One can, however, empirically obtain the 
scaling exponents of (I,durl q) for any q. The formal relation between the scaling exponents 
of ((Au,)") and those of (IAu, l") is not clear for odd n. 
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is essentially uniform over the entire interval, whereas it approaches a delta 
function at 1/2 for r much larger than L.) This justifies our first assumption 
in Section 2.1 that there exists a unique level-independent pdf of multipliers 
in the inertial range. 

Two observations will prove useful later. First, the scale-invariant pdf 
of Fig. 2 is fitted adequately by the fl distribution (solid curve) given by 

= F(2/~) ,l,r l( 1 - M)  a -  1 
Ba(M) F(fl)2 --- (2.9) 

where F stands for the gamma function. The least-square value of fl here 
is 3.2. We do not assign any theoretical significance to the fl distribution, 
but view it as a convenient fit to the measured pdf. Second, in computing 
the multiplier pdf, if one randomly shuffled the dissipation among one- 
dimensional partitions of size R, say, the multiplier distributions are not 
scale invariant for any scale above R. The observed scale invariance thus 
incorporates to some degree the spatial coherence of the distribution of the 
measure. 

. . . .  I 
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Fig. 2. Multiplier distributions for base 2. Different symbols correspond to different levels in 
the inertial range. Diamonds correspond to a starting level of 384r/, where t/ is the 
Kolmogorov scale, pluses to 768r/, crosses to 1536r/, and circles to 3072r/. The solid line is the 
/~ distribution, Eq. (2.9), with fl = 3.2. 
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2.4. Quasideterministic Models 

We have shown elsewhere ~34~ that one can generate simple deterministic 
cascade models on the basis of the level-independent multiplier distribu- 
tions just discussed. A few words about this procedure are appropriate 
here, especially because of the later need to employ it for similar purposes. 

The cascade process with b =  2 can be thought of physically as the 
breakdown of a structure (the parent eddy or scale) into two substructures 
at each level. Now, for the sake of simplicity, let us assume that one of 
the two subeddies at each level receives a fixed fraction p of the energy 
contained in the parent eddy; naturally, the other will receive 1 -  p. This 
model is deterministic in the sense that the multipliers are fixed numbers 
independent of the level. (Strictly speaking, since there is no distinction 
between the left and right pieces, the model is only quasideterministic.) The 
multiplier distribution is written in terms of delta functions as 

P~(M) = �89 ~ ( M -  p) + �89 6 ( M -  (1 - p)) (2.10) 

If p =  1/2, there is no intermittency and the situation corresponds to 
Onsager's and Kolmogorov's  1941 theory. To obtain intermittency, we 
should have a value of p different from 1/2. 

To determine a sensible value of p, it is natural to match the moments 
of P~(M) from Eq. (2.10) with those of the experimentally measured P(M). 
For both distributions, the zeroth-order moment (normalization) and the 
first-order moment (mean value) coincide trivially, and are 1 and I/2, 
respectively. The first nontrivial condition is obtained by matching the 
second-order moment. This yields p = 0.7. This is the so-called p-model of 
ref. 16, where it was obtained empirically by requiring a good fit to the 
multifractal data. The present analysis provides some rational basis for the 
model. It is a fortunate coincidence that the exact matching of the first 
three moments also matches high-order moments (at least up to order 7) 
quite well. This was shown in ref. 34 as a part of an overall scheme for 
constructing a hierarchy of quasideterministic models with increasing 
sophistication; the limitations of such a procedure were also noted there. 

2.5. Conditional Distributions and Statistical Dependence 

We now turn to the question of statistical independence, and obtain 
conditional pdfs of the multiplier M i at  level i given the multiplier M;_ 1 at 
level i -  1. The scheme for doing so (Fig. 3) consists in computing Mi_ 1 = 
(rer)i/(rer)~-~ (with no distinction between the left and right pieces), and 
forming the ensemble of intervals such that M~_ ~ fails within a narrow 
interval around a chosen value M ~- ~, say. In this ensemble we compute the 
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( 1" ~ r ) i-1 

( r , ~ r )  i+l 

Fig. 3. The scheme for obtaining the multiplier distribution conditioned on the previous 
multiplier value. 

