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The theory of . . . lines and surfaces, for example, has long been recognized as an
important branch of geometry, but in treatises on motion it was regarded as lying as
much outside of the subject as the four rules of arithmetic or the binomial theorem. . . .
geometry itself is part of the science of motion, and [that] it treats, not of the relations
between figures already existing in space, but of the process by which these figures are
generated by the motion. . . . This method of regarding geometrical figures seems to
imply that the idea of motion underlies the idea of form. . . .

James Clerk Maxwell (1879), in his review of Thomson and Tait’s
Treatise on Natural Philosophy

1. INTRODUCTION
1.1  Scope

This review is about lines, surfaces, and volumes in turbulent flows and
the various measures distributed on them. We limit the discussion to the
questions of how fractals and multifractals can be used in this context,
and of how much dynamical information we may obtain from this exercise.
The subject is a relatively recent addition to studies in turbulence.

The following examples are typical of one class of physical situations
with which we are concerned: An initially straight line of hydrogen bubbles
placed in a high-Reynolds-number turbulent flow evolves into a complex
shape that appears kinked in all three dimensions and on many scales. The
surface separating two species (reacting or nonreacting) in a turbulent
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flow, even if initially smooth, evolves into a complex pattern. Turbulent
jets, flames, and cumulus clouds possess similarly complex boundaries. In
mathematical terms, these shapes, patterns, and boundaries are examples
of sets, and our first objective is to develop intuition about their geometric
properties in ways that are independent of the Reynolds number (as long
as it is sufficiently high); the second objective is to understand the dynamics
of the processes leading to the observed geometry.

Another family of issues, much richer in complexion, concerns singular
measures distributed on sets—by which we roughly mean highly spiked,
positive-definite quantities distributed on lines, surfaces, or volumes. One
familiar example is the spatial distribution of energy dissipation. It is well
known (e.g. Batchelor & Townsend 1949) that this distribution is spatially
intermittent, and that the intermittency increases with increasing Reynolds
number. Some other examples are the distributions of scalar dissipation,
enstrophy (squared vorticity), absolute values of the Reynolds shear stress,
and joint distributions of two or more of these quantities. We should like
to quantify such singular measures in terms that are invariant with respect
to the Reynolds number, and also to shed light on dynamical scenarios
leading to such measures.

The tools we employ are fractals and multifractals. Since there is at
present no convincing proof that they are the inevitable tools for our
purposes, the viability of the approach rests on experimental evidence,
which is the aspect on which we focus most. The works of Mandelbrot
(1972 and later), Chorin (1982 and later), Frisch & Parisi (1985), Benzi et
al (1984), Schertzer & Lovejoy (1985, and references therein) must be
considered important precursors to the experimental work described here.
This review could in principle have been broadened in scope by including
applications of fractals and multifractals beyond turbulence. However,
even when restricted to fluid-mechanical problems, the material is enor-
mous and cannot be covered in modest space. For an entry to this litera-
ture, see, for example, Jensen et al (1985), Tabeling (1985), Van Damme
et al (1986), Olinger & Sreenivasan (1988), Turcotte (1988), Mandelbrot
& Scholz (1989), and references therein. Needless to say, we do not dwell
at all on applications outside of fluid mechanics; for these, the reader may
consult Mandelbrot (1982) (who gives a vivacious account), Stanley &
Ostrowsky (1985), Halsey et al (1986), Feder (1988), Barnsley (1988),
Avnir (1989), Pietronero (1989), Vicsek (1989), and many others.

1.2 Seeking Scale Similarity in Real Space

In contrast to the general practice in dynamical systems, where the empha-
sis is on phase space, we concentrate on the description of turbulence as a
frozen object in three-dimensional physical space. This has the operational
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advantage that the embedding space is low dimensional—often only
planar and line intersections are studied-—and so accurate charac-
terizations are generally possible. But this procedure also imposes a fun-
damental limitation in that the characterizations are of static objects;
dynamic processes responsible for the generation of these patterns cannot
be understood without the benefit of ingenuity and inspiration.

A common property of the objects mentioned above, whether of the jet
boundary or of the energy dissipation distributed in real space, is the
coexistence of a hierarchy of scales. As with similar situations in other
areas of physics, one first looks for scale similarity—a notion that, broadly
speaking, implies that features at one scale are related to those at another
by means of one (or several) scaling factors or functions; the basic reason
for expecting this in high-Reynolds-number turbulence is that the Navier-
Stokes equations possess some kind of scale invariance. (We use scale
similarity to embrace self-similarity as well as self-affinity, both of which
are discussed more explicitly in the next section.) Much attention in tur-
bulence has been paid to the framework embodied in Kolmogorov’s (1941,
1962) hypotheses—see, for example, Monin & Yaglom (1971)— but,
despite the approximate verification of these hypotheses by much experi-
mental work, it is becoming increasingly certain that all their facets do not
provide the best abstraction of the right physics. This loaded statement
will later be taken up partly, but its detailed discussion is a matter deserving
of a separate review. Kolmogorov’s theory (at least as practiced most
often) is analytical in nature, involving wavenumber interactions, whereas
the scale similarity explored here is suggested by considerations of eddies in
real space: Turbulent eddies are spatially compact structures, not Fourier
modes with infinitely extended support.

The idea of similarity in physical space is old-— Richardson (1922), for
example, expressed it explicitly-—but the force of Kolmogorov's theory
seems to have oriented attention in later years to wavenumber space. (For
a notable exception, see Townsend 1956.) The balance seems to have been
reverting to real space in the last two decades or so, but, as noted by
Mandelbrot (1982), turbulent structures are still largely described in terms
of Euclidean objects such as blobs, rods, slabs, and ribbons—and
occasionally in terms of more imaginative, but unhelpful, metaphors such
as melons, beans, spaghetti, lettuce, and the like; on the other hand, reality
(e.g. Kuo & Corrsin 1972, Kerr 1985, Frisch & Orszag 1990, Everson et
al 1990) calls for “in-between” patterns. Mandelbrot (1982) pointed out
that scale similarity cannot be built up in traditional descriptions without
introducing dubious assertions, whereas scale similarity is the natural
attribute of fractals.

We consider in Section 3 the fractal geometry of scalar and vorticity
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interfaces in turbulent flows; before doing so, fractals and fractal dimen-
sions are briefly reviewed in Section 2. In Section 4, we discuss the fractal
structure of flame surfaces. Multifractal measures are introduced in Section
5, and the measurement and interpretation of multifractal spectra are
described in Section 6. In Section 7, we briefly examine the detailed nature
of scale similarity in turbulence. The review concludes (Section 8) with a
summary.

2. SELF-SIMILAR AND SELF-AFFINE FRACTALS
2.1 Self-Similarity, Power Laws, and the Fractal Dimension

The modern physical notion of fractals is largely due to Mandelbrot
(1982 and earlier), but the mathematical notion of sets having noninteger
dimensions is much older (Hausdorff 1919, Besicovitch 1929). It is inter-
esting that Mandelbrot (1989a) notes that It [fractal geometry] fails to

have a clean definition and unified tools. . . .”” To some extent, this
vagueness (see Mandelbrot 1982, pp. 361-62) is characteristic of a subject
that is still in flux. To continue the quotation: *“. . . mathematical language

[of fractals] keeps continuing to evolve and to expand with each new use.”
A gentleman’s definition (that is, one with which gentlemen do not argue)
is that a fractal object is one whose parts relate to the whole in some
way. Serious exploration of the meaning of those two italicized words is
tantamount to expanding the subject of fractals itself. Our purpose here
is best served by heuristic explanations rather than formal definitions.

In the simplest case of a self-similar deterministic fractal, the same
prescribed operation is performed repeatedly on a starting object that may
be rather simple. For specificity, consider the triadic Koch curve (Figure
1). The starting object—called the initiator—is here a line of unit length.
The construction of the Koch curve proceeds by replacing the line by a
new shape, itself made of line segments; the new shape is called the genera-
tor. The construction of the succeeding steps consists of replacing each
line segment of the previous step by a scaled version of 'the generator. In
this example, the individual line elements at each step decrease in length
by a factor of 3—hence the name triadic. The result of the first few
iterations is given in Figure 1. The curve at the end of many iterations
would have a wide range of scales. At any stage of construction, the curve
possesses the important property that, when a part of it is expanded by a
factor 3" (where n is an integer), it looks the same (except for trivial
reorientation) as that obtained # stages previously. Thus comes the notion
that self-similar fractals are invariant to dilation.

In nonlinear physics, one often (or almost always) does not have access
to details of the construction of a fractal, only to the final form at the end



FRACTALS IN TURBULENCE 543

BVA
A T

n=3

Figure I The construction of a triadic Koch curve. The figure is taken from Feder (1988).
For a description of other Koch curves, see Mandelbrot (1982).

of an (unknown but large) number of iterations. Consider the Koch curve
at the end of many iterations. By estimating the length A of this curve at
finer and finer resolutions r, one essentially replicates features at various
generation levels. The length estimated by a yardstick of unity gives a
length estimate of unity, which is the length at the zeroth iteration; a
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yardstick or resolution of (1/3)" yields the length of (4/3)", which is exactly
the length at the nth generation. As the resolution improves, the length
keeps increasing. This situation is quite different for a classical line. Its
length, as measured by covering it with finer and finer yardsticks, remains
the same for all yardsticks smaller than a certain value. In this sense,
the fractal curve “has more in it” than an ordinary curve. The intrinsic
parameter that quantifies this property is its dimension: The dimension of
a fractal curve is more than unity, a fact for which its convolutedness at
all scales is responsible. The curve may be so highly convoluted that it
effectively covers an area, in which case the curve is said to be space filling
with dimension 2. A fractal surface will in general have a dimension greater
than 2, but it could have a dimension as high as 3 if it is so highly
convoluted as to effectively fill a volume. In this sense, the fractal dimension
is a measure of the space-filling ability of a fractal set. The co-dimension,
which is the difference between the dimension of the embedding space and
the fractal dimension, is a measure of the sparseness of the fractal.

