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All known data are collected on the Kolmogorov constant in one-dimensional spectral formula for 
the inertial range. For large enough microscale Reynolds numbers, the data (despite much scatter) 
support the notion of a “universal” constant that is independent of the flow as well as the Reynolds 
number, with a numerical value of about 0.5. In particular, it is difficult to discern support for a 
recent claim that the constant is Reynolds number dependent even at high Reynolds 
numbers. 0 1995 American Institute qf Physics. 

I. INTRODUCTION 

The classical formalism of Kolmogorov’ for three- 
dimensional turbulence at high Reynolds numbers leads to 
explicit expressions for various inertial range quantities. In 
particular, for. the so-called one-dimensional longitudinal 
spectral density detined as 

where (z~f) and kt are the mean-square fluctuation velocity 
and the wavenumber component in the “longitudinal” direc- 
tion x1, one obtains the relation2 

0) 
where (e) is the mean value of the energy dissipation rate, 
and the constant C, , named after Kolmogorov, is presumed 
to be “universal.” The subject of this paper is the nature and 
numerical value of this Kolmogorov constant. 

Often in turbulence literature, “Kolmogorov constant” 
denotes the prefactor in three-dimensional spectrum, as well 
as that in second-order structure function for longitudinal 
velocity increments. Clearly, local isotropy- which is a fore- 
runner of universality in Kolmogorov’s formalism- implies 
that those two constants are, respectively, &Y, and about 
402C, (see, for example, Ref. 3). 

Since several past attempts (see, for example, Refs. 3-6) 
have been made to collect available data, and the conclusions 
reached there were not very different from those of the 
present work, one might wonder whether this paper is 
needed at all. Fist, much more data have now become avail- 
able in the 25 or so years since these past efforts, and it is 
now possible to make a more complete examination of all 
the data. Second, in contrast to the general belief held until 
recently, it has been claimed7 that C, possesses an explicit 
Reynolds number dependence. Even a weak dependence 
could lead to far-reaching conclusions,s-” and is of crucial 
importance to some recent theoretical considerations.” To- 
gether, these reasons prompted us to take a thorough look at 
the experimental situation. 

We have examined more than 100 spectra obtained in 
various flows, and a few remarks should be made about the 
procedure used for determining C, . First, all the data exam- 
ined here are from single-point measurements in which Tay- 
lor’s hypothesis has been invoked to relate frequency spec- 
trum to wavenumber spectrum. The effect of this plausible 
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approximation is not known precisely- despite several laud- 
able efforts’“-14 to quantify them- and no further comments 
will be made on this matter. Second, the analysis here will be 
based on the longitudinal spectra, although a comment will 
be made in Sec. V on the effect of using spectra of transverse 
velocity components. Third, all dissipation measurements in 
shear flows have been made by assuming local isotropy; we 
shall briefly remark on the effect of this approximation. 

A few additional remarks seem worthwhile. First, in 
many cases examined here (especially where the authors 
did not specify the Kolmogorov constant themselves), we 
have plotted the compensated 
= grnc#q (k,)l( ey3, 

spectral quantity $(rkr) 
and determined the constant from the 

wavenumber region in which fi was reasonably constant. 
This scheme is better than fitting straight-lines to data in 
log-log plots, but is not foolproof (unless the scaling regime 
is several decades in extent). The principal difficulty is the 
slight but inevitable curvature of the region expected to be 
hat. The situation can be improved, as pointed out by 
Kraichnan,‘5 by using some model for dissipative and large 
scale regions, thus producing sharper cut-offs and extending 
the flat region. Unfortunately, this cannot be done without 
introducing ad hoc models, and so will not be attempted 
here. Different methods of estimation using the same data 
could result in an uncertainty of the order of 10%; there may 
indeed be other sources of errors due to data acquisition. 

The second remark concerns the so-called intermittency 
corrections to the spectral form in the inertial range. There is 
a general belief3 (although contested often enough16-18) that 
the spectral exponent gets slightly modified by small-scale 
intermittency. This modification, even if it exists, is small 
and cannot be accommodated in a consistent and satisfactory 
way given other uncertainties in the data; it is therefore ig- 
nored uniformly. 