normalized histograms of M ; =  (rer)~+ 1/(rer)i (where, again, no distinction 
is made between left and right pieces). The resulting histogram tends to the 
conditional pdf of Mi given M ~-), p(MilM~-)),  when the number of 
samples in the ensemble tends to infinity and the size of the interval around 
M ~-) tends to zero. The results are presented in Fig. 4; the dashed 
line corresponds to a narrow band around M~-1=0.3,  the dotted line 
to a narrow band around M(-~=0.7 ,  and the solid line to the average 

I 

M ~ - I ~  , "  , - " "  

/ j a '\ 

~ . . . .  ' ' .0  

Mi 

Fig. 4. The multiplier distributions conditioned on multiplier values at a previous level. The 
full line is the average of all symbols in Fig. 2 and thus represents the unconditional multiplier 
distribution. The dashed curve is for the multiplier M~ starting at a scale size of 768r/ given 
that the multiplier M~_ ~ at the previous level of twice the size is in the range [0.2~0.4]. The 
dotted curve is a similar distribution conditioned on the multiplier range [0.6~.8].  
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Fig. 5. The multiplier distributions conditioned on multiplier values from two previous 
levels. The full line is the same as in Fig. 4. The dashed and dotted lines represent conditional 
distributions of multipliers starting at a scale size of 768,/. The conditioning ranges of the 
multipliers are the same as in Fig. 4. 

unconditional pdf taken from Fig. 2. All pdfs are roughly scale invariant 
within the inertial range, but the multipliers at any given level do show a 
dependence on those at the previous level. This dependence persists even if 
one conditions on multipliers from two previous levels, as shown in Fig. 5. 
Evidently, the memory of the multipliers does not fade fast. 

2.6. Recapitulation 

We have seen that a sufficient condition for the existence of the power- 
law scaling of re, is that (a) the unconditional pdfs of the multipliers be scale 
invariant, and (b) the multipliers at one level be statistically independent of 
those at previous levels. It has been shown that (a) is surely true; just as 
surely, however, (b) does not hold. Yet, recall that one indeed observes at 
high Reynolds numbers a reasonably good scaling range (although it has 
not been demonstrated so far that the power-law scaling is a natural conse- 
quence of the governing equations). Further, if one assumes that a power- 
law scaling does occur, various independent experiments ~n'351 yield 
exponents which are in good agreement with Eq. (2.4), an equation that 
takes this independence for granted. One is then led to conclude that, 
unless the experimentally observed scaling is forced (that is, power taws 
are fitted even where they do not really exist), the condition (b) is not 
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necessary to observe scaling; at the least, the influence of the multiplier 
dependence on scaling should be benign in a sense yet to be understood. 
One of the goals of this work is to understand this aspect. 

Even more basically, a realistic cascade model must at least allow a 
fragmentation process that is active in regions of large strain rate (rer)l/3/r 
and inactive in regions of negligible rate of strain. The simple cascade 
models of Section 2 do not incorporate this feature in any way, yet they 
yield power-law exponents which agree with measurements. Is their perfor- 
mance merely fortuitous, or can it be understood as a rational approxi- 
mation to a more complex physical model? We propose to address this 
question by first examining the dependence of multipliers on the magnitude 
of rer, in particular the dependence of the distribution of multipliers Mi 
on the energy dissipation rate (rer)~. It will then be shown that this rate- 
dependent multiplier distribution contains the statistical dependence 
observed experimentally. Following this demonstration, we investigate the 
sense in which the simple cascade models of Section 2 are good approxima- 
tions to the rate-dependent multiplier distribution, actually a simplified 
version of it. 

3. MORE REALISTIC CASCADE MODELS 

3.1. Rate -Dependent  Mul t ip l ier  Distributions 

The conditional pdf of the multipliers Mi for some given (rEr)i, 
D(Mi[ (rer);), is shown in Fig. 6 for three values of (rer)~, with r fixed. The 
pdf is noticeably narrower for the smaller (rer)~ than for larger (rer),  which 
simply means that there is less probable redistribution of energy flux 
among subeddies. If M is exactly 1/2, there is no redistribution of energy 
flux (which effectively means that there is no breakup at all). Regions of 
more intense dissipation correspond to zones of higher local Reynolds 
number [defined as r(re~)~/3/v] which can support a richer variety of 
instabilities leading to the breakup of eddies. In general, such a breakup 
leads to more drastic redistribution of the kinetic energy flux; values of M 
different from 1/2 will therefore occur more often than for smaller values 
of rer. Note that, as for the unconditional pdf of Fig. 2, the pdfs of Fig. 6 
are fitted well by the fl distribution with varying values of ft. The smooth 
curves in Fig. 6 are least-square fl distribution fits to the measured pdfs. 