We have seen for the Koch curve that A(r/3) = (4/3)A(r), whose solution
is of the form

Ar)y=r'"2, 2.1
where D = log 4/log 3 = 1.2618. . . . The number of length elements
required to cover the total length is given by A/r and equal to

N(@r)=r". (2.2
It follows that

D = log Nflog(1/r). (2.3)

One can easily convince oneself that the application of (2.3) to lengths,
areas, or volumes of Euclidean objects yields the familiar dimensions. D
is therefore thought to play the same role for fractal objects and is called
the fractal dimension; it can be determined in principle using (2.3), but in
general expressions (2.1)-(2.3) contain prefactors. In practice, it is thus
better to obtain D from the slope in log-log plots of (2.1) or (2.2). Unless
one refines the yardstick naturally (by the factor 1/3 in the case of the triadic
Koch curve) and partitions the length in a natural way by starting measure-
ment exactly at the beginning of a piece, one finds oscillations in the log-
log plot around a mean slope. The prevalence of power laws with respect
to the scale of observation in a certain range is commonly used to discern
a fractal, especially when the scale similarity is statistical and cannot always
be identified by sequential enlargement of segments of the fractal object.

A generalization for the areas and volumes of fractal surfaces and
volumes is
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where D is given by the formula (2.3), with N being the number of area
or volume elements of linear dimension ». Note that while the fractal
dimension is the most basic property of a fractal, many fractals can be
constructed with the same dimension.

2.2 The Method of Intersections and the Additive Law

In turbulence research, one is nearly always forced by limitations of
measurement technology to work with one- or two-dimensional sections
of three-dimensional objects. This leads us to ask, How are the fractal
dimensions from such sections related to that of the original object? The
general problem of relating the dimension of a fractal object F to those of
its intersections has been discussed in the literature, and some results are
available for special cases (Marstrand 1954, Hawkes 1974, Mattila 1975,
Mandelbrot 1982, Falconer 1984). Roughly speaking, if F'is embedded in
three-dimensional space and intersected by a thin plane—in practice,
about as thin as the finest scale present-—the dimension of the intersected
set is one less than that of F provided that the result is independent of the
orientation of the intersecting plane. Similarly, the dimension of line
intersections is two less than that of F, again under the provisions that the
line be no wider than the finest scale and the result be independent of
the orientation of the intersecting line. In the absence of such careful
demonstrations, the additive law cannot in general be used (see, for
example, Bunde et al 1987). Adequate demonstrations have been possible
for some aspects of turbulence and are discussed at appropriate places.

Finally, it should be said that these intersections will be empty very
often if Fis extremely sparse. A large number of intersections will then be
necessary to establish the properties of F.

2.3 Some Methods for Fractal-Dimension Measurement

Mandelbrot (1982) discusses several methods for determining the dimen-
sion of the fractal boundary. Another useful discussion can be found in
Section 2 of Avnir (1989). In a planar digital image containing a fractal
boundary, the co-dimension method involves computing the smallest dis-
tance from each pixel to the boundary and determining the number of
pixels N{r) lying within a distance r from the boundary. The slope of this
straight region in log-log plots of N.(r) versus r is the co-dimension D, of
the boundary; its fractal dimension is 2— D.. In the box-counting method.
one covers the whole plane with square elements of varying sizes and
counts the number N(r) of elements containing the boundary. The negative
slope of log N(r) vs log r yields the dimension of the fractal boundary. In
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general, box-counting methods are far more efficient than co-dimension
methods. Other methods involve following the boundary with dividers of
varying lengths and obtaining the corresponding apparent lengths; slopes
in log-log plots [see (2.1)] yield the fractal dimension. This method is
usually difficult for multivalued and fragmented boundaries, but one can
use suitable coarse-graining filters at various scales.

All these techniques examine a single object with various resolutions,
but other methods can be used when one has access to various-sized objects
belonging to the same class (e.g. cumulus clouds of different sizes). The
so-called perimeter-area method is one such technique. For an object with
a fractal boundary, the perimeter continues to increase with the resolution
of measurement, whereas the area asymptotes to a finite value. Mandelbrot
(1982, p. 110) shows that, for some fixed resolution small enough to measure
the smallest sized object accurately, the perimeter P and the area 4 of such
objects of various sizes follow the relation

P~ A" (2.5)

where D is the boundary dimension. Consistent with experience, D = 1
for Euclidean objects.

For a boundary evolving dynamically, one can obtain the area swept
by the boundary at two closely spaced times and use the co-dimension
method. Not all of these definitions need give the same result.

2.4 Self-Affine Fractals

Consider for example a turbulent velocity component measured as a func-
tion of time at a single point. As shown in Figure 2, it looks rough, like
the boundary of a random fractal (e.g. a coastline), but with the difference
that the two axes correspond to different physical quantities— velocity and
time—that are intrinsically different. One can choose different units for
the two axes to make the trace look either very steep or nearly smooth.
Similarly, from a scalar field in two dimensions, one can construct a
mountainlike structure in which the height at each point equals the mag-
nitude of the local concentration. Again, the height (on the one hand) and
the two spatial coordinates (on the other) are intrinsically different and
independent, so that the mountain can be made to look jagged or relatively
smooth depending on the choice of units for the two quantities. In general,
whenever different quantities involved in such constructions scale diff-
erently, the notion of self-similarity contained in Equations (2.1)—(2.3) will
not be adequate; to describe these phenomena, one needs the more versatile
machinery of self-affinity. An affine transformation is one that transforms
a variable £ = (x,, X,, X3, ...) into a new one { = (ax, bx,, cx;,...), where
the scaling ratios a, b, ¢, . . . are all different. If a subset of a process is
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Figure 2 A turbulent velocity signal measured using standard hot-wire anemometry 18 m
above the ground in an atmospheric surface layer. Time and velocity arc plotted in arbitrary
units.

similar to the whole under an affine transformation, the process is said to
be self-affine. Mandelbrot (1985, 1986) has discussed self-affine fractals
and introduced recursively self-affine fractals (see also Voss 1989).

One cannot define similarity dimension for even the simplest self-affine
fractal curves. If one evaluates this dimension mechanically, pretending
the curve in Figure 2 to be like a coastline, the value depends on the
expansion used for one quantity relative to the other. If, for example, the
time scale is stretched enough to render the signal to appear as a collection
of smooth increments, it is intuitively clear that the dimension (called the
global dimension) will be unity. If, on the other hand, the ordinate is
stretched over a range of values, one can define the usual fractal dimension
according to (2.1). This is the so-called local dimension of the seif-affine
fractal. As pointed out by Mandelbrot (1986), more than one dimension
is necessary to characterize self-affine fractals. For the most part in this
review, we do not concern ourselves with self-affine fractals—partly
because not much work has been done beyond that mentioned, say, by
Turcotte (1988) and Voss (1989) and partly because many subaspects of
self-affine fractals possess self-similarity. For example, while the velocity
trace of Figure 2 is self-affine, there are reasons to believe (Section 3.2)
that some of its level sets (that is, the sets of points obtained by various
level crossings) are self-similar. There is much scope for further work here.
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3. FRACTAL DIMENSION OF SURFACES IN
TURBULENT FLOWS

Sreenivasan & Meneveau (1986) have shown, using their own data as well
as those of Corrsin & Karweit (1969), that the evolution of material lines
in grid turbulence can be interpreted in terms of the fractallike properties
of turbulence. There are few data on this topic beyond those contained in
these two sources. On the other hand, there has been much work on
surfaces in turbulent flows since 1986, and so we concentrate on that
aspect.

3.1 The Scalar Interface

A passive scalar introduced into a turbulent flow gets dispersed by tur-
bulence, but the scalar-marked region possesses, at high Reynolds
numbers, a sharp boundary. This is the scalar interface. We are interested
in the properties of this interface, partly as an object of interest in its own
right and partly because of its relevance to mixing and combustion.

The existence of the scalar interface has been known for a long time
(Corrsin & Kistler 1955). Its complexity was particularly well demon-
strated by Dimotakis et al (1983), who obtained well-resolved photographs
of jet sections with the use of the laser-induced fluorescence (LIF)
technique. More recently, Prasad & Sreenivasan (1989, 1990a) obtained
quantitative two- and three-dimensional LIF images of the scalar field in
wakes and jets, concluding that the interface, in spite of its fragmented
appearance in two-dimensional sections, is largely contiguous. They also
noted that even though the large-scale structure of the interface is apparent
from one parallel plane to the next, small-scale variations are so prevalent
that any two neighboring sections of the interface have very little correla-
tion on the average.

In liquid flows in which various dyes have been used as scalars, the
Schmidt number (Sc = v/k, where v i1s the kinematic viscosity and k is the
mass diffusivity) is of the order 1000. This leads to two distinct scaling
regions. Speaking loosely for the present, one of them (to be called the K-
range below) occurs between the integral scale L and the Kolmogorov
scale #, and the other (to be called the B-range) occurs between # and the
Batchelor scale #, = #Sc™ '/? (Batchelor 1959). The physics as well as the
techniques of dimension measurement are quite different for the two cases,
which are therefore best discussed separately.

3.2 The Dimension in the K-Range

The definition of the interface usually entails some edge-enhancement
techniques. There is a vast literature on the subject in the domain of
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artificial intelligence and pattern recognition (e.g. Canny 1986, and ref-
erences therein). In our specific context, Prasad & Sreenivasan (1989) and
Saylor (1989) have investigated several edge-enhancement methods, and
they essentially concluded that as long as the images are relatively noise
free, the simple procedures of setting a proper threshold on the pixel
intensity marks the boundary at least as well as the more sophisticated
techniques.

Prasad & Sreenivasan (1990a) mapped the interface in a volume of
order 7001 x 600 x 32n, with resolution of order 4#, and used this three-
dimensional data base for dimension measurements in the K-range. Box
counting in three dimensions produced a straight region in the log-log
plot; the dimension was found to be 2.354-0.05 for both jets and wakes.

Two-dimensional digital images from LIF intersections provide a good
data base for such measurements because of the good signal/noise ratio
and their relatively extensive size. (The images should not be too extensive,
however, because of streamwise inhomogeneity and consequent variation
of scales in the downstream direction.) Prasad & Sreenivasan (1990b) have
discussed the various steps necessary to obtain low-noise images. It is
crucial to do this first step well to avoid ambiguous conclusions later. Such
sections have been obtained in the jet (Sreenivasan & Meneveau 1986,
Prasad & Sreenivasan 1990b) and mixing layers (Ramshankar 1988, 1989).
Dimotakis et al (1983) have obtained comparable LIF photographs of jet
sections, and Sreenivasan & Aronstein (1985) and Sreenivasan & Mene-
veau (1986) have obtained smoke photographs of boundary-layer sections.
Figure 3 gives an example of a jet image. The computer-drawn boundary
of the image, obtained by setting the threshold at a pixel brightness level
deemed satisfactory by visual inspection, is shown in Figure 4. The log-
log plot of N(r) versus r is shown in Figure 5a. The slope gives a fractal
dimension of 1.36 for the boundary. By the additive law, the interface
dimension is 2.36. A dimension histogram constructed from 70 images has
yielded a mean dimension of 2.36 and a standard deviation of 0.03.

