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ABSTRACT

The newly introduced Wavelet-Packet transform (Coifman &
Meyer 1989, Coifman et al. 1990) allows the decomposition of a signal
as a function of the scale, the position and the frequency (or wave-
length) optimally. Each Wavelet-Packet coeflicient provides insight
into the structure of the data locally and at the appropriate scale.
We have applied this transform technique to one-dimensional data
and two-dimensional images and report on its ability to characterize
turbulence data with a few coefficients. We find that, overall, the
Wavelet-Packet transform technique performs better than its com-
petitors. That is, significant data compression ratios can be achieved
without severely distorting the signal or the image,

1. Introduction

Turbulent motion has traditionally been decomposed in terms of
Fourier modes, and one speaks of its frequency or wavenumber com-
ponents. Our intuition about ‘large’ and ‘small’ scales of motion is
substantially biased by Fourier description. There are several reasons
why one should think of alternative descriptions. First, most turbu-
lent flows (except for the hypothetical case of infinitely extended ho-
mogeneous turbulence) are finite in spatial extent, at least in one or
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two directions, so that expansions in terms of Fourier modes depend
on mode-cancellation outside the flow domain — this being uneco-
nomical in general. One therefore needs basis functions with compact
support in real space. Secondly, a description of sharp gradients by
Fourier modes is inefficient. Finally, turbulent flows (even the homo-
geneous ones) possess spatial structure of some sort, and the question
of how to represent them efficiently is gaining increasing importance.
The structure is stronger in some flows than in others and has bet-
ter definition at some scales than at others, but it is clear that one
should make a distinction between l'ourier modes on the one hand
and spatial structures on the other. Indeed, descriptive efforts in tur-
bulence have always resorted to a variety of ‘turbulent eddies’ (see
for example, Townsend 1956, 1976). Whatever the precise meaning
of the term ‘eddy’, it is clear that an eddy is not a Fourier rmode!

Lumley (Tennekes & Lumley 1972) recognized this distinc-
tion and wrote as follows (p.259): ‘“The Fourier transform of a ve-
locity field is a decomposition into waves of different wavelengths:
each wave is associated with a single Fourier coeflicient. An eddy,
however, is associated with many Fourier coefficients and the phase
relations among them. Fourier transforms are used because they
are convenient (spectra can be measured easily); more sophisticated
transforms are needed if one wants to decompose a velocity field into
eddies instead of waves ...’ In particular, figure 1 shows Lumley’s
schematic of an eddy in both real and Fourier spaces. It turns out
that this eddy, which has the desired property of being spatially com-
pact, is an example of what are now known as ‘wavelets’. It is very
much to Lumley’s credit that he should have introduced wavelets to
turbulence, albeit without using the name, at least as early as 1972!
Yet, the broad recognition that wavelets possess useful mathemati-
cal properties that are appropriate for turbulence description is quite
recent.

Formally, a wavelet is a spatially localized function which
can be translated and rescaled while maintaining its shape (see, for
example, Daubechies 1988). Wavelets in general are not local in
IFourier space, and there is the so-called ‘uncertainty relation’ which
tells us that spatial localization and wavenumber localization are
complementary, and that there is a quantifiable trade off between
them. Wavelet analysis provides a means for studying scaling and
transient behavior of signals by using the dilates and translates ol
the wavelet as a basis. Decomposition of the signal into these basis
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ﬁ.mctions corresponds to identifying the local scaling behavior of the
signal. Different wavelets have been used to analyze different fea-
tures of turbulent signals and images. Some examples are Argoul et

al. (1989), Everson et al. (1989), Liandrat & Moret-Bailly (1990)
Meneveau (1990). |

While wavelets are important and their use in turbulence is
b:}und to grow in several different directions, it is useful to recognize
the many advantages possessed by Fourier representation (Strang
1989). At the least, our intuition of many periodic as well as non-
periodic phenomena is based on Fourier decomposition. As an ex-
ample in turbulence, the distribution of small scales might to some
extent be described by modulated Fourier modes. Tt thus becomes
apparent that new transforms, which can provide information about
local frequency (or wavelength) in addition to that on scales, would
be very valuable. Recently, such a transform, called the Wavelet-
Packet transform, has been invented by Coifman & Meyer (1989).
The transform provides local frequency and local scale information
about data in one, two or three dimensions. It allows a signal to
be segmented into dyadic intervals (1,2,4,8, ... data points), and the
segmentation is arranged so that each ‘near homogeneous’ piece is
decomposed into the basis that suits it best. A part of the attrac-
tion is that the transform also provides a choice of basis for different
segments of data. FEach of the functions in a basis can be localized
(to different degrees) in the Fourier domain. The localization of the
segment provides the position information. Although the algorithm
allows uneven segmentation of the data and a choice of hasis, the de-
composition is nonredundant and complete. Further, fast aléoriﬂuns
Etégi)ring O(N log N) operations have been written (Beylkin et al.

