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Accumulation rates of spiral-like structures in
fluid flows

By R. M. EvErson axD K. R. SREENIVASAN
Mason Laboratory, Yale University, New Haven, Connecticut 06520-2159, U.S.A.

Spiral-like structures in the passive scalar fields of typical fluid flows are examined
with special reference to their rate of accumulation. The study was motivated in the
particular context of the Kolmogorov capacity of such structures and their role in
potentially dominating the measured dimension of iso-scalar contours in fully
turbulent flows, but it may have broader implications. A specific conclusion is that
the structures occurring in these flows are better modelled by a logarithmic spiral
rather than a power-law spiral, and therefore do not make significant contributions
to the empirical estimates of dimensions by box-counting methods. Another
conclusion is that, at least for the Reynolds numbers examined here, the spiral-like
structures (such as they are) rarely possess more than four or five turns.

1. Introduction

The first serious consideration to spiral structures in turbulence was given by
Lundgren (1982), who showed that the axially stretched rolled-up spiral vortices
could result in Kolmogorov’s —3 power law for the inertial range in the spectral
density of velocity fluctuations. Moffatt (1984, 1990) recognized that the ac-
cumulation points of velocity discontinuities (at scales larger than the viscous cut-
off scales) associated with spiral structures could produce non-integer powers in the
spectral roll-off rates, and demonstrated this by some simple and illuminating
calculations. Gilbert (1988) examined, in two dimensions, the winding up of vortex
patches due to strong concentrated vorticity in the vicinity and showed that the
energy spectral density in two-dimensional turbulence could have fractional roll-off
rates between three and four.

Another development concerning spirals in turbulence has recently occurred in the
course of explaining the measured fractal characteristics of interfaces in turbulence.
Measurements in several turbulent flows (Sreenivasan & Meneveau 1986 ; Prasad &
Sreenivasan 1990) as well as a theoretical analysis of the convection-diffusion
equation governing a passive scalar (Constantin et al. 1991) show that, in a certain
range of scales, the self-similar interfaces of the scalar mixed by turbulence are
usefully characterized by a fractal dimension. Typically, these measurements involve
obtaining thin two-dimensional sections of the interface embedded in the three-
dimensional space, and running a ‘box-counting’ algorithm : If N(e) is the number of
boxes of size € containing the (section of the) interface, the dimension is obtained by
the relation N(¢) ~e?. By invoking the method of intersections —for whose
justification see Mandelbrot (1983) in a broad context and Prasad & Sreenivasan
(1990) in this particular context — the dimension of the surface itself was obtained by
D+1.

In interpreting this observation, Vassilicos & Hunt (1991) emphasized that the
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Figure 1 Figure 2

Figure 1. A section of a water jet emerging through a circular nozzle. The jet is made visible by laser
induced fluorescence. A beam from a pulsed Ng:YAG laser was shaped into a sheet by a
combination of lenses and was directed towards a jet (Reynolds number 3900) mixed with a
fluorescing dye. The light sheet excited fluorescence radiation in the plane of intersection, which
was then captured onto a camera. The image region extends from 8 to 24 nozzle diameters. The
laser sheet thickness was on the order of the average Kolmogorov scale. The spiral-like structures
present in the jet section are the object of attention here.

Figure 2. The temporal evolution of the shear flow between two countercurrent streams was
visualized by inserting small amounts of the fluorescing material between the streams, and using
the laser-induced-fluorescence technique already described (for details, see Sreenivasan et al. 1989).
As a consequence of the Kelvin—-Helmholtz instability, the shear layer rolls up in the form of spiral-
like structures before attaining a more complex state. Time increases from top left to bottom right.
Characteristics of some of these structures are examined.

box-dimension defined above is not the Hausdorff dimension but the Kolmogorov
capacity dimension (Kolmogorov 1958). To understand the significance of this
observation, it is necessary to consider briefly the definition of the Hausdorff
dimension. Consider a covering of a geometrical object, embedded in d-dimensional
space, with d-dimensional boxes of sizes ¢;, and define the quantity

H(e) = inf Ze?. (1)