The classical inertial scaling in frequency spectra is restricted to scales
n <« r« L and is negligible in extent at the Reynolds numbers of the
measurements described above. On the other hand, the straight part in
Figure 5a extends from the smallest scale resolved here (approximately
twice the average Kolmogorov scale) to a scale on the order of the nozzle
diameter. Even though the scaling for each interface is good, the scaling
exponent (i.e. the dimension) fluctuates from one realization to another.
Prasad & Sreenivasan (1989) found that the difference between the extreme
values of the dimension is too large to be attributed to experimental
uncertainties, and thus they concluded that the fluctuations are a real
feature of the physics. One possible effect of these fluctuations is to degrade
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Figure 3 A two-dimensional image of an axisymmetric water jet, obtained by the laser-
induced fluorescence (LIF) technique. A Nd: YAG laser beam shaped into a sheet of 200~
250 pm thickness using suitable lenses was directed into a water tank into which the jet fluid
was emerging from a well-contoured nozzle and standard upstream flow management; the
jet fluid contained small amounts of uniformly dispersed fluorescing dye (sodium fluorescein).
The fluorescence excited by the laser radiation was captured on a digital camera (a charge-
coupled device, with a pixel array size of 1300 x 1035). The pixel intensity in the digital
image was linearly related to the concentration of the dye. Different shades of gray in the
figure qualitatively reflect different concentration levels. The laser had a power density of
about 2 x 107 J s’ per pulse and a pulse duration of 10 ns. The flow is thus frozen to an
excellent approximation, The region in the image extends from 8 to 24 nozzle diameters. The
nozzle Reynolds number was about 4000. The laser-sheet thickness was between (> and
2{%>, where {n) is the Kolmogorov thickness averaged over the image (from Prasad &
Sreenivasan 1990b).
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‘
Figure 4 'The two-dimensional image of Figure 3, with the computer-generated boundary
representing the interface between the scalar-marked region and the ambient unmarked fluid
in the tank. The boundary was generated by setting a threshold on the pixel intensity in the
digital image. The boundary is generally realistic, but (since some minor ambiguities do
remain) sensitivity checks are essential; see Figure 5 (from Prasad & Sreenivasan 1990b).

scale-similarity when box counting is performed over many images before
obtaining log-log plots. The basic physical question, then, is to determine
the source of these fluctuations. We encounter similar fluctuations else-
where in this review, and so its discussion is best relegated to a later section
(Section 6.5).

Figure 56 shows the boundary dimension as a function of the threshold
on the intensity. It appears that the fractal dimension of the boundary is
essentially threshold independent over a wide range. Interfaces determined
from photographs show greater sensitivity to thresholds, as shown in
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Figure 5 (a) A typical log-log plot of the number N(r) of the square area elements (‘*boxes™)
of size r containing the boundary versus the box size r. The negative slope of the straight
part gives the boundary dimension (= 1.36). (») The dimension as a function of the threshold
chosen to generate the inferface. The abscissae ranging from 0 to 4096 are the nominal dynamic
range of the digital camera. Over some fraction of the concentration levels chosen for the
boundary generation, the dimension does not vary much. Also shown in the graph is the
threshold variation in an image obtained by digitizing a jet photograph (dashed line), with
the abscissae rescaled to match the range of the digital camera. Because the gray levels in
ordinary photographic film are poorer in dynamic range than the best digital cameras, there
is a greater uncertainty in defining the boundary by the threshold method, leading to a
greater sensitivity to threshold—typically as shown. Figure (¢) shows that the scaling range
[= log,o(outer cutoft/inner cutoff)] has definite sensitivity to the threshold (for a relevant point,
see Figure 6). The available scaling L/# in the K-range is about 250 for the Reynolds number
of the jet. Different symbols in (b) and (c) correspond to different realizations of the jet at
the same Reynolds number (from Prasad & Sreenivasan 1990b).
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Figure 5b. It must, however, be remarked that this variation is different
for different photographs, depending on the processing details.

Figure 5c shows that the scaling regime is smaller for intermediate
thresholds. In fact, for these thresholds, there is an uncertainty about the
existence of good scaling because the log-log plots are somewhat rounded.
The worst case is the isoconcentration contour corresponding to the mean
level over the entire picture, shown in Figure 6a. The scaling for this
boundary is shown in Figure 6b. It may be inferred from Figure 6 that
boundaries close to mean concentration level, encompassing well-mixed
regions, are not good candidates for fractallike description. Notice that in
longitudinal images with good signal/noise ratio, the axial diminution of
concentration levels has no effect on the definition of the interface (because
it is defined by a concentration level just above the noise), but it could
strongly affect the definition of other isoconcentration contours, especially
those close to the image mean. At very large distances from the nozzle,
the signal is small and the identification of any isoconcentration contour
becomes difficult; one experiences the most difficulty in the definition of
the contour corresponding to the image mean. The rounding of log-log
plots for intermediate levels may in part be an artifact of the jet spread
and the dilution of dye concentration in the axial direction, although
sections orthogonal to the jet axis show no strong variations in either the
extent or the quality of scaling. The tentative thinking is that if appropriate
rescaling is done to account for this inhomogeneity [for example, in the
manner used by Everson et al (1990)—see Section 7], the sensitivity to the
threshold might be less evident, and that isoconcentration surfaces not too
close to the mean concentration level are fractallike.

For the additive law to hold, intersections in different orientations must
have the same fractal dimension. Prasad & Sreenivasan (1990b) obtained
interface sections off-axis as well as normal to the jet axis and showed that
the dimension of the boundary in each case was essentially the same. This
suggests that strong anisotropic effects are confined essentially to the
largest scales—on the order of the flow width and larger. The residual
anisotropy of smaller scales obeying fractallike behavior appears through
unequal ranges of scale similarity in two orthogonal planes, but not
through the dimension itself. This issue, however, deserves closer scrutiny.

The validity of the additive law for line intersections has been examined
by Sreenivasan & Meneveau (1986) and Sreenivasan et al (1989a). In
Figure 7, the jet boundary in a planar intersection is marked in the usual
way, and its intersection with a line is also shown. A majority of lines
through the figure intersect the boundary at different sets of points, whose
dimensions can be measured, for example, by box counting. The additive
law allows us to interpret this result to be two less than the dimension of
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Figure 7 The boundary of a jet in a two-dimensional intersection, and its intersection with
a line in the plane of the two-dimensional section. The points of intersection form a set whose
dimension can be calculated by box counting. Sreenivasan et al (1989a) have calculated the
dimension as a function of the vertical and horizontal positions, as well as the orientation,
of line cuts, and they found the dimension to be consistently the same.

the interface (surface embedded in three-dimensional space). Sreenivasan
et al (1989a) showed that, in some range, the dimension was largely
independent of the position of the line or its orientation, and that the result
was quite close to two- and three-dimensional ones (see Table 1). However,
log-log plots for one-dimensional intersections contain larger scatter, pri-
marily because of the lack of sufficient data: Sections perpendicular to the
flow axis are naturally limited by the flow width, and data extents of more
than a few tens of integral scales in the streamwise direction are hard to
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Table 1 Summary of fractal dimension measurements in classical turbulent flows (from
Prasad & Sreenivasan 1990b)

Scale range between n and L

Method of measurement

Scale range between®

Flow I-Dcuts®  2-Dimages  3-D images n and #,
Round jet 2.36 2.36 2.36 2.7(Sc = 1930y
Plane wake 2.40 2.36 2.36 2.7 (Sc = 1930)
Plane mixing

layer 2.39 2.34 — —
Boundary
layer 2.40 2.38 — —

* All measurements are from one-dimensional cuts, with Taylor’s hypothesis (see text).

®These one-dimensional measurements for jets and wakes were made mostly by taking cuts of two-
dimensional images. Some estimates were also made using Taylor’s hypothesis. Note that one-dimensional
measurements often yield slightly higher values for the dimension, but experimental uncertainties preclude
us from attaching significance to this result. The mean value and statistical error bars, deduced from many
measurements, are 2.36 1 0.05. The slight difference from one flow to another may or may not be significant;
the present thinking is that they are not.

“The Schmidt number is taken from Ware et al (1983). Typical error bars for this estimate are +0.03.

image while maintaining small-scale resolution. Further, the significant
streamwise inhomogeneities in such large images will have to be removed
by some rescaling, as discussed in Section 7.

On the other hand, there is a long tradition in turbulence research of
regarding a temporal record obtained by a single-point probe as a spatial
cut. This is Taylor’s frozen-flow hypothesis, according to which turbulence
patterns convect with the mean motion without distortion. One can take
very long temporal records with case. While this procedure stabilizes
the statistics, it also introduces well-known uncertainties. Much of the
literature on Taylor’s hypothesis concerns the interpretation of frequency
spectra as wavenumber spectra (e.g. Lumley 1965, Monin & Yaglom 1971,
Antonia et al 1980, and references therein), and the precise effect on the
dimension measurements is not understood. Large fluctuation velocities
mean that a random stretching of the time axis must be performed to
interpret a temporal trace as a spatial cut, but this has not been attempted.
The empirical facts (Sreenivasan & Meneveau 1986; see also Gouldin et al
1988) are as follows: (a) Short records (of order 10L) show fractallike
behavior, but this property is lost when viewed on very long scales. The
situation is worse for jets than wakes, presumably because a typical ratio
of the fluctuation velocity to the translation velocity in jets is about two
orders of magnitude larger than that for far wakes. () For threshold levels
comparable to the mean value of the signal, the log-log plots are in general
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rounded, especially for isovelocity contours. In fact, there are indications
(e.g. Sreenivasan et al 1983) that in long one-dimensional cuts, fluctuations
close to the signal mean tend to be noiselike (obeying Gaussian statistics)
rather than fractallike. (¢) The recommended procedure—although
unsatisfactory from a fundamental point of view—is to consider many
relatively short segments of data and average the slopes. This procedure
gives results generally consistent with the two-dimensional ones.

