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The issue of experimental determination of the intermittency exponent ,u, is revisited and it is 
shown that the “best” estimate for it is 0.25 f 0.05. This “best” estimate is obtained 
from recent atmospheric data, and is based on several different techniques. 

Ever since Kolmogorov’ introduced the intermittency 
exponent, more than a dozen attempts have been made to 
obtain its numerical value from experiments. The resulting 
estimates have varied from as low a value as 0.18 to as high 
as 0.7. (See Ref. 2 for a summary of early measurements, 
Table IV of Ref. 3 for measurements until about 1975 and 
Refs. 4-10 for experiments made thereafter.) It is unsatis- 
factory that this exponent, which plays a moderately im- 
portant role in the theoretical framework of turbulence, 
should be known with no better certainty. We present in 
this Brief Communication a brief critique of the various 
definitions and experimental techniques used for determin- 
ing the intermittency exponent, and provide the best esti- 
mate for it from recent atmospheric data. 

Some of this variability is clearly due to differences in 
the definitions of the intermittency exponent, and it is 
therefore essential to describe all of them briefly. We find it 
convenient to adopt different symbols to denote the differ- 
ent definitions of the intermittency exponent. First, there is 
the constant p1 in Kolmogorov’s lognormal hypothesis’ 
given by 

“2=A+p.1 log( L/r). (1) 

Here, 2 is the variance of the logarithm of eP which is the 
energy dissipation averaged over an interval of size r, L is 
the “macro” or “integral” scale of turbulence, and the ad- 
ditive constant A is presumed to depend on the large scale 
of the flow. 

On the basis of a generic self-similar cascade model- 
for relevant background, see Refs. 2 and 11; for a more 
modern interpretation in terms of multifractals, see Refs. 9, 
10, and 12-we can write 

(I$) -r-p2. (2) 

From Novikov’s” argument (discussed at some length in 
Ref. 2, Sec. 25), one can also write for homogeneous tur- 
bulence that 

(e(x)e(x+r)) -r-p3. (3) 

By Fourier transforming Eq. (3), one obtains for the spec- 
tral density of the energy dissipation E;(k) - klmp3, which 
we shall write as 

E;(k) - k’-t”4. (4) 

Finally, use has also been made in the past of the definition 
that 

Equation (5) is equivalent to Eq. (3 ) only at very high 
Reynolds numbers. 

It is safe to say that pZ=pZ, and that ps=~~ trivially. 
However, Eq. (4) may not yield satisfactory results be- 
cause of crossover effects discussed by Nelkin;13 these ef- 
fects are important at all finite Reynolds numbers. Further, 
the scaling region apparent in one procedure may well be 
different from that in another. The quantity we shall call 
intermittency exponent is ,u=,u~=~~. The constants ,u4 and 
,u5 are good approximations to ,u only if the Reynolds num- 
ber is very high. The constant pl is not related to the other 
p’s except through the hypothesis of some cascade model. 

We are now in a position to comment on experiments 
in more specific terms. Most of the early estimates of the 
intermittency exponent were made by using Eq. (4). 
Nelkin13 pointed out the difficulty in estimating ,U via pq 
when the scaling range is finite and, with this background 
and a model calculation, deduced a value of 0.25 from 
Kholmyansky’si4 spectral data. Antonia et al.’ followed up 
with an immediate experiment in a fairly high Reynolds 
number jet ( RL=966), and confirmed Nelkin’s estimate. 
They obtained, by means of Eq. (3), the exponent to be 
around 0.2. This latter estimate was confirmed by Ansel- 
met et al. ,6 who also used Eq. (3). It is interesting that 
Anselmet et al. found, from the same data at a moderate 
Reynolds number, that p5 was about 0.45, emphasizing the 
finite Reynolds number effect to which we have already 
alluded. .The recent multifractal scahng workg**’ has 
yielded a value of about 0.25hO.05. These same experi- 
ments also showed that the measured value of pi was about 
0.23, in close agreement with 0.25. This may indicate that 
some kind of cascade process is not a bad model for tur- 
bulence. 

Despite this seemingly conclusive evidence that the in- 
termittency constant is about 0.25=tO.O5, older estimates 
have often found favor in the literature. For example, 
Baker and Gibson,’ and Gibson’ have used a value of 0.5 
for p. Gibson (private communication) has indicated how 
the smaller value of 0.25 would imply, when used in con- 
junction with the lognormal model for the energy dissipa- 
tion, an astronomical value for the energy-containing scale. 
It seemed that an effort at revisiting the issue, and settling 
it conclusively if possible, was worthwhile. 

We systematically examined the various methods of 
determining the intermittency exponent using some recent 
data obtained in the atmosphere. Measurements were 
made in the atmospheric surface layer about 6 m above a 
long stretch of a wheat field canopy, and at a height of 2 m 
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FIG. 1. The log-log plot of (E(x)E(x+~)) vs r (assuming Taylor’s hy- 
pothesis). In this and the following two figures, r is expressed in terms of 
sampling units= l/6000 set and the wind velocity was 6 m/set. The best 
estimate of ~=0.25. This so-called best estimate was obtained by trying 
various values of the exponent /.L, and deciding upon the value of p which 
yielded the beat flat line in plots of (ordinate/r-“) in Eq. (3). 