In Fig. 6 we have examined the dependence of the multiplier distribu- 
tion on the energy dissipation rate contained in boxes of fixed size r; it turns 
out that the distribution depends on r as well. This has been examined, and 
the values of fl for various multiplier distributions corresponding to several 
values of r and rer have been obtained. The net outcome of this exercise is 
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Fig. 6. The rate-dependent multiplier distributions corresponding to re,/q(e ) taken from the 
windows [0-30] ,  [60-90] ,  and [300-700] .  The lowest range corresponds to the most peaked 
distribution. For all three curves the multipliers are obtained by going from a scale of size 768q 
to half the size. Dashed curves in each case correspond to the/~ distribution wi th / /va lues  of 
7.9 (for the most peaked distribution), 3.9, and 2.6 (for the least peaked distribution). 
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Fig. 7. The ,8 values obtained from fits to the rate-dependent multiplier distributions, as a 
function of rtJq<~). Each curve corresponds to a different values of r. Plus: r/q = 96; square: 
r/r I = 192; cross: rh7 = 384; circle: r/rl = 768; diamond: r/q = 1536. 
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Fig. 8. The fl values of Fig. 7 can all be collapsed roughly onto a common curve by 
normalizing re,/q(e) by (r/r/) "', where ct* is 1.58. The dashed line is an idealization of this 
curve used to obtain the so-called correlated p-model described later in the text. The vertical 
line corresponds to (re,/q (e)/(r/q)~" = 0.002. 

the function fl(r/q, rer/q(e)) ,  shown in Fig. 7, where each symbol 
corresponds to different values of r. The main  features of Fig. 7 are that for 
a fixed r, the parameter  fl decreases as re, increases, tending to an 
asymptotic value of approximately 2 for large rer. All curves in Fig. 7 can 
be collapsed reasonably well (Fig. 8) if the parameter  fl is plotted versus 

i(,?- 
~7 < ~ ) i t , , )  

with ~* ~ 1.58. The theoretical significance of this numerical value of the 
exponent  ~* is unclear at present, but  we shall return to it momentari ly.  It 
appears clear, however, that the function [3(r/~l, r edq (e ) )  is approximately 
of the form 

/(rV" 
is \ n<~> l \ . )  ) 

Cascade models with multipliers depending on the magnitudes of the local 
energy flux or the local strain rate will be denoted henceforth as rate- 
dependent cascade models. 
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3.2. The Correlated p - M o d e l  

For later purposes, it is convenient to idealize the data in Fig. 8 by a 
fl that is infinity when 

L-C I\Z/ 
[which makes Eq. (2.8) degenerate to a delta function centered at 
M = 0 . 5 ] ,  and by f l = 2  when 

L ( ~ ) / k L )  > K 

which makes the multiplier distribution parabolic. Further, in the spirit of 
the quasideterministic models described in Section 2.4, we shall represent 
the latter fl distribution by an appropriate p-model, for which it is easy to 
show (by matching the first three moments as in Section 2.4) that p = 0.72. 
We thus arrive at the "correlated p-model" with the multiplier distribution 
given by 

P M L ( e ) '  

I b ( M -  0.5) if ~ \ L /  (3.1) 

l~ 1 M r~r (L) 6(M-0 .72)+-~6( -0 .28)  if L - - ~ > K  

with ~* = 1.58. We shall use this model to establish the connection between 
the rate-dependent model on the one hand and uncorrelated cascade 
models on the other. 

3.3. The Relation Between the Rate-Dependent  and 
Uncorrelated Cascade Models 

We now wish to establish, first, that the statistical dependence of 
multipliers at one level on those at previous levels is contained in the rate 
dependence of the cascade models. Second, we wish to show that rate 
dependence has no implications on all but negative moments below a 
certain order. Taken together, we will then have shown that the influence 
of statistical dependence from one level to another is negligible for all 
positive (and some negative) moments. 
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E: r 

~r ' = 2 M e r  

r '  = r / 2  r '  = r / 2  

Fig. 9. The schematic of generating the dissipation signal using Eq. (3.2). 