The observation that Taylor’s hypothesis approximately preserves geo-
metric scaling on short time scales is both interesting and useful. In par-
ticular, it has been shown (Sreenivasan et al 1989a) that the dimension is
the same for temperature interfaces in air flows and for dye interfaces in
liquid flows in the K-range, even though heat diffuses about three orders
of magnitude faster in air than does a typical dye in water. The analysis
of the time record is interesting in its own right, independent of its relation
to the spatial cuts, but here we do not expand on its nonfractal nature.

Dimension measurements have been made in other classical shear flows.
The principal results are summarized in Table 1. Note that within the
uncertainty of measurement, serious credence cannot be given to differ-
ences in values estimated from one- and two-dimensional sections or to
variations from one flow to another. To a good first approximation, the
fractal dimension of scalar interfaces in the K-range is 2.36 +0.05 for all
fully turbulent flows considered here. (The mean value is the same for all
these flows, but the error bar is higher when data from all flows are grouped
together.)

It is important to establish the Reynolds-number dependence of this
result. Prasad & Sreenivasan (1990b) analyzed LIF images of jets up to
Reynolds numbers of about 15,000. The interpretation of these results was
hampered by the fact that the jet sections were substantially fatter than
the Kolmogorov scale (because of constraints of light-sheet thickness). To
interpret such data, these authors studied the effect of taking sections of
different relative thicknesses at a Reynolds number of 4000 and showed
that the dimension decreased much like a Gaussian from the thin-section
value. The least-squares fit to the data was of the form D = D+
aexp(—h*[2¢%), where D, = 1.22 is the dimension of the interface projected
onto a plane, a = 0.147, ¢ = 6.82, and / is the thickness of the slab
nondimensionalized by the Kolmogorov thickness. [From standard results
available on fractal sets (see, for example, Falconer 1984) one can merely
conclude that the dimension in the projection should lie between 1.36 and
1; the former is the true dimension of the interface boundary, whereas the
latter is the dimension of a classical line. Assuming that this relation was
also valid for high Reynolds numbers, Prasad & Sreenivasan (1990b)
inferred from their thick-section data that the dimension of the interface
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was 2.36-—independent of the Reynolds number as long as it was
“sufficiently high.” A rigorous upper bound evaluated for the dimension
of scalar isosurfaces is 2.5 (Constantin 1990).

The Reynolds-number dependence at much lower values was examined
by Ramshankar (1988, 1989) for a temporally developing mixing layer and
by Prasad & Sreenivasan (1990b) for a plane wake. The dimension here
makes a transition from the low-Reynolds-number value of 2 for the
smooth interface to the asymptotic value of 2.36. A typical intermediate
variation, shown in Figure 8 for the mixing layer, is characterized by an
abrupt initial rise of the dimension. A similar Reynolds-number-variation
of a related scaling exponent was observed by Tong & Goldburg (1988).
This variation is initially like a half-power law and is reminiscent of typical
critical phenomena. Unfortunately, one cannot read too much into this
analogy because of possible crossover effects relating to the size of the
“turbulent system.” Note that the system size, equal to the available scaling
range L/n, is small at low Reynolds numbers, indicating that finite-size
effects may be important. At high enough Reynolds numbers, the system
size increases to levels where finite-size effects become unimportant. The
principal effect of increasing the Reynolds number further is that the
scaling range increases without affecting the dimension.

Conversely, at a fixed Reynolds number of order 2000, the laminar part
of the jet close to the nozzle is circular in section with a dimension of 1.
Far enough downstream, however, the jet becomes turbulent, and, as
discussed already, the cross section there attains the value 1.36. Prasad
& Sreenivasan (1990b) confirmed this expectation and showed that the
dimension rises rapidly through the transition region (typically within a
distance of about 4 nozzle diameters from the exit).

We must note the results of Redondo & Linden (1988), who show that
the dimension of a density interface in stratified turbulence decreases with
increase in Richardson number. Also, there are indications (Johnson 1989)
that the dimension of the density interface in a turbulent boundary layer
at Mach numbers of order 3 is about 1.2—substantially smaller than that
in incompressible flows.

Figure 8 The dimension variation of a

28 o o planar intersection of an isoconcentration
b Y W2 ° surface as a function of Reynolds number
2.2 o in a temporally developing mixing layer
(from Ramshankar 1989). The initial rise
of the dimension can be fitted rather well

204 5000 10000 by a half-power law, as shown.
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3.3 The Dimension in the B-Range

For the typical jets and wakes examined by Prasad & Sreenivasan (1990b),
the Batchelor scale is of order 4 um. It is presently difficult to obtain such
resolutions in planar cuts of any significant extent, and the only method
appears to be line cuts invoking Taylor’s hypothesis—in spite of its short-
comings discussed earlier. Sreenivasan & Prasad (1989) obtained such
measurements by properly focusing a beam of light and obtaining the LIF
trace as a function of time. Figure 9 shows the usual log-log plot for one-
dimensional cuts through the interface. There are two distinct power-law
regimes in each of the two ranges. As expected from earlier measurements
in the K-range, the slope in the latter region is around —0.36, giving the
expected dimension of 2.36. The B-region has a slope of about —0.75,
giving a dimension of 2.75; the average slope from several realizations,
including from jets, is 2.7+ 0.03. These results are included in Table 1. The
Schmidt-number dependence of these results is discussed in Section 3.6.2.

3.4 The Dimension of the Vorticity Interface

Corrsin (1943) discovered that unbounded turbulent flows possess at high
Reynolds numbers the so-called vorticity interface, across which vorticity
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Figure 9 A typical log-log plot of the number N(r) of line elements of size r containing the
interface versus the box size r in the B-range. Measurements were made off-axis in the plane
wake of a circular cylinder, 75 diameters downstream. The data are generated from single-
point fluorcscence measurements of the dye concentration, with a spatial resolution com-
parable to the Batchelor scale and ultrafast temporal response. The negative slopes of the
straight parts yield, in the respective scaling regimes, the dimensions of line intersections
with the interface. The interface dimension, corresponding to the lines drawn, is 2.36 in the
K-range and 2.75 in the B-range. The substantial scatter in the K-range results from the
fact that extremely fine resolution of the measurements necessitated the use of a signal length
that could not capture many large scales. From Sreenivasan & Prasad (1989).
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changes are rather sharp. This is in general different from the scalar
interface. It has so far been impossible to study the vorticity interface in
as much detail as the scalar interface. In particular, its fractal dimension
has been measured only in line intersections (Fan 1988) using the stream-
wise component of vorticity and Taylor’s hypothesis. Vorticity measure-
ments were made with a small four-wire probe built with a modification
of the original design of L. Kovasznay. As with scalar sections, a certain
threshold on vorticity is set, and a box-counting algorithm is used on the
intersections. The inset in Figure 10 shows the square of the vorticity signal
and the threshold used for distinguishing the boundary-layer vorticity
from background fluctuations and noise. The outer-layer intermittency
is significant (y/0 = 0.9, where ¢ is the boundary-layer thickness). The
dimension from the log-log plot is about 2.37. [The threshold chosen in
the figure (indicated by the arrow on the ordinate scale) suppresses more
than just the background noise, but this does not appear to be critical. At
worst, the correct interpretation of the dimension result is that it belongs
to an isovorticity contour within the flow. Overall, however, conclusions
on the fractal structure of the vorticity interface are more tentative than
those for the scalar interface.]

3.5 The Dimension of Atmospheric Cloud Boundaries

Fractals appear in the literature on clouds, most simply because the bound-
ary undulations are expected to be self-similar. The earliest dimension
measurements for clouds and rain areas are due to Lovejoy (1982), who
detected them, respectively, by infrared images from a geostationary satel-
lite and by radar images. The rain areas belong to the tropical Atlantic
region, and the cloud data covered the Indian Ocean within +30° of
longitude from the subsatellite point and +20° of latitude from the
equator. Both cumulus and cirrus clouds were included. The infrared
images yield estimates of cloud-top temperatures, and so a threshold on
the temperature was set to mark the boundary. Similarly, a threshold on
the rain rate was used to define rain-area boundaries.

Lovejoy found that the cloud data obeyed the perimeter-area relation
(2.5) for clouds with areas between approximately 1 and 10° km?, and he
deduced that the cloud perimeter has a fractal dimension of 1.35+0.05.
The scaling is remarkable—considering that the largest cloud extended
from central Africa to southern India, a distance that is many times the
scale height of the atmosphere.

A different situation from Lovejoy’s was analyzed, again using (2.5), by
Rys & Waldvogel (1986). They collected radar-echo data during severe
convective storms and found that large clouds had a dimension of
1.3610.1, quite close to the value found by Lovejoy. However, small
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Figure 10 A typical log-log plot of the number N(r) of line elements of size r containing
the vorticity interface versus the box size r. The flow is a standard turbulent boundary layer
developing on a flat wall. The momentum-thickness Reynolds number was about 2500, and
the estimated resolution of the streamwise vorticity probe was 4y. The negative slope of the
straight part, giving the fractal dimension of the interface in a one-dimensional intersection,
is 0.37. The dimension from the additive law is 2.37, consistent with similar results from
Sreenivasan & Meneveau (1986). The inset shows a segment of the squared-vorticity signal
obtained from the probe. The log-log plot was generated by setting a threshold (indicated
by the arrow) of 10* (in the units of the ordinate for the inset) on this signal and performing
box counting on the set of intersection points. Taylor’s hypothesis was used to interpret the
signal as a one-dimensional cut (from Fan 1988).

clouds with the characteristic length [=(area)"? or (perimeter)?] smaller
than about 3 km had a dimension close to unity. It was suggested that the
low dimension of the smaller clouds was due to the strong vertical winds
prevalent in thunderstorms. (For a similar effect on large clouds, pro-
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portionately larger horizontal winds would be required.) The basic con-
clusion, then, is that fair-weather clouds as well as large clouds would have
the same fractal dimension as the scalar interface, whereas clouds strongly
affected by the mean wind would be smoother.

