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ABSTRACT

Under the assumption of statistical independence of velocity increments across
scales of the order of the Kolmogorov scale, it is shown that a modified version of
Kolmogorov's refined similarity hypotheses follows purely from probabilistic
arguments. The connection of this result to three-dimensional fluid turbulence is
discussed briefly.

1. INTRODUCTION

In 1962, Kolmogorovl put forward a refinement of his earlier

phenomenological theory< of high-Reynolds-number turbulence. This refinement
has become a vital reference point in the research of locally isotropic and
homogeneous turbulence. An Important quantity in this description is the flux of

: energy @ transferred across scales of size r. Kolmogorov assumed that, in the
L inertial range, ¢y is the only relevant quantity upon which all other quantities would

depend. Furthermore, he identified ¢r with rer, where gr is the rate of energy

| dissipation per unit mass averaged over a volume of linear scale r. Kolmogorov's
theory is made quantitative on the basis of the followin g two celebrated hypotheses.

The first similarity hypothesis: If r«L, where L is a measure of the large scale
of wrbulence, the probability density function (pdt) of the stochastic variable

Au(r)
= 1

v

depends only on the local Reynolds number Re; = r(re;)/3/v, where v is the

kinematic viscosity of the fluid and Au(r)=u(x+r)-u(x), u being the x-com ponent of
the velocity vector u(x) and r is measured along x.
The second similarity hypothesis: If Rer»1, the pdf of V does not depend on

Rey either (nor onr, and is therefore universal).

Although it was shown recently3 that the pdf of V depends on r as well, several
aspects of these hypotheses have been verified cxpcrimentally3=4 as well as by
direct numerical simulations of turbulence?. Even before this verification,
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consequences of these hypotheses had been used extensively in the turbulence

literature. _
In spite of their widef‘épread use, the hypotheses pose some troubling problems.

For example, Kraichnan® has pointed out that, for r in the inertial range, Au(r) is a
purely inertal range quantity, whereas rer is a mixed quantity (because €y is a
dissipation quantity averaged over an inertial range scale), and so their ratio cannot
be universal. Also, the notion of a cascade, where the energy is transferred locally
in wavenumber space, has been criticized from time to time.

The pnimary shorticoming of Kolmogorov's hypotheses is that they have not yet
been derived from basic principles. In this paper we wish to show that they can
indeed be cast, under certain circumstances, in terms of general principles of

stochastic processes. The physical picture of a cascade need not be assumed g

priori, but rather as an a posteriori interpretation.

For convenience, we restrict our discussion to one-dimensional spatial cuts of
the turbulent velocity fluctuation. In particular, we use the local isotropy
approximation for the three-dimensional average dissipation rate, namely,

X+r
£ = 15v;1 ){ (‘%)2‘:1;;. (2)

Relaxing this assumption of local isotropy, Eq. (2), adds greater complexity to the
proof given below, but it is believed that it will not affect its basic validity.

2. A CONVENIENT RESTATEMENT OF THE REFINED
HYPOTHESES

The refined hypotheses are statements about the relation between the velocity
Increments

du
Au) = | Fedx 3)

and the energy dissipation rate in a segment of linear size r

. Xt T4u 2
rep = 15v ;J. (F0 dx. (4)

Given that both Au(r) and re; are functionals of the velocity gradient, they are (in
general) correlated variables. Discretizing the integrals (3) and (4), and normalizing

velocities by (ne)l? (where € = 15v<(du/dx)2> and N is the Kolmogorov scale
given by (v3/£)”4), and lengths by 1, we may write (3) and (4) respectively as

2 2
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du .
where Xij=1"1/(Me)!> and p=1/m. Physically, the X; represent normalized velocity
Increments across a distance 7. In these variables, one can write that

_ 2/3

and state Kolmogorov's similarity hypotheses as follows: the pdf of V depends

2/3 .
only on Reg =prI and the variable p, and becomes independent of both when
p»1 and Yp »1.

The discretized equations (5) suggest that a more general formulation of the

refined similarity hypotheses in terms of stochastic processes might be attainable.
This is done in the next section.

3. REFINED SIMILARITY HYPOTHESES FOR BROWNIAN
MOTION

Let us assume that the X; are normally distributed independent random variables
with zero mean and variance 62. We then have the following exact result.
Theorem: Given that p2 is an integer, the pdf of £ SprﬁH condifioned

on Yy is independent of Yp only when H=1/2. In such a case, the conditional pdf
assumes the form:

1 ;EJ( -3)/2
f(EIp,Yyp)= 1 - 2
(Eip p) \I—PQQ(P)( D . € <p (7)
_w I'(p-1) . ;
where .Qe(p)—zp I‘(p/2)2 , I'(x) being the gamma function.
Proof: First we compute the jqint pdf of Sp and Yp for a given p as

where RP is p-dimensional real space, 0(x) is Dirac's delta function, IIx(Xj,..., Xp)
1s the joint probability of X; and is equal to (chz)_P/ 2e;«(p( )Ii X%/Qo‘z). To
i=1

evaluate the integral we perform an orthogonal change of coordinates from X—U:

Vi igf‘ij Xj» ©)
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where Rjj is an orthogonal matrix with Ry =1/4p. The other rows of this matrix,
R, 2<k<p, can be computed using (for example) a Gram-Schmidt procedure, but

they are irrelevant for our purposes here. As the Jacobian of this transformation 1s
unity, the integral (8) can be wrtten as

' {)dUl...dUp Iy(Uy,....Up) 8(Sp - Vp Up) 8(Yp - (iﬁllﬁ w3y (10)
R o

where TI(j(U1,....Up) = IIX (X1 (U s-.e:Up)seriXp(U ..., Up)).