The infimum in (1) extends over all possible countable coverings of the object subject
to the constraints that ¢; < e. In the limit ¢~ 0, the quantity H(e) is zero or infinite
according to whether D is larger or smaller than a critical value Dy. This critical
value is the Hausdorff dimension of the object. In general, the box dimension
D = Dy. Thus, even though the box dimension of an object may be non-integer and
larger than its topological dimension, it may well be that the Hausdorff dimension
is the same as the topological dimension, and the object is not a true fractal in the
sense of its Hausdorff dimension being larger than the topological dimension. It
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follows that, for the interfaces, the fact that the measured non-integer box dimension
is greater than their topological dimension of 2 is not a sufficient condition for
inferring the existence of an underlying fractal. Vassilicos & Hunt noted that a spiral

r(0) = CO, (2)
(where (r,0) are polar coordinates and C,a > 0 are constants) has the Kolmogorov
capacity D=2/(14a), (3)

while its topological dimension and the Hausdorff dimension are both unity. (If a
spiral possesses only a few turns, say less than five, Vassilicos & Hunt proposed a
different expression, but it is unclear that a theoretical discussion of aspects such as
Kolmogorov capacity and Hausdorff dimension of spirals with very few turns is
interesting.) These authors speculated that the measured fractal dimension may
indicate the presence of spirals in the turbulent interface (rather than its being a
fractal). The argument seemed to derive additional strength from Moffatt’s
observation that a single spiral structure could produce Kolmogorov-type inertial
range spectrum (even though a more complete explanation would probably require
a hierarchy of spiral structures at different length scales). It is attractive to think
that a well-defined classical object could at once explain non-integer dimensions as
well as non-integer spectral roll-off rates.

It should be noted that, in contrast to the power-law spiral (2), the Kolmogorov
capacity of a logarithmically accumulating spiral,

r(0) = Ce ™, (4)

is unity. The logarithmic spiral accumulates onto its centre too fast to be space-
filling. Therefore, a logarithmic spiral does not contribute to box-counting
calculations or affect the measured value of the interface dimension.

This report examines the spiral structures found in passive scalar fields of fluid
flows with the specific purpose of determining their accumulation rates in turbulent
jets, developing mixing layers, as well as smoke rings. Some interpretations of the
data are presented.

2. Experiments and measurement methods

The bulk of the search for spiral structures in turbulence was made in the
longitudinal and transverse slices of the concentration field of axisymmetric water
jets (Prasad & Sreenivasan 1990). The slices were obtained by the laser-induced
fluorescence technique. Experimental details are given by Prasad & Sreenivasan and
will not be repeated here. The nozzle Reynolds number was 3900 and the Schmidt
number of the dye was of order 1000, so that the dye may be regarded as non-
diffusing and therefore marking the nozzle fluid. Two longitudinal images covering
the region approximately 8-24 nozzle diameters downstream from the nozzle,
together with six transverse sections (that is, sections perpendicular to the jet axis)
taken at or around 18 nozzle diameters downstream, were examined.

Some evidence of spiralling structures is visible in the concentration field, ¢(x), of
the jet (see figure 1). A discerning eye may even see a preponderance of such
structures. Iiven those regions of the jet which appear to be smeared out reveal, on
closer inspection, structures which look like spirals. Generally, however, these spirals
possess only a few turns, often only three or four. The physical mechanism for their
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Figure 3. A schematic of a spiral. The intersections along the z-axis are indicated by z,, with
the suffix n indicating the number counted from the outermost intersection.

generation is not clear, and it is possible that they are generated by mechanisms
other than the classical Kelvin—-Helmholtz instability. In short, the relation between
the spiralling structures in the scalar field — henceforth termed spiral-like structures
—and true spiralling vortices which accumulate at the origin is unclear. We have
examined the spiral-like structures here with the expectation that their behaviour
may shed some light on the asymptotic behaviour presumed to be characteristic of
very high-Reynolds-number shear flows.

It happens that the scalar ‘dissipation’ field, proportional to |Vc|?, accentuates the
structures more clearly than the concentration field, and so measurements were
made from the ‘dissipation’ field. Note, however, that the finest resolution of the
measurements was comparable to the Kolmogorov scale, so that the ‘dissipation’
field used here is a coarse-grained version of the true dissipation; in particular, no
information on the sub-Kolmogorov scales could be inferred.

Some developing flows were also considered. Figure 2 shows two-dimensional
sections of temporally developing countercurrent shear layer resulting from
Kelvin—Helmholtz instability. The shear layer was set up (Sreenivasan et al. 1988)
using a larger version of the tilting apparatus originally used by Thorpe (1968). Two
streams moving in opposite directions were generated by making use of a slight
density difference (of the order 2.5 %) between the top and bottom layers of the fluid.
It should be remarked that the density difference is immaterial to the dynamical
evolution of the flow. The bottom four figures in the left column show some spiral-
like structures.

