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It is shown that signed measures (i.e., measures that take on both positive and negative values) may
exhibit an extreme form of singularity in which oscillations in sign occur everywhere on arbitrarily fine
scale. A cancellation exponent is introduced to characterize such measures quantitatively, and examples
of significant physical situations which display this striking type of singular behavior are discussed.
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Many physical processes have been shown to be de-
scribed by multifractal probability measures. Examples
include chaotic dynamical systems [1,2], the dissipation
field of fully developed turbulence [3,4], clouds [5], and
diffusion-limited aggregation [6]. Briefly, a probability
measure u, on the collection of all subsets of a set X as-
signs a non-negative number yu,(S) to any subset S of X,
satisfies the relation p,(X;S;) =X;u,(S;) for {S} any
countable collection of disjoint subsets of X, and assigns
the number 1 to u,(X). A probability measure is com-
monly said to be multifractal if its generalized dimension
spectrum [1] D, varies with g.

In this paper we shall be interested in signed measures
[7]. In contrast to a probability measure, a signed mea-
sure of a set can take on either positive or negative values.
Our main point is that signed measures arising in physi-
cal situations can be singular in a new way, not present
for probability measures. We shall give examples in the
context of the theory of kinematic magnetic dynamos,
and experimental data from fluid turbulence.

To describe the type of behavior we are interested in,
consider the case of a signed measure u on a finite inter-
val X of the x axis. Let ACX be an x interval such that
u(A4)=0. We say that the measure u is sign singular if,
for any such interval 4 (no matter how small), there is an
interval B contained in A such that u(B) has the opposite
sign from u(A4). Thus the measure u everywhere changes
sign on arbitrarily fine scale.

As in the case of multifractals, where the singular na-
ture of a probability measure is quantitatively character-
ized by its dimension spectrum D,, we also desire a
means of quantitatively characterizing sign-singular mea-
sures. To do this we introduce a quantity, which we call
the cancellation exponent. Again consider the case of
signed measure g on a finite interval X of the x axis.
Cover the measure with disjoint intervals of equal length
¢. Then we define the cancellation exponent x by [8]

k=lim sup M Q)]
€—0 In(1/e)

where I; denotes the ith e-length interval. For a probabil-

ity measure, |, (I;)|=p,(1;), so that Ylp, )| =1, and
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thus « is trivially zero. For a signed measure which
has a smooth bounded density p(x), we have u(S)
= [¢p(x)dx. Thus, when ¢ becomes smaller than the
smallest characteristic scale for variation of p(x), then
the sum X |u(I;)| approximates the integral [|p(x)|dx;
hence the sum becomes constant at small ¢, again leading
to k=0. In order to have positive k, the sum X|u(/;)|
must continue to increase as € gets smaller. Since the
sum increases only because cancellation of positive and
negative contributions is reduced with decreasing e, it fol-
lows that k¥ > 0 is an indication of oscillation in sign on
arbitrarily fine scale [9]. We now wish to show that the
above discussion has relevance in physical circumstances.
As our first example, we consider the case of the fast
kinematic dynamo problem which addresses the following
question: Given a flow of an initially unmagnetized, elec-
trically conducting fluid, will a small seed magnetic field
tend to grow exponentially in time? If the answer is yes,
then it is unnatural for the flow to exist in the magnetic-
field-free state, and one can expect large fields to be gen-
erated. Thus the kinematic dynamo problem has been
thought to be relevant for explaining why magnetic fields
occur in natural objects, such as planets, stars, and galax-
ies. Motivated by the extremely large conductivity in
stars and galaxies, recent interest has attached to the lim-
it where the electrical conductivity of the fluid ap-
proaches infinity. If dynamo action is obtained in this
limit, one says that the dynamo is fast [10]. It has been
shown that fast dynamos are connected with flows that
are chaotic (e.g., Refs. [11,12], and references therein) in
the sense that infinitesimally nearby fluid elements
separate exponentially with time. We now present a sim-
ple model [12] which captures many of the main qualita-
tive features of typical chaotic fast kinematic dynamos.
We consider deformations of the square, 0 < x < I,
0=<y =<1, as shown in Fig. 1. The square is first divided
into four horizontal strips of widths a, B, y, and & with
a+p+y+8=1 [see Fig. 1(a)]. Then each of these is in-
compressibly squashed horizontally and stretched verti-
cally, so that its vertical length is 1 [Fig. 1(b)]l. The
strips are then reassembled in the area of the original
square with the orientation of the third, y-width, strip re-
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FIG. 1. Four strip baker’s map dynamo model.