Finally, Prasad & Sreenivasan (1990b) examined the fractal dimension
of boundaries in ground-based photographs of cumulus clouds obtained
with the camera optic axis perpendicular to the ground; appropriate filters
were used to eliminate background radiation. The box-counting method
on the boundary of the cloud, determined by the threshold method, yielded
a fractal dimension of 1.23 +0.03, which coincided with that measured for
projection images in laboratory flows. Assuming the thick-section results
from laboratory flows also hold for clouds, Prasad & Sreenivasan deduced
that the dimension of boundaries in typical cumulus cloud sections would
be 1.36; it follows from the additive law that the dimension of such cloud
surfaces would be 2.36.

A very different approach is that due to Carter et al (1986), who use
graphs of infrared emissions from clouds as a function of the angular
distance at a fixed time to estimate fractal dimensions. They obtained
dimensions of about 1.16 for midwave sections and 1.11 for longwave
sections. As already stated, such graphs are self-affine and the dimension
measurement is quite subtle.

Mention must now be made of the study by Lovejoy & Mandelbrot
(1985), who emphasized the reconstruction of cloud patterns by use of
fractal models. These authors proposed that a rain field is composed of
self-similar pulses whose areas follow power-law distributions and within
which the rain rate is chosen randomly. The resulting pictures look quite
realistic. However, Lovejoy & Schertzer (1985) point out that clouds are
quite stratified in the vertical direction, a fact that introduces self-affinity
rather than self-similarity.

Such reconstructions for turbulent shear flows have not been attempted.

3.6 An Interpretation of Dimension Results

It has now been shown that the vorticity interfaces in several fully turbulent
flows, as well as the scalar interface in the K-range, have a dimension of
about 2.36 (Table 1). The apparent generality of this result must have a
simple explanation. Sreenivasan et al (1989b) provided a heuristic argu-
ment relating the fractal dimension of surfaces to entrainment and mixing
in turbulent flows, and they showed that simple considerations lead to
predictions consistent with the measurements. The argument is the fol-
lowing: While the large structure in turbulence determines the precise
amount of mixing, it is eventually the diffusive action at the molecular
level that performs the actual mixing. This late stage adapts itself to
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conditions set by the large-scale features of the flow. The main points are
that the nonlinear dynamics of turbulence imparts fractallike properties
to surfaces (see Section 3.2 for various cautionary notes), and that the
result is a large increase in surface area. The diffusive flux across these
surfaces follows the well-established Fick’s law of diffusion and can be
calculated easily. It is worth emphasizing that this picture implies neither
that the role of large eddies is minimal nor that gradient transport as
understood in turbulence closure is necessary or correct.

3.6.1 uNIT SCHMIDT NUMBER The number of boxes N(r) required to
cover the surface and the corresponding area S(r) at resolution r follow
the relations

N~ @/L)~°, S~ (r/L)* > 3.1

In all practical circumstances, the scale range over which these power laws
hold is bounded by cutoffs on both ends. We have already shown that the
outer cutoff occurs at scales comparable to the integral scale L of turbu-
lence, and that the inner cutoff occurs at #. The existence of a finite inner
cutoff means that as the surface area gets measured by covering it with
increasingly finer elements, a point is reached beyond which convolutions
of even finer scales no longer exist, and thus that the area will saturate
(abruptly in an ideal situation) at the maximum value corresponding to
the inner cutoff (Figure 11a). For the surfaces considered here, the situation
at the outer cutoff is typically as shown, since these surfaces are roughly
two dimensional when viewed at scales larger than L. (One thus has an
interesting situation in which surfaces in turbulent flows look classical
when observed at scales finer than the inner cutoff or at scales coarser than
the outer cutoff but display scaling properties in the intermediate range.)

The true area St of a fractal surface with finite inner cutoff is given by
the knowledge of the fractal dimension (which gives the slope in the self-
similar regime of the line in Figure 114) and of the inner and outer cutoffs
(which truncate the power-law behavior). Thus,

St = So(n/L)*~", (3.2)

where .S, is the area measured with resolution L. Sreenivasan et al (1989b)
argued that the gradients across the scalar interface are of order AC/y,
where AC is the maximum concentration difference in the flow, and showed
that flux across the interface can be written as

contaminant flux = 4 Re*?~ 794, (3.3)

Here Re is the characteristic Reynolds number, and the function 4 depends
only on large-scale features. Since the amount of flux is determined by the
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Figure 11 (a) Schematic variation of the
area S of the scalar interface (Sc = 1) with
respect to the scale of resolution r. The
power-law behavior extends over a scale
range that depends on the Reynolds
number. In general, the inner cutoff occurs
at the Kolmogorov scale # (or a small mul-
tiple of it), and the outer cutoff occurs at
the integral scale L. The true area Sy of the
surface is given by the saturation at the
inner cutoff. In (b) are shown similar vari-
ations for the case Sc > 1. The two scale-
similar ranges in the K-range and the B-
range are terminated as shown. The true
area corresponds to that at the inner cutoff
for the B-range, namely the Batchelor scale
m,. In (¢) the case of Sc « 1 is shown. The
inner cutoff at the Corrsin-Obukhov scale
7. determines the true surface area (from
Sreenivasan et al 1989b). The uppermost
part of the figure also appears in a similar
— ) context in Gouldin (1988).

| IS SR |
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large scale, it must be independent of the Reynolds number. This is the
so-called Reynolds-number similarity (e.g. Townsend 1956). It follows
from (3.3) that D = 7/3, in rough agreement with experiments (Table 1).
A similar argument by Gouldin (1988) yields the same resuit.

In obtaining this result, no allowance was made for possible spatial
variations of normal concentration gradients along the interface, and thus
the estimate must be treated as rough. Multifractal corrections (Sreeni-
vasan et al 1989b, Meneveau & Sreenivasan 1990a), to be discussed in
Section 6.1, show that the interface dimension is 2.36, in excellent agree-
ment with measurements.

3.6.2 NONUNITY SCHMIDT NUMBERS Denoting the dimensions in the K-
and the B-regions by D and D', respectively, the relation between the
surface area and the resolution of measurement can be obtained (Figure
116). If S, is the area measured with resolution # and Sy is the true area
measured with a resolution #,, we have S, = Sy(y/L)>~ " (as before) and
can write

St = Si(no/n)* " = So(n/L)*(ne/n)* " (34)
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The estimate for the gradients is of order AC/y,, so that the result for the
flux of a species with concentration difference AC is given by

contaminant flux = B Re*P~ /34§05~ 3) (3.5)

where Bis a function of large scales, independent of Reynolds and Schmidt
numbers. Schmidt-number similarity [Sc — oo, but (In Sc)/Re'’? « 1]
requires that D’ = 3. This means that convolutions of the interface on
scales between #, and # are space filling. The physical picture is shown in
Figure 12. The convolutions in the K-range are self-similar, with a dimen-
sion of 2.36, but those in the B-range are much more pronounced; having
a fractal dimension of 3, they essentially fill the space and render the
effective thickness of the interface of order n even for high Schmidt
numbers. Sreenivasan & Prasad (1989) have argued that the finite Schmidt-
number corrections are of the form D’ = 3—2 In(ln Sc'?)/In Sc. In the
limit of infinite Schmidt numbers, one gets D’ = 3. For a Schmidt number
of 1930, as for the fluorescing dye (Ware et al 1983), one finds that
D’ = 2.65, quite close to the measured average value of 2.7 (Table 1).
Systematic coarse-graining arguments used by Meneveau & Sreenivasan
(1990a) yield functions 4 and B that are within a factor of ~1.5 of
experimentally determined values.

It should be mentioned that Vassilicos (1989) has calculated on the basis
of a simple model the roll-off rate in the spectral density of a passive
nondiffusive scalar. The roll-off rate is D—4, where D is the dimension of
the interface between regions where the scalar is unity and the regions
where it is zero. Using D = 7/3 for the K-range, we get the spectral
exponent of —5/3, whereas in the B-range a dimension of 3 for the interface

Figure 12 Schematic of the scalar interface when scales in the B-range are resolved (from
Sreenivasan et al 1989b).
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leads to the exponent of — 1. These results are completely consistent with
classical turbulence theories. Vassilicos has also shown that the dimension
of the interface is a time-dependent quantity.

For Sc « 1, the inner cutoff occurs (Obukhov 1949, Corrsin 1951) at
e = Sc™¥*y, which is larger than #, and the only exponent is D (Figure
11¢). The area is then S(1./L)*~? and the corresponding contaminant flux
is CRe*P~ 14 Q3P =734 yielding, from Reynolds- and Schmidt-number
similarities, D = 7/3 as before.

Clouds are high-Reynolds-number objects, and the fact that their sur-
faces have the same fractal dimension as interfaces in ordinary turbulent
flows may be due to very similar reasons. Hentschel & Procaccia (1984)
provided a different explanation based on their theory of relative turbulent
diffusion: Clouds are considered to be scalar-marked regions within which
the contaminant spreads by turbulent diffusion. Briefly, these authors
wrote an evolution equation for the two-point structure functions describ-
ing all their initial values, relating them to the dimension of the boundary.
The result is that D = 7/3+4 /6, where u is the intermittency exponent
(which we briefly describe in Section 6.1). Using a value of 0.26 for u, we
obtain a fractal dimension of 2.37, in excellent agreement with measure-
ments as well as with the above argument. We do not discuss the Hentschel-
Procaccia theory in detail here, because it 1s quite involved and partly
because two crucial assumptions of the theory have been questioned by
Ball & Kingdon (1988; see also Vassilicos 1989). However, Ball & Kingdon
obtained the same final result as Hentschel & Procaccia because of the
cancelling effect of the two assumptions in question.

4. FRACTAL DIMENSION OF FLAME SURFACES

In some special circumstances, especially for premixed flames (see, for
example, Pope 1987), reactions in turbulent flames are confined to thin
sheets called flamelets. There is, therefore, much interest in a theoretical
framework based on the surface area of flamelets. Early attempts con-
centrated on treating them essentially as wrinkled laminar flames, but, as
Libby & Williams (1976) point out, a treatment of flamelets by wrinkling
laminar flames in ad hoc ways is not adequate. For nonpremixed flames,
Libby (1974) conjectured that the flame sheet is similar in character to the
interface. From our previous discussion, this suggests that fractal models
may be appropriate for flames also.