The next step is to change to p-dimensional spherical polar coordinates:

Uy(p,6,01,.-..0p-2) = p cosO
Us(p,6,01,.--,0p-2) = p sind cos¢
U3(p,0,91,....6p-2) = p sin0 sind
Us(p,9,01,..,9p-2) = p sind sind| cos¢)

lllllllllllllllllllllllllllllllllllllllllllllllll

Up_l(p,e,tbl,.,.,d)p_z) = p sin0 sindq ... sin¢p_3 cos¢p_2 -
Up(p,9,¢1,...,¢p_2) = p sinBO sindp ... sinQp._3 sindp_2 (11)

where 0 < p <o, 0<0<n ,0<¢; <r for 1=1,...,p-3 and -T:<¢p_2 < Tt.

Noting that the Jacobian of this transformation 1s

9(U1,...,.Up)
a(p :e:¢ 1 !"'1¢p-2)

= pP~L (sin 0)P2 (sin 91 )P™... (sin 9p_3), (12)

we can perform the integral in Eq. (10) in polar coordinates, to yield

SIZ) maﬁexp(—‘f]%ﬂcz)
P
where Bisli)=a BN _ s ahe ; o p-3
¢ p)_T((p-l) 7 18 the integral over ¢ through ¢p,_2 of (sin ¢1 " "X...

(sin ¢’p-3 ) arising from the Jacobian (12). The probability of Sp conditioned on Yp
18 computed as

P(Sep.Y+) o ol (14)
p'.r - ]
PE TP TS Po(Sp, Ypip)

.....

and we find
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4 2 \p-3)/2

P(Splp. Yp)=

! | — Sp.
VpYpQg(p) pY-

(15)

f(f‘p=Yp)

\ P,
18
where Qg(p)=({ (sin Ei}p'2 and is expressed in a closed form 1in the statement of the

‘ S
theorem. If we now change variables to & = Yﬁ{ , We obtain
P

(p-3)/2
1 §2 3
)[1 WIT : (16)
P

&I, Yp)=

1-2H
\IEYP Qo(p L )

It is easily seen that the only value of H that renders fH(E_;Ip,Yp) independent of Yy,

is H=1/2, and the form of f, Q(F,Ip,‘fp) is then the one stated in the theorem.

In fact, the theorem can be stated to appear closer to Kolmogorov's hypotheses:
H1) The pdf of the stochastic variable § = Sp/Y p conditioned on Yy, depends only

on p.
H2) When p»1, the pdf of € becomes independent of p; in fact, it tends to the
normal distribution.

Plots of f(&lp,Yp) for different values of p are shown in Fig. 1. These functions

are supported in the interval (—Vp,Vp). It can be seen that the distribution for p=2 is
bimodal. The distribution for p =3 is uniform between v3 and —/ 3. For larger p,

1= I | I ; | i
0.4 p=< -
| K™
0.2 B -
p=50
[ | , ! )
0.0 5 3 5

3

Fig. 1. Plots of f(E_,Ip,Yp) for different values of the parameter p when the velocity
increments X; are assumed to be Gaussian.
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the trend towards a Gaussian distribution occurs; for p=50 the departure from the
Gaussian shape (dashed line) 1s negligible.

4, MORE GENERAL PROCESSES

It is useful to explore the consequences of relaxing the hypotheses that the X; are
normally distributed, and that they are independent. We will address the former

issue here, and leave the latter for a forthcoming publication?.
Let £=Sp/Yp and the X be independent random variables with zero odd-order

moments and non-divergent even-order moments. From these conditions it 1s clear
that for odd n, <€"p,Yp>=0. We wish to show that for p»1 and even n22

<ENip,Yp> = (n-1)I1, (17)

which implies that £ is a normal random variable with zero mean and unity
variance. In particular, for p»1 the pdf of € is independent of p and Yy,. We give an

informal proof of this result below.
The n-th power of Sy can be written as

n ! 1 ip
Sp i Z T X ‘”Xp (18)
1+...+1p—n

where the sum extends over all the possible Oﬂijiin such that Zlfij=n. It 15 clear
n

from Eq. (18) that, if one computed c:Sp

contribute to the sum. This follows from the independence of the Xj and the
assumption that odd-order moments of X are zero. Further, when p»1, most of the

contribution to S; is likely to come from terms containing even ij because the terms

with odd ij (which, in general, possess both signs) are likely to cancel each other.
Among all the terms with even ij, the most numerous ones are those for which
n! g