As a final remark, we have thought it to be most appro- 
priate - contrary to some previous practices-to plot the Kol- 
mogorov constant against the microscale Reynolds number 
Rh= u ; h/ Y, where u f is the root-mean-square of the veloc- 
ity fluctuation u1 in the direction of the mean velocity U and 
A is the Taylor microscale; I, is the kinematic viscosity of the 
fluid. In the literature to be examined below, Rx is often 
provided by the authors themselves, who usually obtain A 
from the relation 

X=[U~21((dU~ldX~)2)]“2, (3) 

with du t ldxt replaced by - (l/U)( du t ldt) according to 
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TABLE I. Sources and Reynolds numbers for grid-generated turbulence 
data. 

Source CK Remarks 

Comte-Bellot and Corrsin’g 

Fan” 
Gad-el-Hak and Cormin” 

. Gibson and Schwar? 40-60 0.49 

Kistler and Vrebalovichss 

Schedvin et al.% 
Sreenivasan et aZ.= 
Stewart and Townsendz6 

Uberoi” 
Van Atta and Cher? 

Warhaft and Lumley” 
Yeh and Van Atta3’ 

37 0.50 
38 0.40 
41 0.42 
41 0.55 
61 0.46 
65 0.45 
72 0.46 
52 0.53 

108 0.57 

264 0.57 
522 0.57 
535 0.57 
669 0.57 
280 0.48 

34 0.38 
28 0.33 
29 0.38 
40 0.36 
70 0.49 
35 0.53 
49 0.50 
45 0.60 
35 0.54 

In these experiments, a 
secondary contraction 
was used to render the 
grid turbulence more 
isotropic than is other- 
wise possible 

Average value from 
five realizations; see 
further comments in 
the text 
Average value for all 
experiments; difficult 
to discuss each 
experiment separately 
See remarks in the 
text 

See remarks in the 
text 

Taylor’s hypothesis. When Rx is not given by the authors, as 
is often the case for atmospheric data, it is estimated from 
other means- and the manner of estimation is indicated. 

II. GRID TURBULENCE 

Turbulence generated by a grid of rods simply decays 
downstream and the tendency towards sustained large-scale 
anisotropy is therefore absent. Even though some residual 
anisotropy persists downstream, the turbulence field is close 
to being isotropic-especially if prepared with particular 
care, as in Comte-Bellot and Corrsir~.‘~ Table I, which sum- 
marizes the sources of data and their microscale Reynolds 
numbers, also includes some comments; a few additional re- 
marks follow. 

(1) The dissipation rate in grid-generated turbulence can 
be measured relatively accurately from the energy decay be- 
hind the grid. This makes less severe demands on the fre- 
quency response and spatial resolution of turbulence- 
measuring sensors. However, a different type of uncertainty 
may be introduced because energy dissipation is estimated 
by differentiating empirical power-laws fitted to energy de- 
cay. In aLl the cases examined below, the energy decay is 
consistently obtained from gdldt)(u$=- $J, (dldx)(ut), 
where U, is the mean velocity of the flow upstream of the 
grid. Note that Kistler and Vrebalovich23 obtained their en- 
ergy dissipation data from -U, (dldx)((ut+2z&), u2 be- 
ing the velocity fluctuation in a direction transverse to the 
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FIG. 1. The compensated one-dimensional spectral density plotted against 
the wavenumber for one of the grid-generated turbulence experiments of 
Comte-Bellot and Cormin,” R,=61. The flat region, which is relatively 
small at low Reynolds numbers, yields the Kolmogorov constant. 

mean flow; as already remarked by Pond et al.,4 Gibson,5 
Bradshaw,6 Schedwin et aZ.% and a number of others, this 
yields a C, of 0.68. However, adopting the definition uni- 
formly employed here, one obtains a value of 0.57. 

(2) For all cases to be examined below, the compensated 
spectrum ~+5 generally showed a flat region when the micro- 

TABLE II. Sources and Reynolds numbers for pipe and channel follows, 
and the fully turbulent part of the boundary layer. They symbol d below 
refers to pipe radius, channel half-width or the boundary layer thickness, 
depending on the context. 

Flow Source 
Position of 
measurement RX CK 

Pipe 

Channel 

Boundary 
layer 

Laufen4 

Lawn3’ 
Ansehnet et a1.36 
Comte-Bellot37 

Laufer? 