The Wavelet-Packet coefficients can be arranged in the order

of decreasing magnitude. If it happens that some of them are large
and most others small, we can discard the small ones and achieve
economical representation of the data. If the memory required to
store the retained coefficients is small (relative to that required to
store the original signal), then we have achieved efficient data com-
Pression. Data characterization and compression are related, but not
fdentical. For example, for each Wavelet-Packet coefficient retained

1ts position, scale and frequency will also have to be stored. T11i£
"ov_erhea.d’ makes data compression less efficient than data charac-
terization. On the other hand, in turbulence as well as in many
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other applications, information on position, scale and frequency are
very useful.

The Wavelet-Packet algorithm has already been implemented
in the context of acoustic signals (Wickerhauser 1989). Here, we ap-
ply the Wavelet-Packet transtorm both for the characterization and
for the compression of turbulent data. Because of space limitations,
we describe Wavelet-Packets only briefly (section 2). Some com-
ments on the index of performance are made in section 3. We brielly
describe results for one dimensional turbulent velocity signals (sec-
tion 4), and for two-dimensional concentration fields of tuﬂ.)ulent jets
(section 5). A summary and conclusions are given in section 6. 1.7'01'
sreater details, reference must be made to Zubair et al. (1990) which
we plan to publish shortly.

It should be mentioned that the spirit of image and data com-
pression here is different from that of the Karhunen-Loéve transform
pracedure or the proper orthogonal decomposition - yet another con-
cept introduced to turbulence by Lumley (1970). In the latter pro-
cedure. we are given a large collection of statistically similar objects,
and the purpose is to pick out eigenfunctions that garner the most
energy in the ensemble-average sense. Here, on the other hand, we
are given a single image or a segment of data and asked to represent
‘+ hest and most efficiently by means of various shapes and scales.
The two questions are complementary to each other. (Note: A single
image can be broken up into blocks and these blocks can be thought
of as forming various members of the ensemble. The two techniques

are thus related to each other.)

2. Wavelet-Packets

[n general a collection of Wavelet-Packets consists of the translates,
dilates and modulates of a mother Wavelet-Packet, w. The Wavelet-
Packet w can be be dilated as \/sw(st), translated as w(t — k) and
madulated as eftw(t). In this section we describe the construction
of Wavelet-Packets and some of its properties.

The starting point is a low pass filter sequence h = h;, (j =
1,2,..., N, where N is the width of the filter). This filter h; must
possess some smoothness and finiteness conditions as described by
Daubechies (1988). Define a complementary filter g = g; as
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g; = (=1 hy;.

We denote the ‘convolution and subsampling’ operation with &, and
g; as H and G given by

H((6) = 3 hiail(5)
G((3) = 3 05-203): (1)

Here ((j) represents the discrete data array. Following Coifman
& Wickerhauser (1990) we use three indices for a Wavelet-Packet
w¢ sk, where the index f has a unique relationship with the fre-
quency. The indices &k and s describe the position and scale of the

Wavelet-Packet. All the f values may be obfained using the following
recursive scheme;

was,s+1,0(l) = Hwy 50
Wafi1,s41,0(8) = Guy 0. (2)

The position of the Wavelet-Packet is obtained using wy s (1) =
wyso(t—k). The k index takes only the values possible at that scale.
‘T'he resolution of the data limits the f index that can be obtained
at any scale. The recursive construction scheme given by Eqs. 2
generates a hierarchy of Wavelet-Packets. This hierarchy is shown in
fipure 2. We show only the f, s indices in the figure.

The scale increases in dyadic steps (1,2,4,...) with the hi-
erarchy. Fach of the Wavelet-Packets generated by Egs. 2 may be
translated. This yields a large and redundant collection of basis
functions. This collection is termed ‘a library of Wavelet-Packets’ by
Coifman & Meyer (1989). 1t can be shown that the Wavelet-Packet
library contains a multitude of orthonormal bases.