A few flows generated by other investigators were also examined. Details will be
given as appropriate.

As pointed out earlier, our primary interest here is in determining the accumulation
rates of the spirals. Figure 3 shows a schematic of an inward-winding spiral. The inter-
sections of a line (which may be taken to be the z-axis) with the spiral are denoted
by x,,x, being the intersection furthest from the centre. If the spiral accumulates
algebraically according to (2), a plot of x, against n on doubly logarithmic scales
would lie on a straight line. In contrast, x, derived from a logarithmic spiral would
lie on a straight line when plotted against » on semi-logarithmic scales.

Figure 4@ and b shows two typical examples, respectively from the transverse and
longitudinal sections of the jet, of spiral-like structures near to the outer periphery
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Figure 5. The log—log (@) and semi-log (b) plots of the distances z, as a function of the intersection
number n for a typical transverse section. These particular sections had several identifiable turns
of the spiral. Different lines drawn in different orientations through the presumed ‘centre’ show
slight differences among them. In this figure and elsewhere, several line intersections through the
‘centre’ were examined. The uncertainty is one realization is of the order of the size of the symbol.
Here and elsewhere, full lines are least-square fits to all the data points shown.

of the jet. That from the transverse section has a larger number of turns. The figures
are representative of the quality of data, and illustrate the difficulties inherent in the
characterization of spiral-like structures. One is faced with difficulties in locating the
‘centre’ of the spiral and in dealing with imperfections of the spirals. Two initially
separate arms may sometimes come close together making their subsequent
identification ambiguous; equally likely are cases where an arm of the spiral appears
to split into two parts. The spiral-looking structures may consist of foliations (that
is, a number of different thin structures banded in an apparent spiral). As described
below, the present analysis was mindful of these limitations.

Typically, the best position for the ‘centre’ was chosen by eye, different lines were
drawn in different orientations through this presumed ‘centre’, and the intersections
x, were measured. In most cases the spiral-like structures did not possess windings
very close to the ‘centre’, and would therefore not allow it to be established with
accuracy. If the spiral is logarithmic this error may be removed since the differences

An =Xy =Ty = 0(1 _e~2na) e (5)

also lie on a straight line when plotted against n on semi-logarithmic scales. This,
however, is not the case for power-law spirals. To achieve a better fit for data
assumed to be derived from power-law spirals, a small offset & was added to each of
the intersections x,,:

w, = ,+0. (6)
Best-fit straight lines to log w, against In » were then found by allowing & to vary
over a small range. Both least-squares and ‘robust’ estimators (Emerson & Hoaglin
1983) which are tolerant of outliners were used. These methods were successful in
recovering power-law variations from simulated data.

Since the outer arms of the spiral are likely to be affected by their interactions with
other structures in the flow, one may expect a sizeable shift in the origin of 6. The
effects of substantial offsets on 6 were also studied.

The intersections were measured manually with a ruler and pencil in enlarged
images, as well as (in most cases) by using a computer program on digitized images.
Because of the finite thickness of the arms of the spiral, the intersections were defined
in a self-consistent way, either by noting the point at which the line enters the arm
of the spiral or leaves it; each of the present authors independently assessed the
reasonableness of the fits to the data.
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Figure 6. The log-log (@) and semi-log (b) plots of x, against n for the spiral-like structures in a
longitudinal jet section.
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Figure 7. The log-log (@) and semi-log (b) plots corresponding to the middle structure in the second
row from bottom of the left column of figure 2. Again, a logarithmic spiral seems to be a better fit
to the data.

3. Results
(@) Turbulent jets

Figures 5 and 6 show, respectively for the transverse and longitudinal sections of
the jet, the log-log and semi-log plots of x, against n for a typical spiral-like
structures. The estimation of ‘error bars’ on the data is uncertain and difficult to
obtain formally, and the size of the symbols in the figures is a representative error
for a given realization, not the statistical uncertainty associated with many
intersections. In both figures 5 and 6 one can fit a power law by ignoring one or two
data points on either end, but we saw no obvious justification for doing so. A
logarithmic law appears to be a better fit. For the 30 or so spiral-like structures we
have examined, the logarithmic model is generally superior, although by no means
completely unequivocal.

Shifts in the angle 6 are equivalent to shifts in the index %, and it is natural to
expect them to be positive. Adding a value 2 (for example) to n produces fits which
are qualitatively similar to those already discussed ; one can again fit power laws to
a subset of the data, but not to the full set.