Bradshaw3g.40 
Klebanoff4* 
Kailasnath and 
Sreenivasan43 
Mestayer 
Saddoughi and 
Veeravallij5 

y/d =0.28 450 0.56 
yld=l.O 230 0.48 
O.l<y/dtl.O 115-200 0.53” 
y/d=&4 51.5 0.59 
yld=0.34 370 0.60’ 
yld=l.O 220 0.58 
ytd=l.O 108 0.45 
yid=0.7 137 0.46 
yld=0.4 143 0.43 
log-region 100-400 0.51d 
yld=0.2 230 0.59 
yld=O.2 200 0.55 

yld=O.3 616 0.50 
yld=0.09 500 0.49co.03 
yld=0.09 1400 0.49 
yld =0.47 600 0.49 
yld =0.37 1450 0.49 

“The error bars provided by the authors are t8%. 
bThis value was obtained from second-order structure function measure- 
ments. 

‘For this flow, Monin and Yaglom6 estimated C, to be about 0.65. 
dBradshaw provided different values for the inner and outer layer regions. 
The value quoted here corresponds to the inner region. The outer intermit- 
tency affects C, in ways that can be estimated moderately well (see, for 
example, Kuznetsov et aL41), but this issue needs a more detailed look. 
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scale Reynolds number Rh exceeded about 50: however, a 
few sets of data with marginally higher Rk displayed no 
perceptible flat region, while some others with marginally 
lower R, showed a semblance of a flat region. We believe 
that some of these differences at the margin are traceable to 
the manner in which the spectra are obtained (analogue ver- 
,SUS digital methods) and plotted (discrete points versus con- 
tinuous curves). Where there is no well-defined flat region, 
the value of C, quoted was obtained from the peak of the 
compensated spectrum. Needless to say, one should place 
more reliance on those data for which the flat region is at 
least as prominent as in Fig. 1, but an examination of the 
entire range of Reynolds numbers covered in available ex- 
periments seemed worthwhile: we have omitted only those 
data of Stewart and Townsend26 with Rh less than 20. 

(3) The conhguration of grids used in various experi- 
ments is not identical, but it appears that this is not a sensi- 
tive factor for present purposes. For example, Gad-el-Hak 
and Corrsin”’ produced turbulence behind grids which had 
the following special feature: holes were drilled into the bars 
making up the grid through which could emerge co-flowing 
as well counterflowing jets of air, affecting the drag on the 
grid and the how downstream. This feature does not have 
any effect on the Kolmogorov constant, although it signifi- 
cantly affects the decay rate of turbulence itself. Only the 
cotlow injection case will be examined here, but those of 
zero injection and counterflow injection are very similar (see 
Figure 12 of the authors’ paper). For the co-injection case, all 
five experiments (with R, between 106 and 112), yielded 
C, between 0.56 and 0.59. The value cited in Table I is the 
average. 

(4) We have not made use of the data of Mills et aL3’ 
because they had an unusual (and unexplained) form of en- 
ergy decay. The data of Lin and Lin,32 which had a highly 
unusual grid configuration and did not, in any case, contain 
enough details for deducing the Kolmogorov constant, have 
been omitted as well. Sepri’s data33 are identical to those of 
Yeh and Van Atta3’ and are not considered explicitly. 

III. LABORATORY SHEAR FLOWS 

A. Wall-bounded flows 

In this section, we examine data from pipe and channel 
flows as well as the fully turbulent part of turbulent boundary 
layer. ln particular, we have not considered the how very 
close to the wall where the effects of viscosity are felt di- 
rectly (say, below yt of about 30 where Y + is the normal 
distance from the wall normalized by the friction velocity 
and fluid viscosity), as well as that in the outer intermittent 
region. 

Table II collects data in wall-bounded flows, and pro- 
vides some commentary. One should perhaps draw special 
attention to the following facet. In most boundary layer 
data, the compensated spectrum fi displays a “bump” as one. 
approaches the dissipative region from the inertial range. 
This bump is conspicuous to varying degrees in various 
data sets-most conspicuous, for example, in Mestayer’s 
data-and can affect the perceived values of the Kolmogorov 
constant. This is illustrated in Fig. 2, reproduced from Sad- 
doughi and Veeravalli?5 Rx= 1450 for this case. Because of 
this bump, one might infer a slightly larger value for C, than 
one should. The reason for the occurrence of this bump is not 
entirely clear, but it is often thoughth6 to result from small- 
scale vortex filaments which have the effect of producing a 
spectral roll-off rate that is less steep than the Kolmogorov 
form. In a recent study:7 it has been argued that the combi- 
nation of the two facts- namely the existence of a constant 
energy flux across the wavenumber and the rapid damping 
due to viscosity-leads naturally to this energy pileup near 
the crossover between inertial and dissipative regions, and 
has been called the “bottleneck” effect. 

TABLE III. Sources and Reynolds numbers for other laboratory shear tlows. 
These sources are not necessarily exhaustive. 