Toward  the first objective, it is convenient to organize all the informa- 
tion on multiplier distributions in a single formula. The functional form 

= G M ( l  - M )  exp re~/L(e) M ( I -  M) 

where G is a normalization constant, adequately approximates the 
experimental pdfs for various values of r and rer (and, incidentally, ~~ also 
the fl distribution except in small neighborhoods of M = 0  and 1). To 
generate a dissipation field using Eq. (3.2), one uses the generator of Fig. 9. 
Start with an interval of size L containing a total dissipation of LeL and 
assume, as before, that eL = ( e ) .  A multiplier M is now picked from the 
distribution of Eq. (3.2). This will lead to the first level of construction with 
two subintervals of size r'=L/2 and dissipation (r'G,)tea=MLeL and 
(r'8r,)right = ( 1 - - M )  L8 L. In general, at a given level 17 where r=L2-",  the 
values of r and the associated rer are inserted into Eq. (3.2) to pick a multi- 
plier from it, which will then be used to determine the amount  of dissipa- 
tion on intervals at the following level. This process is repeated up to a 
maximum level N, where, as before, ~1 = L 2 - N -  From the dissipation field 
so constructed, we can compute  p(M~[M ~- I) numerically. We have done 

~0 Incidental because the fl distribution fit to (3.2) is not used anywhere in the text. 



328 Sreenivasan and Stolovitzky 

t--- 2 
7 

v 

Oo 

u,-,x/ 

,,' ' ,  

S i" '\ 

r/,~/=,1 ;2 

0 0.5 .0 

Mi 

Fig. 10. The conditional multiplier distributions computed from the rate-dependent multi- 
plier distributions; see text for details. The point to emphasize is that the rate-dependent 
multiplier distribution yields conditional multipler distributions which are similar to those in 
Fig. 4. The curves were obtained from a combination of 2 9 integral scales each with a ten-step 
cascade, i.e., L/q = 2 l~ 

this for K =  1 and N =  10 in Eq. (3.2). The resulting distributions, shown in 
Fig. 10, are similar to those shown in Fig. 4, thus confirming u that the 
dependence of Mi on Mi_~ can be understood in terms of a somewhat 
more physical dependence of Mi on (re,)~. 

For the second purpose mentioned earlier in this subsection, let us first 
note the following feature of the dynamics of the correlated p-model. 
According to Eq. (3.1), if at any particular level n (with r =  L2-" ) ,  the 
ratio 

L(~)It, L) 

is less  t h a n  K, o r  a l t e r n a t i v e l y  if  cr > u* ,  t h e  d i s s i p a t i o n  o f  a n  o f f s p r i n g  a t  

s ca l e  r ' =  r /2  is g i v e n  b y  

,*, 
L(~)  = (3.3) 

l i  The multiplier distribution (3.2) shows a weak dependence on (r/L), at least for all finite 
number of steps in the cascade. However, this weak dependence does not negate the 
demonstration that rate dependence and the dependence of M i on M i_ l are consistent with 
each other. 
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F i g .  11.  The logarithm of the partition function defined in Eq. (3.4) plotted as a function of  
the logarithm of r/L, for the three values of  parameter q displayed in the figure. The dissipa- 
tion field was computed from the correlated p-model.  The slopes of  these curves yield the 
parameter r. The principal point to emphasize is that the correlated p-model  yields excellent 
scaling. 

taking K =  O(1), say. Now, 

r'e'~ =1 re~ = l ( r )  ==2~_1(~_) ~ 
L(e)  2L(e)  2 \ L /  

which must equal (r ' /L)  ~' from Eq. (3.3). This is possible only if ct' < ct. This 
means that the correlated p-model tends to prevent local exponents ct in 
r e f f L ( e )  ~ (r /L)  ~ from getting larger than ct*. In the multifractal language, 
this correlated cascade process imposes an upper bound ct* on the expo- 
nent ~. Noting that larger ct means weaker singularities, one might imagine 
that the standard uncorrelated p-model will work for larger singularity 
strengths. 

To better establish that this is indeed the case, we computed from the 
dissipation field given by the correlated p-model t2 the partition function 

N 

Zq(r) = ~ (rer)7 (3.4) 
i = 1  

where the sum extends over all the N possible intervals of size r. This parti- 
tion function scales with r as Zq(r)  ~ (r /L)  r(q), as can be seen in Fig. 11 for 
q = - 3 ,  0,5, and 3. The slopes of these plots (in the log-log representation) 
yield the value of the scaling exponents r(q). The importance of r(q) is 
that (27) we can compute from it the scaling of the moments of the dissipa- 
tion # ( q ) =  r (q)+  1, the generalized dimensions (27'36) Dq = r ( q ) / ( q -  1 ), and 

~2 The calculations use a multiplier value of 0.7 instead of  0.72 in the correlated p-model,  but 
this makes  no substantial difference to the conclusions.  

