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Abstract

We begin with a brief description of the multiplier distribution for &,
the average over a linear interval r of the energy dissipation rate, €.
Using measured multiplier distributions obtained for atmospheric
surface layer data on &, we show that quasi-deterministic multiplicative
models for bases 2 and 3 (that is, binary and tertiary breakdown
processes) can be developed on a rational basis. For r in the inertial
range, moments computed up to a fairly high order from these models
are found to be in good agreement with experimental values. For bases
larger than three, such quasi-deterministic approximations for
multiplier distributions are not possible. Some applications of multiplier
distributions are presented.

1. INTRODUCTION

A Gaussian process is completely described in a statistical sense by its
mean and standard deviation. It is conceivable that a nearly Gaussian
process can be described well by its first few moments — at least well
enough for many purposes. This is the situation with respect to velocity
or temperature traces obtained in high-Reynolds-number fully
turbulent flows not too close to the wall. On the other hand, the
situation is quite different for quantities such as the energy dissipation
rate, €, in high-Reynolds-number turbulence. Figure 1 is (effectively) a
one-dimensional section through the field of e in the atmospheric
surface layer a few meters over land. In contrast to Gaussian or nearly
Gaussian processes, information about the first few low-order moments
does not describe the signal in any detail. Peaks which are hundreds of
times the mean are not uncommon, and the signal is at other times of
very low amplitude; this strongly intermittent character is a generic
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Figure 1: A typical signal of a representative component qf £, namely'e'
= (du/dx)? ~(du/dt)?, normalized by its mean. Here, u is the velocity
fluctuation in the direction x of the mean velocity U. In writing the last
step of the above approximation, it has been assume.d t!lat Taylor's
frozen flow hypothesis, namely that the spatial derivative can .be
approximated by the temporal derivative, holds. The velocity
fluctuation u was obtained by a hot-wire mounted on a pole 6 m above
the ground level over a wheat canopy. The microscale Reynolds number

is of the order 2500.

397

property of € in high-Reynolds-number turbulence. Its understanding
and modeling is important to any practical scheme for computing
turbulent flows. The intermittency has important implications also in
contexts such as the structure of turbulent flames.

In the last few years, much work based on multifractals has occurred
on the description and modeling of the intermittent character of energy

dissipation rate (and other similar characteristics). For a summary, see

[1]. In Refs. [2-4], several simple quasi-deterministic multifractal
models were shown to describe the statistical properties of the energy
dissipation rate quite accurately. Here, we provide an organized basis
for developing such simplified intermittency models.

The energy dissipation rate is a positive definite quantity which is
additive (in the sense that € over two non-overlapping intervals equals
the sum of & values distributed over the sum of the two intervals). In
this sense, it is convenient to think of £ as a measure distributed on an
interval.

2. MULTIPLIER DISTRIBUTIONS

Consider a long data string of € distributed over an interval which is N
integral scales in extent, N being some large integer. Divide the interval
into 'a' equal-sized sub-intervals, and obtain the ratios of the measures
in each of the sub-intervals to that in the entire interval. These ratios,
to be called multipliers, are clearly positive and lie between zero and
unity. Subdivide each sub-intervals into 'a’ pieces as before, and repeat
the procedure. When we reach sub-intervals of the size of the integral
scale of turbulence, L, there will be sufficiently large population of the
ratios M;®), 1<i<N, and one can obtain a converged histogram of the
multipliers M;®). Proceed with further subdivisions. At the n-th
subsequent level, where each sub-interval is of size r/L = a-n, there are
N.a" multipliers M;(). Construct the histogram of the multipliers at each
level. Repeat the procedure until the smallest sub-interval reached is of
the order of the Kolmogorov scale. :

The thought behind this hierarchical construction is that the nonlinear
processes occurring in the inertial range of scales may be abstracted by
a breakdown process in which each eddy subdivides into 'a' pieces, with
the energy flux redistributed in some unequal fashion without loss
among the sub-eddies; since the energy flux, as it cascades down to
smaller scales, is ultimately converted into energy dissipation, the two
quantities are equal on the average. It is further thought that this
unequal distribution among sub-eddies is the heart of the observed
intermittency. The reality is, of course, more complex. For instance, it is
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not obvious what the appropriate value of 'a' (that is, the base for the
cascade process) must be, or whether it remains the same from one step
of the cascade to another. In spite of this ambiguity, it is clear that if
there is a scale-similar breakdown occurring in the cascade process, the
histograms of the multipliers should be identical at each step of the
subdivision or cascade.

The probability density P(M) of the multipliers M - here and
subsequently, we omit the indices on the M;(®™ and denote them simply
by M - have been obtained for different stages of subdivision of the
interval. Since the value of 'a' is not known a priori, Chhabra &
Sreenivasan [4] obtained P(M) for various bases. Figure 2 shows the
results for 'a’" = 2, 3 and 5. The shape of each of the distributions is
invariant over a certain range of scales, suggesting that some type of
self-similarity occurs in this scale range, whatever the assumed base.
This range of scales over which P(M) is self-similar agrees quite well
with the inertial range of scales determined by the scaling range in
spectra and structure functions. The larger symbols show an average
over steps involving comparisons between boxes of size 'm' and those of
size 'm*a’, where m ranged from 50 to 1000 in units of sampling
intervals. (For the very smallest scales, the distributions have a concave
shape. This concavity is related to the divergence of moments [5] and
will be discussed elsewhere. For very large box-sizes, multiplier
distributions approach a delta function centered around 0.5, as would
be the case for random measures.)