Gouldin (1987) realized the value of fractal geometry as a potential tool
for describing flamelets in turbulent-combustion problems. There now
exists a sizable literature on fractal-dimension measurements in premixed
and nonpremixed flames (Gouldin et al 1988, Strahle & Jagoda 1988,
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Murayama & Takeno 1988, Goix et al 1989, Mantzaras et al 1989a,b,
Chen & Goss 1989, North & Santavicca 1990). There has been considerable
work in the direction of building fractal-based models for turbulent com-
bustion (Gouldin 1987, Gouldin et al 1989, Santavicca et al 1990, Chin et
al 1990a,b).

A common scheme for obtaining two-dimensional slices of the flame is
called laser tomography by the combustion community. It consists of
introducing scattering particles (for example, titanium dioxide particles)
into the flame and measuring the Mie scattering intensities in slices of the
flow. As with scalar interfaces, the boundary is defined in a suitable way,
and its dimension is measured. Co-dimension methods, variants of the
boundary-length method, and box-counting methods all have been used.
Temporal scattering data obtained by “point” probes, interpreted as one-
dimensional cuts, have also been used. The validity of the additive law has
not been studied in as much detail for flames as for scalar interfaces, but
itis implied in much of the work. In further discussion, we too shall assume
its validity.

The work of Gouldin et al (1988) for the nonpremixed case (jet Reynolds
numbers between 4800 and 10,400) has yielded a dimension of 2.36 +0.05,
while that of Mantzaras et al (1989a,b) for premixed flames in internal
combustion engines has resulted in a value of 2.36 £3%. These results
are in good agreement with the scalar-interface dimension, but other
investigators have obtained different results. For example, Chen &
Goss (1989) quoted a value of 2.31+0.07 for diffusion flames, Mura-
yama & Takeno (1988) (who studied tomograms of flamelet surfaces in
two orthogonal sections) obtained an average dimension of 2.26 for
a premixed methane-air flame, and Goix et al (1989) measured a dimen-
sion of 2.2 for similar types of flames; Gouldin et al (1988) measured a
value as low as 2.1 for the flamelet surface in their premixed methane-air
V-flame.

Apart from the fact that it is inherently more difficult to make dimension
measurements in flames, the following comments may shed some light on
the variability in the data. First, the high flame temperatures tend to
depress Reynolds numbers to low values displaying Reynolds-number
sensitivity (Section 3.2). For example, the integral-scale Reynolds number
was of the order of 25 in the flames of Goix et al and in the premixed
flames of Gouldin et al. Second, measurements have often been made in
the vicinity of the flame holder, where the fractal dimension (as discussed
in Section 3) continues to increase with downstream distance; for example,
in the Goix et al study the value was not saturated, even at their last
measuring station. Under the circumstances, the asymptotic value
obtained for the scalar interfaces can perhaps be seen only if turbulence
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levels in the oncoming stream are high enough to maintain the flow fully
turbulent at relatively low Reynolds numbers. High turbulence levels tend
to fragment the flamelet surface, but this situation does not present any
problems in either the measurement or the interpretation of the dimension.
Dimension measurements do indeed show strong dependence on tur-
bulence level (Figure 13), asymptotically approaching ~2.36 when the
turbulence level is high. Finally, the laser sheets used for obtaining tomo-
graphic sections are not always thin enough by the criterion discussed in
Section 3.2: It is clear from the thick-section measurements of Prasad &
Sreenivasan (1990b) that the resulting dimension is likely to be smaller
than the thin-section value. Some reduction in the dimension value results
also if the flame image is smeared—as appears to be the case in some
measurements because the laser pulse is not narrow enough to freeze the
flame on its smallest scale.

On balance, it appears that flame surfaces in premixed as well as diffusion
flames have a dimension close to that of the scalar and vorticity interfaces
in isothermal flows, provided that distances far downstream of flame
holders are considered and the oncoming stream is maintained highly
turbulent. This conclusion should not surprise us for nonpremixed flames,
where the flame surface is very similar to the interface of a passive scalar.
Premixed flames, on the other hand, are generically different, but it is
possible that at high enough turbulence levels the flamelet surface
approaches the properties of a scalar interface (see, for example, Mantzaras
et al 1989b). We have an interesting and potentially useful conclusion
here—if the observation is indeed true.

As already noted, the fractal concept has been used for predictive pur-
poses in combustion. Following an earlier proposal due to Damkéhler
(1940) that the flame speed ¥V is proportional to its surface area S, Gouldin

25
Figure 13 The variation of the fractal
24 g dimension in premixed flames as a function
g f :i: ¥ of the turbulence level (normalized by the
23 - laminar flame speed S)). The initial increase
D O' appears exponential to a good approxi-
221 mation, and the asymptotic value is com-
Ygoo parable to that for scalar interfaces in
21+ VV isothermal flows. Filled circles are from
v Mantzaras et al (1989a,b), triangles from
2.0 — - L 2 North & Santavicca (1990), and open

v/S circles from Murayama & Takeno (1988).
¢4
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(1987) conjectured that V,/V, = Si/S,, where the subscripts t and 1 refer to
the turbulent and laminar conditions, respectively, and subscripts i and o
refer, respectively, to surface areas measured at inner and outer cutoffs, as
discussed in Section 3.6. The outcome of this hypothesis has been shown
to be reasonable by Gouldin (1987) and Mantzaras et al (1989a). Another
application of the fractal concept has been in the chemical closure. Gouldin
et al (1988) proposed a model that expresses the fuel combustion rate in
terms, among other things, of the fractal dimension of flamelets. This
model was combined with a second-order transport model with conditional
statistics, and numerical calculations were performed. The results were
deemed satisfactory by the authors. Santavicca et al (1990) have used
fractal-based models to predict turbulent-flame kernel growth and con-
cluded that the predictions are in good agreement with measurements.
Chin et al (1990a,b) used similar ideas in modeling turbulence effects on
combustion in piston engines and concluded that they offer promising
tools in engineering design and development. However, it must be borne
in mind that these various favorable conclusions also involve turbulence
modeling in some form.

Finally, we should remark on the inner and outer cutoffs of the scaling
observed in flames. The outer cutoff, as in scalar and vorticity interfaces,
extends to the integral scale and perhaps even beyond. The precise deter-
mination of the inner cutoff has, however, remained elusive because of
measurement difficulties. Mantzaras et al (1989b) have described these
difficulties. Gouldin noted that the flamelet propagation would increase
the inner cutoff scale and drive it toward the outer scale in the limit of
vanishing turbulence level. For large turbulence levels, he assumed the
inner-cutoff scale to be of the order of the Kolmogorov scale. Goix et al
(1989), as well as Murayama & Takeno (1988), stated that it is of the order
of the flame thickness. For intermediate turbulence levels, Peters (1986)
noted that the intrinsic lower bound on scales in the multiply connected
flamelet surface in premixed combustion is on the order of the Gibson
scale. (The Gibson scale is defined by the condition that its characteristic
velocity must equal the flame speed.) Experiments do not support this
suggestion unequivocally: For example, Gouldin (1987) implied that it was
contradicted, whereas Murayama & Takeno (1988) explicitly stated so.
North & Santavicca (1990) found that the inner cutoff was smaller than
the Gibson scale. F. V. Bracco (private communication) has noted that
Peters’ suggestion about the Gibson scale is self-consistent if its use is
limited to cases where the Kolmogorov scale is larger than the flame
thickness and the root-mean-square turbulent fluctuation is substantially
larger than the laminar-flame speed.
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5. MULTIFRACTALS

5.1 Introduction

All objects considered previously have been identified by specifying that
some measure distributed on them is uniform: For example, the con-
centration on an isoconcentration contour is by construction the same
everywhere. A description of such sets is then the same as that of the
measure living on them. On the other hand, consider an instantaneous
realization of the scalar dissipation rate y ~ [grad C]? the set here is the
space marked by the scalar, and the measure living on it is . As shown
in Figures 14a (see color insert) and 145, this measure is highly spiky in
nature. The geometry of the set on which y is distributed is thus only a
part of the picture, and a more detailed machinery is necessary to describe
y itself. As a second example, consider Figure 15, which shows one-
dimensional sections of a component of energy dissipation in a laboratory
flow at moderate Reynolds number and in the atmosphere at higher
Reynolds number. It is again clear that the distribution displays strong
nonuniformities. Such highly intermittent measures cannot be described
efficiently by the usual moment methods. In particular, if a measure has a
Gaussian distribution, its mean and variance describe the process com-
pletely; for others close to Gaussian, a few low-order moments contain
most of the information. For measures of the type shown in Figures 14 and
15, on the other hand, the first few moments give little clue to their nature.

-
& &

fel I <y>
xtel/sx
&

Figure 14b The quantity y is plotted for a small rectangular area in a planar section of a
jet. All three components of y have been measured here; the third component has been
estimated by differencing concentration levels between two parallel planes separated by about
4. This figure illustrates quantitatively the spatial intermittency of the dissipation field (from
Prasad & Sreenivasan 1990a).
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Figure 15 Two typical signals ¢’ = (du/dt)?, serving as the surrogate of the energy dissipation
rate, are plotted here upon normalizing by their mean values. Graph (a) was obtained in a
standard flat-plate laboratory boundary layer at a momentum-thickness Reynolds number
of 3600. The measurement station was 0.20, where & is the boundary-layer thickness (=4
cm). The microscale Reynolds number there was 110. Graph (b) was obtained in the
atmospheric surface layer at a height of about 18 m above the ground. The mean wind speed
was about 6 m s~ ', and the estimated microscale Reynolds number was 1800. The increased
intermittency at the higher Reynolds number is obvious. This intermittency, representing the
fact that there is a definite limit to small-scale mixing, is believed to be an important feature
of turbulence (from Meneveau & Sreenivasan 1990b).