822/78/1-2-23 
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Fig. 12. The generalized dimensions Dq as a function of q, obtained from plots such as 
Fig. 11, compared with those obtained for the p-model of ref. 16. It is clear that there is no 
difference between the correlated and uncorrelated models for q > @. Differences show up for 
more negative q. 
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Fig. 13. The information in Fig. 12 has been converted via Legendre transforms to t h e f ( a )  
curve. Again, it is seen that the correlated and uncorrelated models are nearly 
indistinguishable for all cc < ~. 
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the spectrum of singularities, or the f (~)  cu rve ,  (37) via the Legendre trans- 
form. Figure 12 shows the generalized dimensions Dq for the correlated 
p-model (circles) and Dq corresponding to the uncorrelated p-model (solid 
curve). It can be seen that Dq and Dq coincide for q > ~, with ~ ~ -1 .  That 
is, the scaling exponents of the moments of the dissipation should be 
approximately equal for the correlated and the uncorrelated processes 
except for moments of order q < ~. 

Alternatively, these same effects can be studied by using the spectrum 
of singularities f(ct) shown in Fig. 13. The dashed curve corresponds to the 
uncorrelated p-model, and spans a range from (Xmi n [equal tO 1og2(1/0.7)] 
to Ctma ~ [equal to log2(1/0.3)]. The solid curve comes from the correlated 
p-model, spanning an ~ range from the same 0~mi n to ~*. AS was the case 
with the generalized dimensions, the f(ct) results from the correlated and 
uncorrelated p-models coincide for ct between (Xmi n and ~=  az/Oqlo. (This 
last relation obtains from the fact that ct and z are related via Legendre 
transform.) However, for ~ larger than ~, differences arise between the two 
f(~)  curves. 

It must be noted that the possibility of a truncated f(~)  curve was 
recognized in ref. 38. 

To summarize, the observed statistical dependence of the multipliers 
has little effect on the scaling exponents of ((rer) q) for all q > -1 .  

4. C O N C L U S I O N S  

We have considered energy cascades in high-Reynolds-number tur- 
bulence, and discussed the concept of multipliers and multiplier distribu- 
tions. To guarantee the existence of power laws for locally averaged energy 
dissipation rate, it is sufficient for the multipliers to have two properties: 
(a) the level invariance of their probability density function, and (b) 
statistical independence of multipliers at one level of those at previous 
levels. Upon invoking the refined similarity hypothesis of Kolmogorov, 
these two conditions also are sufficient for the moments of the inertial- 
range velocity increments to vary as known powers of the separation dis- 
tance. Closer inspection reveals that while the multiplier distributions are 
indeed level independent to a good approximation, multipliers at any given 
level show a significant dependence on those from previous levels. The issue 
then is to understand the manner in which this statistical dependence 
affects the scaling of rer and ~Jur. Finally, it was thought useful to make a 
connection between cascade models on the one hand and the phenomenon 
of intermittent strain rate (related to vortex stretching and folding) in 
turbulence. 
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We have approximated this last effect by means of a rate-dependent 
cascade model which allow the multipliers to depend on the magnitude of 
the local strain rate, and shown that it contains the statistical dependence 
of multipliers at one level on those at the previous level. We have abstrac- 
ted the essence of this rate-dependent model by the so-called correlated 
cascade model, and shown that the latter coincides with the uncorrelated 
cascade model except for very weak singularity strengths. Thus, the statisti- 
cal dependence observed in the experiment does not have any effect on 
scaling properties of turbulence except for negative moments below a cer- 
tain order. At any rate, it can be said that statistical independence between 
multipliers is sufficient but not necessary for the power-law scaling 
observed in turbulence for all positive powers. ~3 

In summary, we have explored the physical content of simple uncorre- 
lated cascade models and examined their mathematical and physical 
consistency. We believe that this work enables us to appreciate the sense in 
which such models approximate what is evidently a more complex reality, 
so that they could be used with more confidence about their validity and 
better awareness of their limitations. 
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