above the roof of a four-story building. The mean wind 
velocity varied between 4 and 6 m/set. Velocity fluctua- 
tions were measured using a standard hot wire (5 pm in 
diameter, 0.6 mm long) operated on the constant temper- 
ature mode on a DISA 55MOl anemometer. The anemom- 
eter voltage was digitized on a 1Zbit digitizer at a sampling 
frequency of 6000 Hz. This sampling frequency was found 
to be adequate for capturing most of the small-scale fluc- 
tuations. The linearization of the signal yielded a time trace 
of the streamwise velocity fluctuation u ( t) . The dissipation 
field was approximated by (du/dt) 2. This assumes that the 
space derivative could be approximated by the time deriv- 
ative according to Taylor’s frozen flow hypothesis, and 
that one component of dissipation is an adequate represen- 
tation of the total dissipation statistically. It is believed that 
these approximations were not critical to the determination 
of the intermittency exponent. The internal Reynolds num- 
ber based on the root-mean-square velocity and the Taylor 
microscale varied between 1500 and 2000. 

less the same.exponent irrespective of whether we use Eqs. 
(4) or (5). See Fig. 3. We tentatively conclude that the 
discrepancy in the two methods of measurement in the 
experiments of Anselmet et al. is their lower Reynolds 
number. 

We now use an alternative method for the determina- 
tion of the intermittency exponent. This method uses the 
so-called multiplier distributions4”‘712 appropriate to the 
inertial range. Briefly, the multipliers M, are defined as the 
ratio of the energy flux (or the energy dissipation rate) 
contained in an eddy of size Y in the inertial range to that 
in a box of size ar, where a is an integer that equals the 
number of subeddies into which a parent eddy is presumed 
to break up. The multipliers M, are random variables that 
possess a well-defined probability density function, p(M,). 
In Ref. 12, it was shown that, for any given a, p(M,) is 

The following characteristics of the data reassured us 
about their quality. The power spectral density showed a 
sizeable scaling range with a slope of approximately - 5/3 
(actually slightly steeper). The third-order structure func- 
tion varied linearly with the separation distance15 for more 
than a decade of variation in the separation distance, 

The most unambiguous methods of determining ,LL are 
from the Eqs. (2) and (3); to our knowledge, all previous 
measurements that used these methods have given a value 
close to 0.25. Figures 1 and’2 from the atmospheric data 
show that both Eqs. (3) and (2) yield essentially the same 
answer, namely, ,U is about 0.25. (Note, however, that the 
scaling ranges in the two figures are somewhat different.) 

While the experience of Anselmet et al. 6 would suggest FIG. 3. ([E(X) - <E)I[&+r) - (41) vs r for the same set of data used 
that there is little point in using Eq. (5)) we obtain more or in Fig. 1. The best slope is 0.27. 
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FIG. 2. The log-log plot of (6) vs r for the same set of data used in Fig. 
1. The best slope is 0.27. 
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independent of r for all r in the inertial range. Chhabra and 
Sreenivasan’2 obtained the distributions of these multipli- 
ers for several values of a, and published results for a = 2, 
3, and 5 (Fig. 2 of Ref. 12). The fact that p(M,) is inde- 
pendent of r for any given base a can be used to advantage 
in obtaining converged values of high-order moments that 
one would otherwise not be able to measure reliably. Al- 
though the probability density p(M@) depends on a, the 
various scaling exponents given by the multifractal spec- 
trum are independent of a. In particular, the intermittency 
exponent is independent of the precise value of a chosen. 

It is easy to compute p2 from multiplier distributions. 
Let us start with an eddy of size unity, and normalize the 
total energy dissipation in that eddy to be unity. Let such 
an eddy break down into a pieces, and let the energy dis- 
sipation contained in each piece (as a fraction of the total 
contained in the parent eddy) be picked randomly from 
the appropriate distribution p(Mn). Let us examine the 
subeddies that have resulted after n steps in this cascade. 
By the definition of the multipliers, the amount of energy 
dissipation E, contained in a box of size r=a-” is given by 

i=n 

E,= n M,(i). (6) 
i=I 

Here, by the respective definitions of the two quantities, 
E,=r g, (in one dimension). The product in Eq. (6) over 
the index i (which varies between 1 and the current step n 
of the cascade) occurs because the total energy dissipation 
E, contained in a subeddy of size r=a-” is the product of 
the multipliers from one step to another starting with the 
scale unity. These multipliers will be chosen from the ap- 
propriate probability density function p(M,) . 

It follows that 

(7) 

where the products are taken over all values between 1 and 
n, and ,the angle brackets denote probability averages over 
the appropriate multiplier distribution. The last step fol- 
lows because the multipliers are statistically independent of 
the step of the cascade. Noting that E,,=r e,.=a-“c, and 
that II (Mt) = ( (Mi) )“, we can show by a few steps in- 
volving only algebra that 

p==og,of:) +2. (8) 

From the probability distribution p(M,) measured in Ref. 
12, we obtain that ~=0.23 *0.05 for all three values of a 
(2, 3, and 5). This is consistent with the present estimates 
obtained by other methods. It should be noted that similar 
calculations made in Ref. 4 yielded values between 0.18 
and 0.22. Van Atta and Yeh4 also note that these values are 
consistent with Kholmyanski’s result of 0.23. 

Using the triangular approximation to p(M,) recom- 
mended in Ref. 12 for a=2, we can analytically show that 

(Mi) =7/24, which gives p =0.22. For the p model of Ref. 
16, also for a=2, (&)=0.29, which gives ~=0.21. 

All these considerations lead us to conclude that the 
“best estimate” for the intermittency exponent is ,u=O.25 
f 0.05. 

Incidently, all our estimates3’17 for the intermittency 
exponent in the case of the scalar dissipation are in the 
vicinity of 0.35. 
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