In each of these respects, the spiral-like structures near the jet axis are quite
similar to those near the outer periphery.

; (b) Developing flows
Returning to the temporally developing shear layer (figure 2), there are very few
turns and the location of the ‘centre’ is again difficult. Even so, it may be noted that
the data (figure 7) appear to favour a logarithmic model.
Spirals with many turns may be found in the ‘smoke ring’ experiments performed

Proc. R. Soc. Lond. A (1992)
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Figure 8. A digitized version of a smoke ring from Magarvey & MacLatchy (1964).
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Figure 9. Shows clearly that the logarithmic model is a better fit to the spiral-like structures in a
smoke ring. The number of intersections as well as the fits in the semi-log plot are unambiguous in
this particular example.

by Margarvey & MacLatchy (1964). Though the flows in their experiment are far
from turbulent, they do provide examples of spirals with many turns and are
therefore helpful in establishing the nature of spirals unequivocally. Margarvey &
MacLatchy investigated the formation of smoke rings by tracing the motion of fluid
emerging from a tube in the vicinity of a smoke source. In figure 8, a spiral obtained
from their figure 3 is shown. The data plotted in figure 9 clearly support a logarithmic
description of the object shown in figure 8.

(¢) Spiral-like structures in numerical simulations

Personal communications from Mr G. Ruetsch of the Division of Applied
Mathematics (Brown) and Mr M. Meneguzzi of Centre d’Etudes (France) suggest that
well-formed spirals do not occur in simulations of isotropic, homogeneous turbulence.
We know of no well-resolved simulations of inhomogeneous flows such as jets.
Numerical simulations of periodic vortex sheet roll-ups (Krasny 1986) show that a
logarithmic fit is better than a power-law fit (see figure 10).

Proc. R. Soc. Lond. A (1992)
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Figure 10. The log-log (a) and semi-log (b) plots of the distances z, as a function of the intersection
number n for the spiral vortex numerically simulated by Krasny (1986) according to a
desingularized prescription. (Briefly, a small parameter is introduced in the numerical calculations.
One recovers the inviscid limit if the constant vanishes identically.) The superiority of the
logarithmic fit over a power-law fit seems clear. The line drawn in (a) corresponds to a quadratic
power-law, which is the expectation according to the formula of Vassilicos & Hunt for spirals with
small number of turns. A different power-law exponent is not out of the question if a few data
points are ignored.

Note, however, that power law fits can indeed be obtained for Krasny’s data by
ignoring the smallest few intersections. It is unclear whether this step is justified on
the grounds of dubious numerical accuracy of spirals near the accumulation point.
Further, Krasny’s (1987) simulations of the roll-up of tip-vortex of an elliptically
loaded wing do suggest the formation of a power-law spiral with an exponent of
about 0.75, in reasonable agreement with Kaden’s (1931) spiral. However, this latter
situation is quite different from the Kelvin—Helmholtz instability.

4. Conclusions

In the concentration field of shear flows like jets, spiral-like structures are common
but well-formed spirals are rare. The vast majority of these structures form part of
a complicated interface, rather than being isolated entities. The outer radii of such
structures range from approximately one jet diameter to a few tens of Kolmogorov
scales. This is quite comparable to the scaling range observed for the interface. While
this may encourage the view that spirals may indeed be relevant to the observed
fractal scaling, all the cases examined were better fitted by a logarithmic spiral rather
than a power-law spiral. As already remarked, logarithmic spirals do not contribute
to the box-counting calculations. Box-counting of individual spiral-like structures
yields results consistent with the dimension of the interface measured as a whole,
though the paucity of data for individual spirals makes these measurements rather
imprecise. It may therefore be concluded that the observed scaling in the iso-scalar
surfaces asymptotically represents an underlying fractal-like structure.