Flow Source Position R, CK 

Cylinder 
wake 

Champagne”’ Centerline 

Kailasnath and 
Sreenivasan43 
Uberoi and 
Freymuth49 
Gibson et al.” 

Centerline 

Axis 224 0.50 

138 0.55 

130 0.51 

93-308 0.45 
1 .o t17ll-- 

Wake of a 
sphere 

36-258 0.50 

Mixing layer 

Round jet 

Uberoi and 
Freymutl?’ 
Champagne et aL5’ 
Praskovsky and 
Oncley7 
Champagne”” 
Gibson’ 

Plane jet Bradbmys3 
Homogeneous Champagne 
shear flow rt aLs4 
Return channel Praskovsky and 
of wind tunnel Oncley7 

AXiS 

y/X=-o.015 330 0.46 
2000 0.62 

Centerline 626 0.48 
Centerline 780 0.51 
off-center 710 0.53 
y/cs=osa 350 0.50 
x/h = 10sb 130 0.52 

FIG. 2. The compensated one-dimensional spectral density for one of the 
boundary layer experiments of Saddoughi and Veeravalli,4’ Rh= 1450. The 
abscissa is the wavenumber normalized by the Kolmogorov length scale. 
Indicated by a horizontal line is the Kolmogorov constant assessed by the 
authors. The bump apparent at higher wavenumbers is much more pro- 
nounced in the spectra of transverse energy components. 

3200 0.58 

‘6=half-width of the jet. 
bh =height of the wind-tunnel section in which the shear how was created. 
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TABLE IV. Sources and Reynolds numbers for geophysical flows. For atmospheric Bows, details of stability conditions are not always known. The effect of 
stabilty will be examined separately. 

Flow Source Height Ri CK 

Atmospheric surface layer Boston and BurlingS5 
Champagne4* 

Gibson et aL56 
Kailasnath and Sreenivasan’3 
Kaimal ei ~1.~~ 
Paquin and Pond’” 
Pond et al.4,59 
Praskovsky and Oncley’ 

Sheih et al.” 
Stewart et nL6’ 
Williams and Paulson63 

Tidal channel 

Wyngaard and CoteM 
Wyngaard and Paobb*’ 
Grant et ~1.~’ 
Grant et aL6* 

4 m above tidal mud flat 
4 m above flat land 
56 m above flat land 
Different heights over water 
6 m over wheat canopy 
Different heights 
A few meters above water 
A few meters above water 
7 m over land 

108 m above ground 
1.5-2 m above waters 
2 m above rye grass 

Different heights 
Different heights 
50 ft below the water surface 
Several depths below surface 

4400-5500 
7000 

13 000 
2620 
2000 

Not specified 
O(103)d 

350-llOoe 
2800 
3300 
6900 
7100 
9200 

12 700 
2280-5330 
3 160-5200 

1200 
1270 
1310 
1410 
1780 . 
2130 
2250 
2600 
3280 
3960 
4150 
4170 
4280 

1800-10 oooh 
2400- 10 000 
3000-18 OOoi 

0.51t0.098 
0.50 
0.55 
0.69b 
o.50c 

0.50t0.05 
0.57?0.11 
0.48 to.06 

0.61 
0.58 
0.55 
0.54 
0.54 
0.52 
0.65f 
0.53 
0.46 
0.49 
0.57 
0.53 
0.56 
0.57 
0.55 
0.54 
0.53 
0.56 
0.54 
0.53 
0.54 

0.5220.04 
0.53 kO.02 
0.47?0.02’ 

0.47’ 

‘The values quoted correspond to the mean and standard deviation over 19 sets of data, all taken for nomainally the same conditions. 
bTne authors have remarked that this was an “unusually large value.” 
“These authors obtained data for several similar conditions with the same result. 
these authors do not provide adequate data for estimating the Reynolds numbers. From the familiarity with similar conditions elsewhere, R, can be 

“guessed” to be of the order of a few thousands. The Kolmogorov constant quoted is the average over 16 runs. 
‘In this paper, the Reynolds number is given’as (~)t’~L~“lv, which have been converted to R, by assuming that the relation (e)L/u3= 1 holds. 
‘This is the value quoted by the authors. The inertial range in these experiments was large but, unfortunately, the number of data points spanning the range was 
few and the scatter was large. It is thus difficult to place too much reliance on this estimate of C, . 

sThe Reynolds number range was estimated using the relation R,=S(UZYV)“~, where z is the height above the water surface and U is the mean wind speed. 
Par a detailed assessment of this point, see Bradley et al. ‘* The Kolmogorov constant quoted here is not found in Stewart et al., but has been obtained from 
their structure function data. 

hThis paper does not quote the microscale Reynolds number range covered in these experiments, and this information has been taken from Wyngaard and 
Tennekes.6s The authors note that the mean value of 0.52 may be systematically high. 