The description of such intermittent measures belongs to the domain of
multifractals. Essentially, multifractals are built up by a procedure (which
is often rather simple) that proceeds from one scale (the parent scale) to
the next smaller ones (the offsprings) in such a way that the measure (for
example, the rate of energy dissipation) contained in the parent scale is
unequally divided among its offsprings. When this procedure repeats many
times, the measure on the offsprings at each successively higher generation
will become increasingly uneven. Because the measure on an arbitrary
offspring at a given generation level is determined by the product of
the multipliers (i.e. numbers characterizing the unequal division of the
measure) of all its forefathers, a multifractal can be associated with a
multiplicative process (or a cascade). If the basic rule determining the
unequal division from a parent scale to its offsprings is independent of the
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generation level, one expects certain scale-similar properties. Our primary
concerns are to determine whether the multifractal scaling indeed occurs
for intermittent turbulence and to deduce the multiplicative process leading
to such a scaling,

A physical picture leading to intermittent distributions, dating back to
Obukhov (1962) and Kolmogorov (1962), visualizes kinetic energy flux to
small scales as a sclf-similar cascade. These authors proposed log-normal
distributions for the probability density of such quantities. Novikov (1970),
Orszag (1970), and Mandelbrot (1972) have shown that log-normal dis-
tributions have inherent problems. A different type of intermittency model
was proposed by Novikov & Stewart (1964). For critical assessments of
these features, see Kraichnan (1974), Levich (1987), and Nelkin (1989), as
well as Chorin (1988a). Mandelbrot (1974) introduced a general cascade
model using notions of fractal geometry. The physical and geometrical
implications of this model were analyzed by Frisch et al (1978), who
coined for their specific version the name f-model. Frisch & Parisi (1985)
introduced the idea that intermittent distributions can be described in
terms of singularities of varying strength, all lying on interwoven sets of
different fractal dimensions, and coined the name multifractal. They
related such a description to the hierarchy of moment exponents originally
proposed by Mandelbrot (1974). Benzi et al (1984) presented the random f3-
model, Hentschel & Procaccia (1983) introduced a hierarchy of generalized
dimensions D,, and Halsey et al (1986) introduced f(«) for the fractal
dimensions of sets of singularities characterizing multifractals. Mandelbrot
(1989b) further clarified some properties of f(«) in terms of his earlier
work.

The usual reason for expecting multiplicative processes in physical space
to hold for turbulence is Richardson’s (1922) picture of large eddies of
turbulence sequentially splitting into smaller ones to which the energy is
believed to flow. There is no real evidence, however, that this actually
happens. What may actually occur is a process of stretching (and tilting)
and folding a blob of fluid elements into successively thinner structures—
known as the horseshoe process in dynamical systems. (For an argument
that stretching and folding must coexist, see Chorin 1988b.) The overall
isotropy and simplicity of the breakdown of blobs are absent in this
process, and its precise relation to the Richardson cascade remains to be
clarified. It is, nevertheless, a multiplicative process in that the thickness
and density of each piece are products of successive multipliers. To each
piece is associated a characteristic length scale r(n), n being the generation
number, that is given by the product of # numbers (to be called length
multipliers /}), each of which is the ratio of consecutive length scales. In
other words, -
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() = r(O) [T r()rGi=1) = rO) [, (5.1)

The total energy dissipation E, (or the scalar dissipation X,) in a certain
piece Q of size r is the integral of &(x) [or y(x)] over the piece Q, i.c.

E = js(x) d’x (or X = fx(x) d3x>. (5.2)

Analogous to the situation with length scales, the total dissipation on a
certain piece of size r(n) is given by the product of » numbers (to be called
measure multipliers M), each of which is the ratio of consecutive measures.
For the energy dissipation,

Ewy = Evo) [ 1 Exp/Exi— 1y = Exoy [ ] M. (5.3)
j=1 i=1

When a piece Q breaks up into smaller ones, each smaller piece can be
thought of as receiving a fraction of E, or X,. These fractions may or may
not add to unity, depending on whether or not the cascade is conservative.

For deterministic multiplicative processes, the multipliers /; and M are
fixed numbers. For turbulence, it is likely that they will be random variables
with some probability distribution. If the distribution function does not
depend on the level j, self-similarity will appear.

5.2 Characterization of Multifractals by the Singularity
Spectrum and Generalized Dimensions

In the standard multifractal formalism, one assumes that at each stage
the length splits into equal pieces, but that the measure gets distributed
unequally. Since intermittency can be caused by the unequal splitting of
either length or measure multipliers or both, none of which is in general
known for turbulence, the best way to proceed is not clear. However, for
deterministic multifractals, Chhabra et al (1989a) have shown that one can
do as well by assuming unequal splitting of lengths as by assuming unequal
splitting of measures. Therefore, one covers the set (line, area, or volume)
by equal boxes of size r and writes the integrated measure in the box as

EJE.~ (r[LY or ele, ~ (r/Ly" (54)

Here, o is an exponent that depends on the position of the box, reflecting
the fact that multifractal scaling is only local. Writing the integrated
measure in this form emphasizes that different values of « are associated
with different strengths of singularities (in the sense that ¢, > c0 as r -0
for all « < d), with smaller « values corresponding to larger peaks. All
o > dcorrespond to regular regions (in which e, can be expanded by Taylor
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series). One now assumes that the entire measure consists of an infinity of
iso-o sets intertwined together. Some appreciation for this fact can be had
from Figure 14a, where (crudely speaking) one can assign different o’s to
the different colors used in the figure. Multifractal analysis aims to obtain
the so-called singularity spectrum, or the fractal dimension f(«) of each
iso-o set. One writes, in analogy to self-similar fractals (Section 2.2), the
number of boxes of size r that assume o values within a band of width dx as

N(o) dat ~ p(o0) (/L) dr. (5.5)

Here p(a) is some a-dependent prefactor. In cascades, N is also the total
number of pieces resulting from the multiplicative process when they have
reached a scale r. It is assumed that the prefactor does not depend on r,
this being true only in the limit of infinite scaling. In practice, there are
logarithmic correction terms (Van de Water & Schram 1988, Meneveau &
Sreenivasan 1989), with which we do not concern ourselves here.

Another way of characterizing a multiplicative measure is via moment
exponents 1(q) defined through the relation

S E¢ ~ E4(r/L). (5.6)

In different notations, Novikov (1969) and Mandelbrot (1974) introduced
these exponents. In (5.6), ¢ is a real number: When ¢ > 0, the sum on the
left-hand side gets its major contribution from peaks that get larger as ¢
is increased, whereas when ¢ < 0, increasingly more negative ¢’s cor-
respond to increasingly smaller intensities. Thus ¢ can be considered an
amplifier that can be tuned to accentuate peaks of a certain size, with
7(g) representing the appropriate scaling exponent. One can also define
(Hentschel & Procaccia 1983) the generalized dimensions D, as

D, = t(g)/(g—D. (5.7)

Hentschel & Procaccia (1983) showed that D, corresponds to the usual
fractal dimension of the support of the measure, D, to the information
dimension, and D, to the correlation dimension. In general, D, is the
dimension of a set that, when used to intersect the original measure,
produces divergence of moments of order ¢ (Mandelbrot 1989b).

The representations (f,a) and (D,, q) are the first level of information
about multifractals and are equivalent. Roughly speaking, they charac-
terize the strengths of various singularlike regions and the dimensions of
sets on which each of them is distributed. Following Frisch & Parisi (1985)
and Halsey et al (1986), one can relate the exponents D,, «, and f(«)
through the Legendre-transform relations
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Sl@] = qalq)—(g—1)D,,  a(q) = d/dgq[(g—1)D,], (5-8)

with the condition that f'(a) < 0 and Jf(a)/0x = ¢q. The Legendre trans-
forms replace the local value of the function © = (¢— 1) D, by its slope a(g)
and its intercept f[a(q)]. When t(g) is discontinuous, the relation (5.8)
needs suitable modification.

Two cautionary remarks should be made. First, f(«) relates to the
scaling behavior of N(a) only when « is defined by (5.4) with the same
resolution used in the definition of N(x): One cannot use the measure at a
fixed resolution, say r = #, and use box counting to calculate f(«). Second,
Mandelbrot (1984, 1989b) and Cates & Witten (1987) have pointed out
that the interpretation of f(«) as the dimension of the iso-a set is not
always correct. For example, for processes whose multipliers are randomly
distributed according to a smooth function that goes to zero at the tails,
there will always be some parts of the measure that occur extremely rarely
provided the sample is large enough. Instead of focusing on the number
of iso-a boxes, one considers the probability T1(x)de of encountering
values of « in a band dx. This can be written as (r/L)*/® dx from the fact
that IT = N/N,, where N, is the total number of boxes containing the
measure given [according to (2.2)] by (r/L) ¢ or (r/L) °, depending on
whether the measure fills the entire space or has a support with dimension
D,. In this view, d— f(«) is simply a scaling exponent.

The part of the f(a) curve in which both fand o are positive has been
designated by Mandelbrot (1989b) as the manifest part. Here, the usual
interpretation of f(a) holds. The part with f < 0 but o > 0 has been called
the latent part, while that with o < 0 has been called the virtual part.
Depending on the details of the distribution of multipliers, only one or
two of these parts could form the entire f(x) curve. As already mentioned,
the latent and virtual parts, if they exist, contain information on some rare
events whose contributions to low-order moments are minimal. However,
they are crucial to identifying the dynamics, in that they lie outside the
jurisdiction of the central-limit theorem and are specific to the process (see
also Sections 6.4, 6.5). These are also the events that are hard to quantify
in experiment unless one takes many samples.

Finally, we should note that the multipliers, which are the analogues
of the generator in deterministic fractals (Section 2.2), correspond in a
rough sense to the scaling function (Feigenbaum 1978) in dynamical
systems.

5.3 Measurement of the Multifractal Spectrum

5.3.1 GENERALIZED DIMENSIONS AND LEGENDRE TRANSFORMS This method
consists of using Equations (5.6)-(5.8). Usually one does not exactly
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know the prefactors in (5.6), but they can be eliminated by taking ratios
at two different scales r. The generalization of this procedure is to use
many different scales and generate log-log plots whose slope (if there is
a linear region) will be the exponent sought.

In many applications one does not know the measure at different levels
of the cascade but only at scales corresponding to the last cascade step. In
general, one also does not know the size and exact position of the pieces
resulting from the original multiplicative process. It turns out that it is
possible to use boxes of sizes and positions different from the “natural
partition,” and, for a process that has progressed through many steps of
the cascade, the results will be unaffected (except for the appearance of
oscillations and fluctuations). Some errors do occur in box counting when
the partitioning is incorrect and box sizes are large; their precise estimates,
however, depend on the multifractal. For details, see Chhabra & Sreeni-
vasan (1990a).

The main point is that the multifractal formalism is applicable to real
measurements for which the measure at a single cascade step (usually at
the inner cutoff) is available. This situation is very similar to that for self-
similar fractal sets whose dimension can be measured by examining them
at a fixed level of evolution by varying the resolution. The difference,
however, is that we must additionally consider the intensity or density with
varying degrees of resolution.