versed [Fig. 1(c)]. Now we imagine that the two-
dimensional x-y space in which these deformations occur
is filled with a perfectly conducting fluid and that an ini-
tial magnetic field Bo(x)yo exists in the square in Fig.
1(a). Thus the initial magnetic flux through a horizontal
line crossing the square is ®o=f{Bo(x)dx. By the as-
sumption of perfect conductivity of the fluid, the magnet-
ic flux is frozen into the fluid as it deforms. Hence the
vertical flux through any of the strips in Fig. 1(b) is still
®y. (However, since the strips are narrower, their mag-
netic fields are amplified as compared to the initial field
by the factors 1/a, 1/8, 1/y, and 1/§ for the first, second,
third, and fourth strips, respectively.) The total flux
across the square in Fig. 1(c) is thus 2®y, corresponding
to three strips with upward flux and one strip with down-
ward flux [13]. As the sequence of operations in Fig. 1 is
successively repeated, the flux across the square doubles
on each iterate (dynamo action), and the number of
strips quadruples. Thus at iterate ¢, the total number of
strips is 4’ and the total flux is ®(t)=f$B(x,t)dx
=2'®,. The magnitude of the flux in each of the 4’ strips
is still dy by flux conservation. The fact that these 4'
strips only yield a total flux of 2'®y indicates that the
fluxes of all but a fraction 2//4'=27" of the strips are
canceling (upward flux strips canceling downward flux
strips). Thus, as time proceeds, the fractional cancella-
tion increases exponentially, even though the total flux
grows.

The above considerations have been in the context of a
perfectly conducting fluid. Finite conductivity leads to
diffusion of the magnetic field. To include this resistive
diffusion, we assume that the deformations of the square
are done impulsively, so that no diffusion takes place dur-
ing the actions shown in Fig. 1. However, after each de-
formation the fluid lies stationary for one time unit before
the deformation is again applied [12]. Between deforma-
tions, B(x,t) evolves according to the diffusion equation
9B/8t =R, '82B/dx?%, where R,, is the “magnetic Rey-
nolds number” for our model and may be thought of as a
normalized electrical conductivity. For typical initial
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FIG. 2. The final spatial distribution of magnetic field, B(x)
vs x, for Ry =107, a=6=15, f=y=1s.

conditions, Bo(x), the temporal evolution of the magnetic
field, after a transient phase, eventually settles into a final
spatial x dependence corresponding to the eigenfunction
of the largest exponential growth rate. Balancing the
temporal exponential decrease of spatial scale of B(x,t)
(inherent in the map process; Fig. 1) with the diffusive
smoothing between deformations of the square leads to an
estimate of R,, /2 for the minimum spatial scale of the
final magnetic-field distribution. (This result applies gen-
erally for fast dynamos and is not limited to the model in
Fig. 1.) Thus, as R, is increased, we expect wilder and
wilder variation in the final spatial distribution. Figure 2
shows numerical results for such a one- d1mensional distri-
bution [8] (cf. Ref [12]) for a=6= 15, B=y= 1%, and
R»=10". (For comparison note that the magnetic Rey-
nolds number on the surface of the Sun is ~10%.) In the
fast dynamo limit, R, — oo, the final magnetic field ap-
proaches a measure which, as shown below, is sign singu-
lar.

To illustrate this, consider the special case of equal
width strips a=B=y=§=5. Divide the interval 0
=< x =<1 into 4% subintervals of length ¢=4 "% Assum-
ing € > R,,,"/z, the flux through any one of these subinter-
vals normalized by the total flux ®(z) =2'®d, (¢ an in-
teger) becomes independent of time for ¢ = k and is ei-
ther +2 % or —2 7k Using the normalized flux as our
measure, we have |u(I;)| =2 7%, where I; denotes one of
the e=4"% length intervals. Thus X|u(l;)|=4%2"*
=2% and (1) yields k=%. Hence k> 0, consistent with
the measure being sign singular (for scales larger than
R.'). In the more general case of unequal a, 8, 7, and
4, utilization of the self-similar nature of the model yields
x (independent of R,,) as the solution of the following
transcendental equation [8]: «*+p*+y*+8*=2. Fig-
ure 3(a) shows a plot of InX|u(I;)| vs In(1/¢) obtained
by numerical time evolution of our model (a=6= %,
B=7=1s, Rm=10'9). The slope of the fitted line yields
k=0.43 in agreement with the theoretical result. Note in
Fig. 3(a) the cutoff of the x scaling range at small ¢ due
to resistive magnetic diffusion. (A similar plot for
Rm =107, corresponding to Fig. 2, also yields x=0.43,
but with a smaller scaling range consistent with the pre-
dicted cutoff at e~R,; /%)

The above result for our simple model, Fig. 1, is quan-
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FIG. 3. InX|u(L)| vs In(1/€) (a) for the model of Fig. 1
with R, =10'°, and (b) for a particular spatially smooth three-
dimensional chaotic fluid flow.

titatively similar to results for a spatially smooth, chaotic,
incompressible, three-dimensional flow. In particular, we
consider the example of a velocity field

vix,t) =[c,(x)A()xo+ ¢, (x)A —n)yo
+06,(x)A(t —21n)z) ,

where 0,(x) =1.5(sinz+cosy), &,(x) =1.5(sinx +cosz),
0,(x)=1.5(siny +cosx), A=23;8(t —j), and n is a num-
ber between 0 and 3. Figure 3(b) shows [14] a plot of
InX|u(;)| vs In(1/€). In this case we calculate the y
component of the magnetic field on a vertical line seg-
ment through a randomly chosen point on the z =0 plane
(the same result is obtained for other line segments).
The cancellation exponent from Fig. 3(b) is x==0.31.