‘The data analyzed by Wyngaard and CoteM and Wyngaard and Pao66 are subsets of the data analyzed by Kaimal et aZ., 57 according to this last reference. The 
data were taken at heights of 5.66, 11.3, and 22.6 m from a 32 m tower and encompassed different stability conditions. We have listed only the data from 
Wyngaard.and Cote as being representative of the entire data. It is reassuring that these different analyses are quite consistent among themselves. 

iGram et a[. obtained data for a range of Reynolds numbers but did not quote them. The Rx values given here are estimated by using the method of footnote 
e above. 
‘The value of C, quoted is an average over 17 sets of data, and estimated by the authors by drawing straight lines through log-log plots of spectra. 
Kraichnanls has examined these same data in some detail, and remarked that the estimate would be higher (by more than 10%) if one looked, instead, for flat 
region in plots of $k,) vs k, . 

‘These authors do not give any specific values for C, but note that their estimates agreed well with those of Grant et aLc7 There is, however, a comment in 
the paper that some of the runs did not agree with previous results, but that the authors did not believe them because the description by a universal curve had 
received a lot of support. 

B. Other shear flows IV. GEOPHYSICAL FLOWS 

Among the prototypical flows studied in the literature 
are free shear flows such as wakes, jets and mixing layers, as 
well homogeneous shear flows. We have not been equally 
thorough in compiling data from each of these classes of 
flows. Table III may therefore have omitted some useful data. 

Geophysical turbulence in the atmospheric surface layer 
above land and oceanic waters is of special interest because 
of the large Reynolds numbers of these flows. Even though 
geophysical data possess some uncertainties because the 
flows are not well controlled, practitioners generally pick 
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CK 

0.01 
10' 102 103 104 105 

FIG. 3. The Kolmogorov constant C, ~zrsus the microscale Reynolds num- 
ber R, for a variety of flows listed in TabIes I-IV. A single symbol is used 
to denote all data from each single table. Ignoring data for R,<50 (where 
there may be an increasing trend with Rx), the mean value of all the data is 
0.53, with a standard deviation of 0.055. 

conditions which are nearly steady-and thus provide valu- 
able high-Reynolds-number data. Following the pioneering 
measurements of Grant et al. in a tidal channel, many sets of 
spectral data have been obtained in the atmosphere over land 
as well as water. These are collected in Table IV. The Rey- 
nolds number estimates in some cases are somewhat uncer- 
tain, but the conclusions to he reached remain unaffected by 
this artifact. 

V. DISCUSSION AND CONCLUSIONS 

So far, we have separately tabulated data in various shear 
flows as well as grid turbulence. In the initial phase of this 
study, separate plots were prepared for each class of flows. 
However, a brief examination of those plots showed that the 
differences among them are not large enough to persist with 
this treatment. In fact, given that the Reynolds number range 
for any class of flows is not too large, there are definite 
advantages in plotting all the data together, which makes the 
point about universality more unequivocally. It is conceiv- 
able, however, that the shear may have some influence on the 
value of the Kolmogorov constant, but this issue seems to be 
of secondary importance at least for the non-dimensional 
shear rates encountered in standard shear flows. 

Figure 3 shows all the data tabulated so far, with each 
symbol representing data from each table. It appears that 
C, increases with Reynolds numbers for R,<50, as has al- 
ready been made by Bradshaw,b and is consistent with 
Sreenivasan’s observation6’ that other quantities, such as the 
normalized dissipation rate, also possess a Reynolds number 
trend at the low end. 