A measured signal is a sampled version of the original contin-
uous variable. The sampling in data acquisition can be considered as
the decomposition of the continuous variable into the Wavelet-Packet
basis at the scale of the sampling interval. We set this basis as Wo.0, k
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where & takes integer values up to the data length(L). The collec-
tion wo o forms a complete orthonormal basis. This is the the first

subset of the Wavelet-Packet library which we identily as 2 basis.
The property that the siblings are equivalent to their I_Jare.nt
can be used to identify further subsets of the Wavelet-Packet hPrary
which form a basis. The siblings of we,0,k aTe Wi,1,k and wp 1 k- There-
fore the collection wy 1 x and wo) x Where k=1,2,...,L]2, ferm‘a
second basis. (Since the siblings are at twice the :?.-::,ale of wo.0k» k. in
w1 1 & and wo 1 & takes only values up to L/2.) Similarly tth collection
of all Wavelet-Packets at any level in the hierarchy shown in figure 2,
for admissible values of k, form a complete orthonormal ;Da.sis. In L‘lhe
simplest case, if we start with filter coefficients hg = 75 hi = 7=
then we enerate the set of Walsh functions (e.g., Beauchamp 1984)
s the Wavelet-Packets at the final level. Figure 3 shows the first
cight Walsh functions. Figure 4 shows Wavelet-Packets of SOme reg-
ularity constructed with the Coiflet filter of range 30 (Zubair et al.
1990).

We are not restricted to using Wavelet-Packets of the same
«cala for all the basis functions. We may choose some Wavelet-
Packets at some level in the hierarchy and the siblings of the rest
of the Wavelet-Packets at other levels. Extending this reasoning we
can make an orthonormal basis with Wavelet-Packets from aever:a.].
levels. All that has to be ensured is that every "line of heredity’ 1n
the hierarchy is represented exactly once. ‘

The optimal representation of the data. within the llbrary of
Wavelet-Packet is obtained by using the so-called ‘Best Basis Al-
sorithm’ (Coifman & Wickerhauser 1990). The ch{fice pos‘es'two
questions. How is the signal to be segmented? Which basis 1s to
he used for each of these seements? These two questions have to be
~newored simultaneously. We need to evaluate all possible segmen-
tation schemes and all basis functions for each of these segments to

find the optimal representation. |
This gives us an immense search space. The search is started

At the smallest scale. The sampling in the data acquisition can be
considered as the decomposition of the continuous signal into t'he
Wavelet-Packet basis wg o under translation k at the sampling 1n-
terval. That is, we set the discrete signal as zook- (Zfs.k denotes

the coefficient of the corresponding Wavelet-Packet, wy s k-)
We now compute the coeflicients of the siblings (211 and
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To1,k). Since the siblings live on a scale twice as large as the parent
so that the translation step is twice as large, we still have the same
number of coefficients at both levels. We compute the coefficients
of the data for all the Wavelet-Packets generated by translating the
siblings.

Since the representation of the data as coeflicients of the par-
ent Wavelet-Packet or as coeflicients of the siblings is equivalent, we
could choose one over the other. We have used an ‘entropy’ criterion,
which is essentially a ‘least distance’ criterion, to choose one over the
other. The entropy is equivalent to the Shannon-Weaver measure of
information of a sequence (Coifman & Wickerhauser 1990).

This criterion is the natural choice for data characterization
algorithm. Other criteria such as counting the bits required to code
different representations may be suited for data compression.

Keeping the minimum entropy criterion, we continue the sear-
ch for all k values. Thereafter we compute the coefficients at the
next level of the hierarchy. We compare the entropy of the new rep-
resentation to the previous minimum for the segment of data under
consideration and retain the representation having the lesser of the
two entropies. This search is continued to the last level. The search
algorithm ensures that the entire signal is covered by disjoint seg-
ments. Fach segment customizes for itself the optimal basis from
the many possibilties.

The signal is completely described by the coefficients in the
optimal basis so determined. No information has been lost. To com-
press the data we rank the retained coefficients by their magnitude.
The least significant ones are discarded. The image can be recon-
structed by summing all the retained Wavelet-Packets weighted by
their coeflicients.