As our second example, consider a blob of vorticity in a
high-Reynolds-number turbulent flow. The blob will be
stretched, folded, and rearranged during its dynamical
evolution. Eventually, a section through the vorticity
field will yield a graph which displays high spatial varia-
bility of both signs. The similarity of the rearrangement
process to that in the dynamo problem suggests that a
cancellation exponent can be determined for the vorticity
fluctuations. Similar features can be expected also of
other rapidly oscillating properties such as velocity
derivatives.

To test this notion, measurements were made in several
fully turbulent flows. We obtained streamwise com-
ponents of velocity in the atmospheric surface layer at a
height of about 18 m above the ground (2 m above the
roof of a four-story building). The mean wind speed U
was about 6 m/s and the microscale Reynolds number R;
was about 1500. Additional measurements of velocity
were also made at a height of 6 m above the ground over
a wheat field in an open field. The mean wind speed was
4 m/s and the microscale Reynolds number R) was about
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FIG. 4. (a) A typical trace of the velocity derivative as a
function of time, in units of the root-mean square of the signal.
(b) A plot of InX|ize| vs In(1/€). A reasonably good power-law
fit is possible, as seen in the inset which gives the local slope «.
The cutoff for small € in (b) is consistent with the cutoff due to
viscous diffusion.

2000. These measurements were made with single hot
wires (0.6 mm in length and 0.5 um in diameter) operat-
ed on DANTEC anemometers in the constant tempera-
ture mode. A temporal trace of streamwise velocity fluc-
tuations was obtained at a single *“‘point” in the flow by
digitizing anemometer signals with 12-bit resolution at a
sampling rate that varied between 6000 and 10000 Hz.
This sampling rate is adequate to resolve Kolmogorov
scales in the flow. The record length varied between
140000 and 800000 points.

In addition, in another set of experiments, the velocity
field in a plane was obtained in the turbulent wake of a
circular cylinder at several moderate Reynolds numbers
by the use of particle image velocimetry (PIV). The
technique consists of seeding the flow with small particles
whose positions at two closely spaced intervals were cap-
tured on photographic film by using laser pulses. The
photographic film was developed and interrogated by a
light beam from a low-powered He-Ne laser. The infor-
mation from the resulting Young’s fringes is converted to
vector data using the software purchased from FFD, Inc.
Further experimental details and a discussion of the accu-
racy of measurements can be found in Ref. [15].

As expected, the velocity field itself yields a trivial
value zero for the cancellation exponent. On the other
hand, quantities such as velocity derivatives and vorticity
yield nontrivial values, and we expect these values to be
universal for high-Reynolds-number turbulent flows. We
first show this for our atmospheric flow data. For a given
¢ interval let u, =2 (Au/At), where Au represents the ve-
locity difference over one sampling interval in the digi-
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FIG. 5. A plot of InX|w¢| vs In(1/€) for the vorticity com-
ponent w, in the far field of the cylinder wake.

tized record of the velocity trace, and the summation ex-
tends over all digitized points in the ¢ interval. In Fig. 4
we plot InX|i| vs In(1/¢), with the summation extending
over all ¢ intervals [16]. The figure shows that there is a
good scaling region of about a decade and that the can-
cellation exponent is approximately 0.6.

We have also computed the y component of the vortici-
ty w, from our data for the wake behind a circular
cylinder, where x is the streamwise direction and y is per-
pendicular to the axis of the cylinder. The resolution of
the velocity measurement is on the order of 1.5 Kolmo-
gorov scales at the cylinder Reynolds number of 1100.
Analogously to i, we define o= o, (where the sum is
over points in the ¢ interval) and then examine the ¢ scal-
ing of X|we| (where the sum is over ¢ intervals). For
direct comparison with velocity derivatives, the vorticity
along lines of constant x were strung together to give a
one-dimensional string of data. Figure 5 shows that a de-
cent scaling exists, and yields a cancellation exponent of
0.45 [171.

In conclusion, we have shown that sign-singular mea-
sures with nontrivial cancellation exponents occur in
dynamos and fluid turbulence, and we expect that this
may prove to be true in many other physical situations.
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