The scale-invariant multiplier distributions obtained in figure 2 are
fundamental to the understanding of the observed multifractal scaling
[2]. One can compute [4] from them not only the asymptotic scaling
properties such as the multifractal spectrum (or the f(o) curve [6]) of a
measure, but also finite-size fluctuations of scaling properties [4]. In
addition, even in instances where high-order moments diverge, P(M)
remains well-defined. Finally, the f(a) function may extend over (—oo,c)
whereas P(M) is a compact function defined on M e [0,1].

A disadvantage of P(M) is that it is base-dependent. However, if the
cascades giving rise to the observed intermittency are randomly
multiplicative, then the multiplier distributions corresponding to
different bases are related by convolution, and one can scale out this
base-dependency [4]. If the multiplicative process is random (i.e.,
successive multipliers are uncorrelated) several base-independent
functions can be constructed from these multiplier distributions. In
particular, for any two bases 'a' and 'b', we have

log<(Ma)%>/log(a) = log<(Mp)4>/log(b) = -[1(q) + Do] (1)
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Figure 2: Multiplier distributions P(M) for bases (from right to left) 'a' =
2, '3 and 5. The larger symbols show averaged multiplier distribution
which are the mean of multiplier distributions obtained by comparing,
measure in boxes of size 'm' to those of 'm*a' , where m ranged from 50
to 1000 in units corresponding roughly to the Kolmogorov scale. The
smaller symbols show the distributions obtained for m = 50, 80, 150
ZQO, 400 and 1000. The solid line is the triangular approximat,ion ,to thc;
binary case. The figure is adapted from [4].
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where t(q) = (q-1)Dg, Dq being the so-called generalized dimensions [7]
of g-th order, and Dy = Dg=o is the fractal dimension of the support of
the measure. The f(a) function can also be easily derived from the
multiplier distribution. In Ref. [4], it was shown that the f(a) functions
computed from these different distributions were in good agreement
with each other as well as with those obtained from direct methods
such as box-counting. This agreement indicates the existence of a
probablistic cascade where no single base is preferred.

Incidentally, a good approximation for P(M) in the binary case is the
triangular distribution shown in figure 2. In Ref. [4] it was shown that
the f(a) function for this model is in excellent agreement with that
obtained directly [3]. Further, the triangular model displays the correct
behavior with respect to sample-to-sample fluctuations in f(a). It also
reproduces the stretched exponential tails, P(e) ~ exp(—P(e)l/2), observed
in Refs. [3,8] for the probability distribution of e.

3. SIMPLE MODELS

The multiplier distributions shown in figure 2 are extracted directly
from the experiment and their analytical forms are yet to be found
from the theory. The question meanwhile is a simple representation of
these distributions in a way that permits one to evaluate most of the
measured properties quite accurately. The goal is to seek models that
are simple enough to be tractable mathematically and realistic enough
to represent the spirit of the underlying physics. We already mentioned
the triangular distribution as a good approximation. An even simpler
possibility is the p-model [2], which is a model for a binary cascade
('a’=2). We first discuss the p-model and show how it can be obtained as
a rational approximation to the measured multiplier distribution for the
binary case. We will then discuss how models in the same spirit can be
obtained for the tertiary case ('a'=3). The limitations of the procedure
for high order subdivisions (‘a"™>3) will be highlighted.

From a physical point of view, the cascading process with 'a'=2 can be
thought of as the break-up of a structure (the parent structure or eddy)
into two sub-structures. For the one-dimensional case corresponding to
figure 1, a pertinent question is the following: is there any difference
between the left and right offsprings in terms of the energy flux they
receive from the parent structure? One can determine experimentally
that left and right are statistically indistinguishable. (This is not true for
the velocity signal itself, as can be concluded from Kolmogorov's 4/5
law [9]). Now, for the sake of simplicity and modeling, let us assume
that one of the two sub-eddies always receives a fixed fraction p of the
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Figure 3: A comparison between moments computed from the measured
multiplier distributions and those computed for the different models
considered in the text. Experimental data were obtained from a record
length of 810,000 data points. The convergence of moments was
reasonable; for example, in the last half decade of the record length, the
variations observed were smaller (in the log scale) than the symbol size.
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energy contained in the parent eddy; naturally, the other will receive 1-
p. In this sense, this model has some determinism. However, it is only
quasi-deterministic in the sense that either one of the two eddies could
receive the fraction p; because of the left-right symmetry mentioned
above, a given piece will receive p as often as 1-p. Then, the multiplier
distribution for the p-model becomes

3(M-p) + §(M-(1-
pea(M) = ( pL; (M-(1-p)) 2)

If p=1/2, there is no intermittency and the physical situation
corresponds to Kolmogorov's 1941 theory [10]. To obtain intermittency,
we should have a value of p different from 1/2.