>, all terms containing odd 1; will not

7 takes a maximum value. This happens when ij=0 or 2, and the number of

11“"1[1‘
such terms will be Py. n/2 The next most numerous terms are those for
n2) " P

which ij=0, 2 or 4 (with 4 occurring only once), and there will be (nﬂp 1) ~ pi/2-1

such terms. If all the terms are of the same order, it is clear that the terms with ij=0
or 2 dominate the sum, so that we may rewrite Eq. (18) as

X P (19)

where 1; takes only the values 0 or 2. To make this statement more rigorous, it

would be necessary to bound the errors made in this approximation, but this will
not be attempted here.

b R R TR Hoog PRt : . e E ; ; i 3 e ' ; S
...-e_.;-._,'|_-‘,.:-.- Vet bew, Teo . T i L ] i YR . I il L L AT RS N L ' "L . .
s e LI b ¥ T T L5 e .:‘. e SN r DAY - s ] !. 3 i . e G - . el i E g .
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We can make a similar analysis for Yy, and obtain, with ij assuming only values
of 0 or 1 in Eq. (20a) and values of 0 or 2 in Eq. (20b), that:

. .
Y- Yy @2 XL X7 (20a)
P i1+...+ip=ﬂf2 1 p
~ Y (2! X}. XP (20b)
i1+__.+ip=n ! p

By comparing Eqgs. (19) and (20b), we obtain

n n!
<SplYp>= - nﬁ(nﬂ)!Y;. 21)
n!
» * — _ 'I
Noting that TR (n-1)!!, we can restate Eq. (21) as
<:F,nlYp:=- ~ (n-1)!!, (22)

for p»1, as required. We thus conclude that in this limit the pdf of £ conditioned in
Yp is independent of p and Yp. Actually, it tends to be Gaussian with zero mean

and unity variance.
We now illustrate these results numerically, For definiteness, we will consider
that the X are distributed according to an exponential density g, 1.¢.

g(X) = % exp(—IX). (23)

For this distribution, <X2> = 2, and hence <:Yp:>= 2p. We computed the pdfs

S
h(§|p,Yp) of F,=?P— conditioned on Yp for different values of p. The values of the
P

conditioning parameter Yp, are taken as windows of size <Yp>/3 centered at the

values indicated in Figs. 2. We see from Fig. 2a that the distributions for p=3 are
bimodal and show some dependence on Y. Recall that for p=3, the equivalent

distribution for the case of Gaussian Xj is uniform; we conclude that the conditional
distributions of & for small p do depend on the distribution of Xj. For p=10 (Fig.

2b), the distributions exhibit Gaussian-like behavior while for p=50 (Figs. 2¢ and
2d) they differ very little from the Gaussian. As p increases, the differences among
the various curves corresponding to different values of Yy, tend to diminish. In

particular, for p=50, all four curves coalesce quite well.
The behavior just discussed can be described in the same terms as the

Kolmogorov's similarity hypotheses: the pdf of & conditioned on Yp depends on
Yp and p. For p»1, it tends to a Gaussian with zero mean and unity variance. This

behavior is independent of the particular distribution one chooses for X, although
details for small values of p do depend on this choice.
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A final remark is in order. Even though this result looks similar to the central
limit theorem, its says something more. While it is not difficult to derive the central
limit theorem from it, as far as we are aware, this result cannot be derived from the
central limit theorem.

_ 9 '
Y, 1,3,5, (a)

0.4

5. CONCLUSIONS

h(é\P:Yp)

We have seen that Kolmogorov's hypotheses can be phrased in a broader
context than envisaged originally. The arguments leading to the hypotheses are
taken from probability theory, and do not invoke any physical picture such as the
cascade of energy. However, it is necessary to clarify the connection to the physics
when dealing with real turbulence data. First of all, it is clear that in real turbulence
data there exist correlations between the X;j. Therefore, the results discussed in this

paper do not apply to turbulence in a straightforward fashion. In correlated
processes where the Xj are not independent, the exponent H in

2H

will be different from 1/2. For turbulence we have to g0 to the Navier-Stokes
. equations to find the value of H. In the present notation, Kolmogorov's equation
i for the third-order structure function in the inertial range, <£&u(r)3>=—-(4;’5)re,
which is derived from Navier-Stokes equations with the additional assumptions of
local isotropy and homogeneity, states that

3._ 4.5
<:sp:~.- =—z(15 / ) <Yp>. (25)

It we assume that V is independent of Y for p»1, we are led to the choice H=1/3.
Equation (24) is in this case the same as Eq. (6), and Kolmogorov's hypotheses

i follow. This also implies that <V3> is different from zero, and hence, the limitin g
. pdf of V for p»1 is not a Gaussian. The detailed study of these issues for correlated
i B systems - in particular for the fractional Brownian maotion - and its comparison with
atmospheric turbulence will be published elsewhere?.

T,
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