For a one-dimensional record of length N, the decomposition
and search algorithm has a complexity of O(rN log, N), where 7
refers to the length of the filter. For images of size N? the algorithm
has a complexity of O(rN*log, N?2),

3. Index of Performance

An index of performance used to quantify the compression achieved
is the ‘Coeflicient Compression Ratio’ (CCR). It is defined as the
ratio of the total number of coefficients in the Wavelet-Packet de-
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composition to the number of coefficients in the retained ‘t:-::wisi.1 The
compression ratio measures the ability of the j;ransform to charac-
terize data. Another index is the Bits-Per-Pixel (BPP) ra,tm: It
‘s defined as the average number of bits needed to code each pixel.
This index includes the overhead bits and is a true measure of the

i jeved.
Compres';f?mzclzinent any algorithm an allowable distortion criterion

has to be established. Both the :nformation content and the subjec-

e of the image are degraded by the distortion. The

tive appearanc *
- a measure such as the Signal-

- nformation lost can be quantified by
to-Noise-Ratio (SNR) or the Normed Mean-Square Error (NMSE)

between the orignal and the reconstructed image. These are defined

as 3

L v fi,5) = [N (3)
NMSEIPQNAJ mzz:gr;[ y J )

: (4)

where f refers to the original image and f’ to the reconstruction, and

p refers to the peak value of the data. Definitions for one-dimensional

data follow trivially.

4. Compression of One-Dimensional Data

The top trace in figure 5 shows the velocity measured in the at-
mospheric surface layer about 6.5 meters above t]f%e gmunt.:l over al,
cubstantial stretch of a wheat field at the Connecticut Agricultura
The microscale Reynolds number is about 2000.

aling range. We have analyzed several data
ment of 16384 points.

Experiment Station.

Thus we expect a large sc .
segments, and present results for one typical seg

The Wavelet-Packet transform was applied and the best :ba.sis func-
tions for the data were determined as described in section 2. Re-
constrictions of the top trace were obtained by retaining some small
~umber of coefficients. The second trace from the tOp. was Tecon-
structed using only about 5% of the coeflicients. That is, the Coel-
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ficient Compression Ratio (CCR) was about 21. The reconstruction
shows excellent fidelity to the original signal. The following traces are
reconstructions with approximate CCR’s of 41, 234 and 497 respec-
tively. It is seen that the algorithm is able to capture local events
efficiently and preserve local edges in the signal. The primary ef-
fect of increasing CCR appears to be the increasing absence of small
scales; even for CCR’s as high as 234 and 497, the large scale fea-
tures are preserved. If the reconstruction were attempted by means
of Fourier techniques, the sharp local variations would be smoothed
out completely. Becanse of the Gibbs phenomenon, Fourier trans-
form characterizes abrupt changes rather poorly.

Figure 6 is a plot of SNR as a function of CCR.. As expected
the quality of reconstructions degrades with CCR, but is still accept-
able even at CCR’s of order 500.

Similar reconstructions have been attempted for a variety of
signals in laboratory flows, in particular those close to the wall in
the boundary layer. The results are comparable in quality to those
in figure 5. The effectiveness of such relatively high CCR’s suggests
the ubiquitous presence of strong structure in the signal. Notice that
the energy of the reconstructed signals is a very large fraction of the
original; even for CCR’s of the order of a few hundreds, typically
more than 90% of the energy is retained. Reconstructions with high
CCR are by definition low-dimensional, and it is instructive to note
that low-dimensional reconstructions contain most of the energy.

Computations performed on highly intermittent quantities
such as the energy dissipation (strictly, (%)2 ) yield poorer recon-
structions. 'I'his is not surprising because a highly intermittent sig-
nal has poor spatial correlation (or structure). The Wavelet-Packet
transform can only pick out the structure in signals, in the absence
of which its performance will diminish.

Typically, decomposition and reconstruction of one dimen-
sional records considered here take on the order of a few minutes on

a VAX II/GPX.

5. Compression of Two-Dimensional Images

The extension of the Wavelet-Packet analysis to higher dimensions is
quite straightforward and is described by Coifman & Meyer (1989).
The two-dimensional basis functions are constructed as tensor prod-
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tcts of one-dimensional Wavelet-Packets. For convenience of compu-
tation, we restrict attention to tensor prafiucts of szelet—Pa,ckeiizs
of the same scale. The rules for choosing different orthonormal basis
functions are direct extensions of the one-flimensimn.al case. As be-
fore, data compression is achieved by ranking the coefficients of the