How can we choose p? A natural way is to match the moments of
p'a'=2(M) with those of the real p(M). For both distributions, the zero-
order moment (normalization) and the first-order moment (mean value)
coincide, and are 1 and 1/2, respectively. The first non-trivial condition
is to match the second order moment. When this is done, we obtain the
value p=0.697, or 1-p=0.303, which can be rounded off to excellent
accuracy by 0.7 and 0.3, respectively. This is the p-model of Ref. [2]. It
turns out, purely by luck, that high-order moments computed for the p-
model also agree with those computed for the real data (see figure 3). It
had been shown in (2] that the f(a) spectrum for the binary p-model
with p = 0.7 fit the experimental data quite accurately.

We now discuss a general scheme for developing for all 'a'#2 quasi-
deterministic models of the sort developed above for the p-model.
Again, we attempt to do this by matching moments. The general
multiplier distribution for any 'a’ in the p-model scheme is

ilﬁ(M-pi)

i=

PiyM) = —— (3)
where

i pi =1, (0<pi<i) (4)
i=1

We may now equate the moments of P, (M) to the moments of the real
multiplier distributions. Since multiplier distributions for any base yield
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Figpre 4.'Values of the multipliers for the binary (diamonds) and
tertiary (circles) p-models. The letter K indicates the location of the

multipliers if there were no intermittency, consistent with Kolmogorov's
1941 theory [10].
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the same results, we may take the distribution corresponding to the
binary cascade of figure 2. Computing the moments <Md> from it, we are
led to the equations

a
ng = a <Ma>108@/10g() g=1, 2, ... a. (5)
=1

$ .1 '

This is a system of 'a’ equations with 'a' number of p;'s to be
determined. Using Girard's rule [11], it is easy to find a polynomial of
degree 'a' whose roots are the desired pi's. The problem thus reduces to
the determination of the roots of the polynomial. It turns out a
posteriori that this problem has physical solutions only for 'a'=2 and
'a'=3: for larger values of 'a', some of the roots turn out to be complex,
and have no physical meaning. The values of p; for the tertiary cascade
('a'=3) are p,=0.155, p,=0.283 and p,=0.562. We designate this as the
tertiary p-model. In this scheme, the classical Kolmogorov theory would
yield p,= p,= p;= 1/3.

The values of p; for the binary and tertiary cascade are shown in
figure 4; also marked by K are the classical non-intermittent values
applicable to Kolmogorov's 1941 theory. Although the binary and
tertiary p-models, respectively, are generated to possess the first three
and four moments correctly, it is remarkable that the binary and
tertiary p-models and the measured distributions have approximately
the same high order moments up to, say, about 7 (see figure 3).

Other models have also been proposed. For example, Novikov [12]
proposed a uniform distribution for P(M). At that time, however, the
multiplier distribution had not been obtained experimentally. It is now
clear, however, that a uniform distribution is not a good model for any
of the curves in figure 2. For example, a good approximation to the
binary cascade is the triangular distribution shown by a solid line in
figure 2.

4. CONCLUSIONS

The multiplier distributions are a basic tool for understanding many of
the scale-similar properties of energy dissipation in turbulence. In the
absence of an ab initio theory that yields these distributions in a
deductive way, analytical progress can be made only by modeling them
with reasonable schemes. Here, we have summarized the attempts
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made in the last few years. Below, we mention some applications of this
work.
The first application is in the calculation of E:, the energy dissipation

over'an‘ interval of size r; E; = re,. According to the definition of the
multipliers,

n
Er=E i
; LiI:’I1 mj, (6)

where n(r)=loga(r/L), and L is the large-eddy (integral) scale. Within

the p-model scheme for a binar i1
) , Yy cascade, th ;
function (PDF) for the ratio x = E/E, is € probability density

(x)—“A*'r‘ F'(logp(r/L)+1)
PR LT (k(x)+ 1) T(logo (/L) - k(x)7 1) 7

where A is a normalization constant, I" is the gamma function and

K(x) = 108X (r/L)log2(1-p))
log(p/(1-p)) ' (8)

A second application is in computing the exponents €q, defined as

<E 9> ~ (r/L)¢
(t/L)%, (9)

The result for the triangular distribution is

~ 1 1
=_] _
S =—toa{a - D e ) (10)

Colrre.spor?ding results for the p-model are given in [2]. The PDFs of the
ve (?101ty 1ncrement§ can also be computed. On using the second refined
simularity hypothesis [13], the velocity increments can be written as

Au(r) = V E1/3,
(11)

lI)I:\, Ref. [14], we obtained the probability density of V. The PDF of Ay can
computed if some model is assumed for Er. In Ref. (8], those PDFs

were computed using the binary p-model.
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The tertiary p-model has been used to generate a signal that shares
many features of a real turbulent velocity trace. This issue will be
addressed elsewhere.
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