If we agree to ignore the data at the very low end of the 
Rx range, our first reaction to the figure is one of wonder: 
hundreds of experiments made in different flows under dif- 
ferent conditions yield approximately the same value of the 
Kolmogorov constant. It is therefore clear, at least for the 
conditions covered by these experiments, that the Kolmog- 
orov constant is more or less universal, essentially indepen- 
dent of the flow as well as the Reynolds number (for 
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R,150 or so). The scatter in the data is undoubtedly large. 
However, ignoring the outliers, a case can be made that the 
scatter represents the uncertainty in flow conditions as well 
as measurement limitations (especially in obtaining the en- 
ergy dissipation), rather than the non-universality of the Kol- 
mogorov constant. In the former category belong, for in- 
stance, aspects such as variability of wind speed and 
direction in atmospheric flows. In the latter category belong 
uncertainties relating to spatial and temporal resolutions of 
the hotwire. As an example, Wyngaard and Cote’” noted that 
a large fraction of the scatter in their own measurements was 
due to hotwire driit, and that the standard deviation of the 
measurements was halved when they selectively picked 
records with little drift. It is true that hotwire drift and related 
issues have undergone significant improvement since the 
196Os, but the fact remains that no systematic change exists 
between the “old data” and the “new data” when taken col- 
lectively. Finally, some scatter is undoubtedly due to differ- 
ences in data processing techniques. 

It also appears that the data do not support the existence 
of a trend with Reynolds number; no trend is apparent even 
if one examines (as indeed we have) data for each individual 
classes of flows separately. It is clear that any trend that may 
exist, if at all, must be weak enough to be hidden in the 
scatter exhibited by the data. To be certain about the exist- 
ence or otherwise of such a trend, one has to cover a wide 
range of Reynolds numbers in a single, well-controlled flow, 
and use instrumentation whose resolving power and quality 
remains equally good in the entire range. Further, one has to 
be aware that certain data processing quirks could artificially 
introduce weak trends. Such experiments and efforts are not 
yet on the horizon at present; in their absence, the best that is 
possible is precisely what has been done here. 

Two remarks may be useful. First, as already mentioned, 
the data collected here come nearly entirely from the longi- 
tudinal spectra. In shear tlows, the behavior of the transverse 
spectra at all but high Reynolds numbers is quite complex: as 
has already been pointed out in Ref. 70, the spectral roll-off 
rates at low Rx seem to be less steep than 513, up to an R, of 
1000 or so. The few data sets of transverse spectra available 
at higher Reynolds numbers also yield the same C,. The 
difference is that the meaning of “high enough” Reynolds 
number has to be upgraded from an R, of 50 or so for the 
longitudinal spectra to one that is perhaps as high as 1000 for 
the transverse spectra.71 

The second point concerns the effects of the stability of 
the atmospheric flows on the value of the Kolmogorov con- 
stant. It may be recalled that we did not pay special attention 
in Table IV to whether or not the atmospheric surface layer 
was stable, neutrally stratified or unstable. While an ex- 
tremely stable atmosphere inhibits turbulence altogether, ail 
available data (see Fig. 4, taken from,Ref. 64) suggest that 
there is little effect on C, whether the atmosphere is strongly 
unstable or stable. It appears that the Kolmogorov constant is 
remarkably robust. 

In summary, for “high enough” Reynolds numbers, 
the average value of the Kolmogorov constant from Fig. 3 is 
0.53 with a standard deviation of about 0.055. However, 
it should be recalled that this value is based on the as- 
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FIG. 4. The Kolmogorov cons&t as a function of the stability conditions of 
the atmospheric surface layer, from Wyngaard and Cote.& Here L, is the 
so-called Monin-Obukhov scale and z is the height from the ground. Nega- 
tive values of z/L, imply unstable conditions and vice versa. Varying. sta- 
bility conditions do not seem to affect the value of C, . 

sumption of local isotropy which implies that (E) 
-= 15v(( dul l&xl j2). This is at best an asymptotically valid 
result, and aBLlZ assessment of its validity in shear Bows at 
finite Reynolds numbers has not been made. One can take 
some guidance from measurements in homogeneous shear 
flow~‘~>‘~-~~ in which full energy dissipation has been mea- 
sured by energy balance and compared with the local isot- 
ropy estimates. These data have been compiled by 
Sreenivasan77 who noted that the local isotropy estimates are 
always smaller than the full dissipation. Although the ratio 
presumably tends to unity at very high Reynolds numbers, it 
was noted that the approach to unity is very slow in Rey- 
nolds number. As can be seen from Eq. (21, an underestima- 
tion of the energy dissipation overestimates the Kolmogorov 
constant. Thus, even if the local isotropy estimate is low by 
about lo%, it is clear that the mean value will have to be 
revised to something like 0.5. We think that this is about the 
best estimate possible today for the Kolmogorov constant. 

Note added in pr-ooj Akiva Yaglom brought to this au- 
thor’s attention papers by A. M. Yaglom7* and B. A. Kader” 
whose conclusions about the Kolmogorov constant are com- 
pletely consistent with the present. 
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