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A family of scale-invariant, base-dependent, multiplier distributions is measured for the turbulence
dissipation field in the atmospheric surface layer. The existence of these distributions implies the ex-
istence of the more traditional multifractal scaling functions, and we compute both positive and negative
parts of the f(a) curve. The results support the conjecture of universality in the scaling properties of
small-scale turbulence. A simple cascade model based on the measured multiplier distributions is shown
to possess several advantages over previously considered models.

PACS numbers: 47.25.—c, 02.50.+s, 03.40.Gc, 05.45.+b

The multifractal formalism [1-5] [e.g., the f(a) func-
tion] compactly describes the scaling properties of mea-
sures which arise in a variety of problems such as chaotic
dynamical systems [6], diffusion-limited aggregation
(DLA) [7], and dissipationlike quantities in fully devel-
oped turbulence [8]. The f(a) function is a macroscopic
feature of such measures, and a quest for deeper under-
standing of the underlying physics has led to microscopic
descriptions. A successful example is the Feigenbaum
scaling function (FSF) [9] appropriate to the onset of
chaos in the period-doubling route. Basic to the FSF are
the contraction ratios (or multipliers), which describe
how distances between the nearest-neighbor iterates scale
with increasing levels of refinement. The FSF organizes
these multipliers according to the natural time of the sys-
tem described by the closest return times, and compactly
describes the local scaling. The FSF description is much
richer than that embodied in f(a), and the latter is easily
computable from the former. Further, the f(a) descrip-
tion is degenerate and a variety of scaling functions lead
to the same f(a) function [10,11].

Many multifractal measures, such as the spatial distri-
bution of the energy dissipation rate in fully developed
turbulence, or the harmonic measure of the DLA struc-
tures, display statistical properties that are different from
those of deterministic systems. Two such properties are
the sample-to-sample fluctuations of the f(a) function,
and the existence of negative dimensions— both of which
represent the same underlying phenomenon [12,13]. Re-
call that, if P;(g) is the measure in the ith box of size ¢,
one can decompose the multifractal measure into in-
terwoven sets of varying singularity strengths @ (where
[P;(£)19—£%"), whose fractal dimensions f(a) are de-
fined by N(a)~& 7/, N(a) being the number of singu-
larities of strength a. Figure 1 shows how f(g=2) and
a(g =2), computed from the turbulence dissipation data
using the direct method of Ref. [14], vary from one sam-
ple to another; each sample is approximately one macro-
scale in extent and produces extended and unambiguous
scaling. The sample-to-sample fluctuations [15] are
much larger than the least-squares errors in calculating
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f(g) and a(g) from individual samples. In addition, for
any given g, f(q) and a(g) from different samples are
correlated and fall along a thin band [16].

These phenomena are absent in deterministic processes,
and their occurrence reflects an inherently probabilistic
dynamics. For such cases, a complete specification of the
scaling properties, even at the level of f(a), requires
measuring both positive and negative parts of f(a)
[12,13,17-20]. Negative f(a) for turbulent flows at
moderate Reynolds numbers have already been obtained
in Ref. [20] but, for atmospheric flows, their computation
by conventional box-counting methods requires an enor-
mous amount of data, involving perhaps several years of
data acquisition [12,13,20]. Recently [12,13,21], a
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FIG. 1. Sample-to-sample fluctuations of f(g=2) wvs

a(g=2) for ten samples (7200 points each, roughly equivalent
to an integral scale) from an atmospheric boundary layer
(squares). The circles are from a simulation of a binary cas-
cade model with multipliers chosen randomly from a triangular
distribution. This model is described later in the text (see also
Fig. 2).
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method based on scale-invariant multiplier distributions
has been proposed as being exponentially faster and more
accurate than box-counting methods. Utilizing this
method, we were able to compute negative dimensions for
atmospheric flows as well as a variety of model cascade
processes.

This paper has several related objectives. As a con-
tinuation of the notion that scale-invariant multiplier dis-
tributions are fundamental functions, we compute them
for atmospheric turbulence by assuming that the observed
scaling could result from cascades of any base (binary,
ternary, etc.). Using these distributions, we construct
several base-independent functions such as f(a). We then
show that the f(a) functions computed from different
multiplier distributions agree well with each other, as well
as with those computed in moderate-Reynolds-number
flows by box-counting methods. Finally, we propose a
relatively simple cascade model that reproduces not only
the observed positive and negative parts of f(a) and
sample-to-sample fluctuations, but also the stretched ex-
ponential tails in the probability distribution of tur-
bulence dissipation. The superiority of the multiplier
method allows us to compute f(a) with greater accuracy
and to assess, for the first time, the universality conjec-
ture about scaling properties in the negative-dimension
range.

To compute the scale-invariant multiplier distributions
one first constructs a measure which, in the present case,
is the energy dissipation rate represented by the square of
the derivative of a component of the velocity. The mea-
sure is then covered by boxes of uniform size. Each of
these boxes is then subdivided into a number of boxes, q,
and the ratios of the measures in the original box to those
in the smaller sub-boxes are computed. A histogram of
these ratios is then P,(M,). Figure 2 shows P,(M,) ob-
tained by assuming cascades of bases a =2, 3, and 5. The
larger symbols show an average over steps involving com-
parisons between boxes of size m and those of size ma,
where m ranged from 50 to 1000. The shape of the dis-
tribution remains invariant for the inertial range of
scales. (For the smallest scales, the distributions have a
concave shape. This concavity is related to the diver-
gence of moments [22) and will be discussed elsewhere.
For very large boxes, multiplier distributions become
flatter, as would be the case for random measures.)