‘best basis’ and discarding the least significant ones. ‘
Figure 7 shows a two-dimensional map of the concentration

feld in a turbulent jet at a nozzle Reynolds number of 'a,bout 4000.
The gray level indicates the concentration F’f the fluorescing dye, and
the image has been obtained by the laser—lnduced—ﬂuor.esmnce tech-
nique whose details can be found in Prasad & Sree_nwa,sa.n (1989,
1990). The jet pictures obtained by Prasad and S.reem:va,sa,n are tyrf-
ically 1300 x 1030 pixels in extent, and each pixel is a twelve-.blt
word. To economize on the memory and computa,t:t_(mal require-
ments. we have analyzed various fractions of these images using
Wavelet-Packets: for example, figure 7 is 1024 x 512 pixels 1 ex-
tont. We have also analyzed images at a lower Reym:_ﬂds number
of 2000; these latter images have a steady laminar region near the
nozzle exit, transitional region somewhat downstream, and the tur-
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6. Summary and Conclusions

Turbulent signals and images possess some temporal and spatial
structure. There is always some correlation between neighboring
elements which, in some sense, implies that there is redundancy of
information. This in principle allows data compression. We may also
be willing to tolerate some specified degradation in data compression
and reconstruction. Often, as in the case of turbulent jet images dis-
cussed in section 5, the degradation is not perceptible except for high
CCR’s. This is because the precision in data coding may surpass the
discrimination of human eye. In any case, some degradation may
indeed be tolerated depending on applications.

Several data compression techniques are now available. We
have outlined one of them and briefly presented some results. The
technique allows the definition of the structure in terms of its shape,
size and frequency (or wavenumber). A comparison between the
performance of the present technique and several others has been
made. The exact comparison can be carried out at several levels,
and depends on the precise parameters held fixed. For example, one

can specify the maximum mean-square error permissible in the re-
construction, and ask questions about the speed of the method and
the computer memory required. One can keep a fixed CCR and de-
termine the SNR of reconstructions. Furthermore, when comparing
with the Fourier representation, details of image segmentation will
be crucial. For all these reasons, a proper comparison requires a lot
of detail and will not be reported here; it can be found in Zubair et
al. (1990). It suffices to say that, overall, the Wavelet-Packet trans-
form performs somewhat better than its competitors. We believe
that the greatest advantage of Wavelet-Packets lies in the explicit

bulent regime far downstream. The analysis helps us to un(.lerﬁta.nd
the downstream evolution of various scales in the concentration field.
For brevity, we present results only for the higher Reynolds I}Umb-er
jet. The figures are presented in gray scales. A representatmr} via
color is more instructive (and these were presented 'a;t the meeting),
hut exorbitant reproduction costs preclude this option. .
Figure 8, 9 and 10 show reconstructions of ﬂg}lre 7 for various
CCR’s. The reconstructions are obtained by keeping smaller and
-maller number of coefficients. The CCR values are 50, 100 and 160

respectively. It is clear that the reconstructed images retain many
«tructural features tolerably well even at the highest CCRs. identification of spatial position, frequency as well as the scale of

The behavior of SNR as a function of CCR is similar }:0 that ~ structures. his Lnhiadioboly Goiceuts neiacel visible anetintings
1 one-dimensional signals (figure 11). It may be helpful to include r in furhilsiics. Thss stadics are catrently nides wiy
data on the the Signal-to-Noise Ratio as a function of .BP]F:, or tlhfe
average number of bits used to code each pixel (see section 3). This
is given in figure 12. o .

We have by no means optimized the computer pmgr_a,ms,_ an
it is perhaps not as useful here to quote typical cmlnputatmn fimes
. it is for the one-dimensional case. Yet the following number may
eive some indication. In the current version of our prograins, c%e-
composition and reconstruction of images of the size of figure 7 takes
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Figure 3: Walsh functions (see Beauchamp 1984).

Turbulent Signals and Images Using Wavelet-Packets

oIt Lag

.06 |

Figure 4: Coiflet functions (see Zubair et al. 1990).

505



506 L. Zubair, K. R. Sreenivasan, and M. V. Wickerhauser

Turbulent Signals and Images Using Wavelet-Packets 507
| ? é' o0 1 | j | T | l i |
original signal -

o
=
CER =4l 75
IR S A - e A | R R B e R G
CCR = 497 i ..;} 20 | | | | | | ! | L
| i 0 100 200 300 400 500
CCR
| | ; :; Figure 6: SNR as a functlon of CCR for
S pEs s e L1 IISDDU P one-dimenslional veloclty data
5000 10000 i

TIME (untts of sampling 1nterval)

Figure 5: Compression and reconstruction of atmospheric tur-

bulence velocity using Wavelet-Packet transforms.
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