Two cautionary remarks should now be made. First, the experimental spirals do
not in general have more than a four or five turns. It is not clear whether this is an
artefact of the moderate Reynolds number of the flow. If so, the present data do not
rule out the occurrence of spirals whose asymptotic form is algebraic. Alas, we do not
foresee the possibility in the near future of experiments at significantly higher
Reynolds numbers keeping the resolution relative to the Kolmogorov scale the same
as in present experiments. Second, in the majority of instances examined, the spiral-
like structures have been subjected to some sort of deformation by the shear. While

Proc. R. Soc. Lond. A (1992)
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Figure 11. A replot of the data of figure 5 to emphasize that an outward spiralling model fits the
data fairly well. The quality of power-law fits to other spiral-like structures is not always as good,
especially for the smoke-ring of figure 8.

measurements have been made of the intersections along lines in which shearing was
judged to be most constant — and variants of this procedure make little difference to
the primary result of this paper — one could legitimately wonder about the effect of
this deformation. On the other hand, one could also take the view that the
deformation of the spiral is intrinsic to shear flows, and that is should not be regarded
as an artefact needing compensation. In any case, the proper nature of the
compensation (if one is required) could not be assessed.

The precise mechanism for creating logarithmic spirals in fluid flows is not clear.
In potential flow, the superposition of a vortex and a sink produces logarithmically
spirally streamline patterns. The inherent three dimensionality of turbulent motion
could lead to a situation roughly resembling the sink-vortex kinematics locally.

Finally, we considered the possibility that the spiralling structure (both algebraic
and logarithmic) may be outwards rather than inwards. Here, intersections with an
axis would be labelled from the centre of the spiral, and « in (2) and (4) would be
negative. Figure 11 shows the data of figure 6 replotted appropriately. It is seen that
the data fit to the outward spiralling model is good. This is often the case for the
spiral-like objects seen in jets, but not for the smoke-ring spirals. It should be noted
that outward spirals do not accumulate at any point and therefore cannot explain
the measured non-integer dimensions of interfaces or the Kolmogorov-type scaling in
the inertial range. It is hard to envisage a physical mechanism in fluid flows which
might produce outward spirals, whether they are logarithmic or algebraic.

In the light of all the evidence presented here, it would be interesting to understand
the relevance of the theoretical work of Lundgren (1982), Moffatt (1984, 1990),
Gilbert (1988), and Vassilicos & Hunt (1991) which purports to show that some
properties of two- and three-dimensional turbulence are consistent with power-law
spirals. It should be emphasized that the present conclusion refers to the scalar field
while the theoretical work is concerned with the vorticity field. To date, our velocity
measurements in a plane have not had sufficient resolution to say much of substance.

Jonversely, under certain assumptions, one may well be able to infer some properties
of the vorticity field from details of the scalar field. A preliminary attempt in this
direction has been made by P. Similon (personal communication). A conclusion of
this effort is that the spiral-like structures seen in the scalar field are consistent with

Proc. R. Soc. Lond. A (1992)
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local singular-like distributions of vorticity. This may well be the most important
ingredient of some of the theoretical work mentioned above. If so, it is more
appropriate to describe the distribution of vorticity by a superposition of a number
of singular distributions of the sort visualized typically in multifractal formalisms
(see, for example, Sreenivasan 1991).

The jet data were obtained by R. R. Prasad to whom our thanks are due. We are grateful for
thoughtful correspondence on a preliminary draft to M. E. Fisher, R. Krasny, H. K. Moffatt (also
for sending a copy of his DAMTP report) and J. C. Vassilicos. We acknowledge useful comments
by M. Meneguzzi, J. Saylor, P. Similon and G. Reutch. The work was financially supported by a
DARPA (URI) grant and the National Science Foundation.
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Figure 1 Figure 2
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igure 1. A section of a water jet emerging through a circular nozzle. The jet is made visible by laser
iduced fluorescence. A beam from a pulsed Ng:YAG laser was shaped into a sheet by a
ymbination of lenses and was directed towards a jet (Reynolds number 3900) mixed with a
uorescing dye. The light sheet excited fluorescence radiation in the plane of intersection. which
as then captured onto a camera. The image region extends from 8 to 24 nozzle diameters. The
iser sheet thickness was on the order of the average Kolmogorov scale. The spiral-like structures
resent in the jet section are the object of attention here.

PROCEEDINGS THE ROYAL

igure 2. The temporal evolution of the shear flow between two countercurrent streams was
isualized by inserting small amounts of the fluorescing material between the streams, and using

SOCIETY

1e laser-induced-fluorescence technique already described (for details, see Sreenivasan et al. 1989).
s a consequence of the Kelvin—-Helmholtz instability, the shear laver rolls up in the form of spiral-
ke structures before attaining a more complex state. Time increases from top left to bottom right.
haracteristics of some of these structures are examined.
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ROCEEDINGS THE ROYAL

Figure 4. (a) Close-up of a typical spiral-like structure in a transverse section of the jet. (b) Similar close-up from a longitudinal section.
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