The multiplier distributions P,(M,) are more basic
than the f(a) function, and were introduced in the con-
text of turbulence by Novikov [1], and measured by Van
Atta and Yeh [23]. However, their importance with re-
gard to multifractals in turbulence has subsequently been
ignored. One can compute from the multiplier distribu-
tions both the positive and negative parts of the f(a)
function, i.e., they contain information on the asymptotic
scaling properties of a measure and on fluctuations of
scaling properties for samples of finite size. In addition,
even in instances where high-order moments diverge
2,221, P,(M,) remains well defined. Finally, the f(a)

FIG. 2. Multiplier distributions P,(M,) for bases (from
right to left) a=2, 3, and 5. The larger symbols show averages
over steps comparing measures in boxes of size m with those in
size ma, 50 <m < 1000 in units of the Kolmogorov scale. The
smaller symbols show the distributions obtained for different
values of m (50, 80, 150, 200, 400, and 1000). The solid line is
a useful approximation to the a =2 distribution.

function may extend over (— o, ) whereas P,(M,) is a
compact function defined on M, € [0,1]. The base
dependency of P,(M,) can be scaled out because the
multiplier distributions corresponding to different bases
are related by convolution, provided the multipliers at
successive cascades are uncorrelated. With this assump-
tion, several base-independent functions can be construct-
ed from the multiplier distributions.

Consider as an example the Mellin transforms M of
P,(M,) and of its convolution P2(N), where N is the
product of two multipliers picked according to their prob-
abilities P,(M,). Since the Mellin transform of a convo-
lution is the product of the individual Mellin transforms,
we have

M{P¢=, (M)} =M{P, (M)} - M{P,(M,)}
=[M{P,(M,)}]2. a)

It is clear that, in general, the exponent in the last term
of Eq. (1) is simply log(b)/log(a), the number of times
the variable is being convolved. So far, for any two
different bases we have

IM{P, (M, )}] M@} =M {p, (M,)}]{1ee®} ()

On evaluating the Mellin transform and taking loga-
rithms of both sides, we get [1]

log{(Ma)9) _ log{(M})?)
log(a) log(d)

The other scaling functions f(g), a(g), and D, are simply
related to 7(g), and so they too can be easily derived
from the multiplier distributions. Further, one can derive
equivalent scaling functions by using Laplace or Fourier
transforms.

We now compute the f(a) function from the multiplier
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FIG. 3. The f(a) function from the atmospheric data for
bases 2, 3, 4, 5, 6, 8, and 10, after the base-dependent prefactor
has been removed. The good collapse implies that the assump-
tion of random multiplicative processes is essentially correct,
and that no single base is preferred.

distributions of Fig. 2, and verify that the multifractal
scaling functions derived from different-base multiplier
distributions indeed collapse. While doing so, it is impor-
tant to account for the existence of a prefactor in
(M)D~C(@a"" @7 P From Eq. (3), we have
14(q) +Do=1(q) —loglC(g)}/log(a) + Dy, but the pre-
factor can be eliminated by computing 7,(g) for two
different bases. One can then obtain the correct base-
dependent exponents for an arbitrary base. Internal con-
sistency requires that all of them should collapse onto a
single curve. Figure 3 shows just such a collapse for
bases a =2, 3, 4, 5, 6, 8, and 10 (where the prefactor was
computed using bases 2 and 4). The collapse strongly in-
dicates that there is no preferred base as far as it con-
cerns the scaling properties.

Finally, Fig. 4 compares the scaling exponents for at-
mospheric flows with those computed [20] from laborato-
ry data. The latter have been computed using conven-
tional box-counting methods and thus do not assume un-
correlated multiplicative processes. The exponents for at-
mospheric flows have been computed using the multiplier
method which uses just such an assumption. The excel-
lent agreement with conventional box counting (in the
range where the latter is capable of yielding exponents)
indicates the correctness of our convolution arguments
based on uncorrelated multiplicative processes. (Such an
approach would fail for the period-doubling attractor be-
cause the contraction ratios in that case are highly corre-
lated, thus invalidating the simple convolution arguments
used here.) We thus observe a nontrivial and interesting
empirical fact that the successive multipliers in cascades,
which give rise to the observed intermittency in tur-
bulence, seem to be essentially uncorrelated. The com-
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FIG. 4. The f(a) function for the atmospheric data for bases
2 and 10. Also reproduced (from Ref. [20]) are the data from
a variety of laboratory flows (larger symbols). The small dia-
monds are from computations [28] using multipliers from the
triangular distribution shown in Fig. 2. The agreement between
f(a) functions for atmospheric turbulence and for laboratory
flows supports the notion of universality of scaling properties at
different Reynolds numbers even of the most rare events.

parison in the negative f(a) region shows excellent agree-
ment between the laboratory and atmospheric scaling
properties, supporting the conjecture of universal scaling
for even the rare events in the small-scale velocity field in
fully developed turbulence.

In the past few years a variety of cascade models such
as the log-normal model [24], beta model [25], random
beta model [26], and p model [8] have been proposed to
mimic intermittency in turbulence. None of these models
displays sample-to-sample fluctuations or negative dimen-
sions; nor do they explain the multiplier distributions
shown in Fig. 2. One can, however, construct an entire
family of simple cascade models which display all of the
above features and whose f(a) functions agree well with
experiment. The simplest model would be a binary model
with multipliers picked randomly from a triangular distri-
bution (shown by the solid line in Fig. 2) which is a rough
approximation to the mean distribution for a binary cas-
cade. Figure 4 shows that the f(a) function for this
model is in good agreement with other experimental data.
As already remarked, this cascade model displays the
right behavior with respect to sample-to-sample fluctua-
tions shown by circles in Fig. 1. The model also repro-
duces the observed [20,27] stretched exponential tails,
P(e) ~exp{—B(e)'"/3, in the probability distributions of
the energy dissipation rate &. However, it cannot address
issues such as the divergence of high-order moments.
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