5.3.2 DIRECT METHODS OF DETERMINING THE f(z) CURVE  One could obtain
o and f(a) directly from definitions (5.4) and (5.5). However, by naively
taking logarithms, one is left with adjustable constants due to the presence
of unknown prefactors. Arnéodo et al (1987) assumed that these prefactors
were constants independent of « or ¢ and determined them by numerical
fits based on data from three different boxes. It is much better to consider
different length scales and obtain exponents from regression plots (Mene-
veau & Sreenivasan 1989). The convergence in either method is rather slow
in the scaling range.

One can use to advantage the formal connection that exists between
multifractals and the thermodynamics of statistical mechanical systems
(Feigenbaum et al 1986, Feigenbaum 1987a,b; for a different view, see
McCauley 1989). The natural connection to be made here (Chhabra &
Jensen 1989, Chhabra et al 1989a, Mandelbrot 1989b) is the following. If
we define an energy E, = —log[FE,/E,], (5.6) gives the partition function
for the box size r, from which, comparing standard thermodynamic
relations with (5.8), one can see that f is proportional to the entropy and
o to the internal energy, with T and ¢ as the analogues of the free energy
and inverse temperature, respectively. Chhabra & Jensen also recognized,
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on the basis of a theorem by Eggleston (1949) that itself uses Shannon’s
information theory (see, for example, Billingsley 1965), that the entropy
1s simply related to the Hausdorff dimension of the measure-theoretic
support of the measure. In the thermodynamic view, the scaling ratio L/y
is the size of the system, and the lack of convergence discussed earlier
simply reflects finite-size effects. In canonical methods in statistical mech-
anics, one circumvents this problem by Boltzmann weighting. In effect,
Chhabra & Jensen’s method constructs a one-parameter family of nor-
malized measures v(g, r) = [E,J!/Z[E)), where E, is the measure in a box
of size r and the summation in the denominator extends over all boxes of
size r. As in the definition of the generalized dimension, the parameter ¢
provides a microscope for exploring different strengths of the measure:
For ¢ > 1, v amplifies the more singular regions, whereas for ¢ < 1, it
accentuates the less singular regions. For ¢ = 1, v simply replicates the
original measure. Then the HausdorfT dimension of the measure-theoretic
support of v(q) defines f(g), whereas the singularity strength o = In[E,]/Inr
is calculated by its average with Boltzmann weights. Therefore, one has '
and « as implicit functions of the parameter g¢:

flg) =Y v(@nv(g)inr,  a(g) = v(g)InE/lnr. (5.9)

Chhabra & Jensen (1989) and Chhabra et al (1989b) have established that
this method works well both for dynamical systems and for turbulence
and solves the problem of convergence.

5.3.3 THE MULTIPLIER METHOD Finally, it is possible to examine any two
successive steps of the cascade and construct the multiplier distribution.
In practice, one can perform suitable box averaging in the right scale range
and determine the multipliers as ratios of the measure in the parent box
to those of its offsprings. For a binary process, Mandelbrot (1989b) shows
that

log, (M*> = —d—1(q). (5.10)

The rest of the quantities follow simply.

Chhabra & Sreenivasan (1990a,b) have pointed out that the multiplier
method can be superior to the box-counting method. Its superiority is easy
to establish when one knows the proper partitioning of the measure, but
it is not easily demonstrable otherwise—except in the limit of infinite steps
of the cascade. Further, an advantage of the multiplier method is that it
puts to explicit use the existence of invariant level-to-level information and
performs averaging both over boxes at any given level (as in the box-
counting methods) and over boxes at different levels. For high-Reynolds-
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number flows, this is perhaps the only practical method for computing the
latent part of the f(«) curve.

6. MULTIFRACTAL SPECTRA IN TURBULENCE:
EXPERIMENTAL RESULTS AND INTERPRETATION

The f(2) curve has been measured for several positive-definite quantities
characterizing small-scale motion. For the energy dissipation, see Mene-
veau & Sreenivasan (1987a, 1990b); for the scalar dissipation rate, see
Prasad et al (1988); for the squared and absolute vorticity, see Fan (1988)
and Meneveau et al (1990); and for the absolute value of the Reynolds
stress in the boundary layer, see Kailasnath (1988). We particularly invite
the reader’s attention to Meneveau & Sreenivasan (1990b) for a detailed
discussion of the measurement techniques, signal/noise estimates, ambi-
guities in determining scaling regimes and exponents, etc. Several of these
multifractal spectra have also been obtained from the NASA Ames
Research Center data base by means of direct numerical solution of the
Navier-Stokes equations for a channel flow (Dean & Keefe 1988).

6.1 The Energy Dissipation Rate, or the Energy Flux
in the Inertial Range

The flux of kinetic energy is envisioned to proceed from large to small
scales until the dissipation scale is reached. According to conventional
thinking, its manifestation at this final step of the cascade is the energy
dissipation rate, which is the measure of interest to us here. By the measure-
ment of the final product of the cascade and its scaling in the inertial range,
it is believed that one can actually determine the inertial-range properties
relevant to the energy flux. This is justified below.

Since the measurement of the dissipation field in three-dimensional space
has not been possible so far, one is constrained to making measurements
in a plane or along a line. As discussed in Section 2.2, much information
about the ubiquitous aspects of three-dimensional processes can be gained
from typical lower dimensional intersections. This, however, is not true
for events that occur rarely—say, less often than once per typical sample.
Such events can be captured only by taking many one-dimensional cuts
(Mandelbrot 1974) or by going very deep in the cascade level. Even the
one-dimensional cuts studied so far have been of one component of the
energy dissipation and invoke the frozen-flow hypothesis. The limitations
of these approximations are not completely understood, but the following
information may be useful. Prasad & Sreenivasan (1990a) have measured
all three components of the scalar dissipation y and have shown that the
scaling of any one component is the same as that of the sum (although in
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several other respects the individual components differ from each other as
well as from the sum). Whether this is true also of the energy dissipation
1s unclear, especially because ¢ contains cross-derivative terms while y does
not. Sreenivasan et al (1989a) have shown that, with qualifications similar
to those mentioned in Section 3, Taylor’s hypothesis is not unreasonable.
In any case, in all measurements to follow in this section, the real energy
dissipation rate is represented by its surrogate ¢ = (du/dr)?, where u is the
fluctuating velocity in the streamwise direction. For convenience, the prime
is dropped henceforth. All measurements have been made in fully turbulent
parts of the various flows (i.e. the effects of outer intermittency have not
been included).

Meneveau & Sreenivasan (1987a) obtained the first multifractal
measurements of ¢ and followed them up with some analysis. They mea-
sured ¢ in a variety of shear flows and obtained D,’s for samples of order
10integral scales. Each sample possessed a sizable scaling range (see Figure
16) spanning almost the entire range between L and 5. The slopes, however,
varied from one sample to another. For any given sample, the D,’s vary
smoothly with ¢ and, from sample to sample, do not intersect except at
g = 0. A sample that has larger D, for ¢ < 0 also has smaller D, for ¢ > 0.
Even more significantly, the fluctuations in fand « are highly correlated.
Typical histograms of the fluctuating D,’s for some selected ¢’s are pre-
sented by Meneveau & Sreenivasan (1987a). The spread of fluctuations was
found to be larger than the uncertainty in log-log fits. These fluctuations are
believed to be of fundamental importance, and their possible source is
discussed in Section 6.5.

Meneveau & Sreenivasan calculated averages of the D, exponents for a
given g and obtained a smooth curve. Upon using (5.8), they obtained the
f(2) curve. Such curves were the same (to within experimental accuracy)
for all flows examined—leading to the claim of universality of small-scale
motion. Alternatively, one can obtain the f(a) curve for each of the D,
curves and perform the averaging on the resulting f{«)’s. This 1s not
different from the previous average.

Figure 16 Typical log-log plots of
(X E)'"“~ Y versus r for the dissipation field
measured in the surface layer of the atmo-
sphere for the conditions as in Figure 155.
E, in the ordinate is normalized by the total
measure E, in the signal, and the box size is
normalized by the estimated Kolmogorov
scale 5. Linear regions in these plots give
the generalized dimensions. From rop to
bottom: q = 4,2, 0.6, —0.6, —2, and —4
logialr/m) (from Meneveau & Sreenivasan 1990b).

Loggl Z(E, /8,381 /1
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On the other hand, one can also compute multifractal parameters from
a supersample, or very long record of many thousands of integral scales,
and eliminate fluctuations. When this was done, Meneveau & Sreenivasan
(1990b) found that the resuits agreed well with the ensemble-averaged data
in the manifest part of f(«)—the two averages need not in principle give
the same result—but two new features appeared. The first of these con-
cerns the negative f(a)’s. Recall, following Mandelbrot (1989b), that f{«)
is related to the log-probability of events of specified singularity strength,
and that an event occurring only once every sample yields an f(«) of exactly
zero. It is then clear that negative f(2)’s can result if an event occurs less
often than once every typical sample. The observed sample-to-sample
fluctuations automatically suggest that there is one strongest event and
one weakest event that would dictate the extremes in the supersample and
would lead, by virtue of their extreme rarity, to negative f(«). Thus,
averaging over a supersample would eliminate fluctuations and unveil the
latent f{a) presumed to have been present all along, hidden only by the
artifact of ensemble averaging. Note that the negative parts correspond to
one-dimensional cuts only. The accuracy of extreme tails of f() is still
unclear, and so it is difficult to say with certainty whether the negative f(«)
occurs in the three-dimensional process itself. For the moment, the issue
remains unresolved.

However, supersampling degrades the scaling range from being approxi-
mately between L and # to a smaller subrange, roughly equal to the classical
inertial subrange. The reasons for this are not completely understood, but
it is believed that at least one of the reasons is the fluctuations we have
mentioned earlier; another is that we are examining an essentially three-
dimensional process in one-dimensional intersections. Whatever the
reasons, supersampling makes it difficult to identify scaling in laboratory
flows for which the available range (= L/n) is of order 200-300. This was
the reason that Meneveau & Sreenivasan (1987a) restricted their attention
to segments of order 10L.

The f(x) curve for the energy dissipation is given in Figure 17. This has
been obtained using 107 points and by considering the scaling in the inertial
range, and its convergence—at least for a large part of the curve—has
been established (Meneveau & Sreenivasan 1990b). The part of the curve
above the arrow mark was obtained by direct evaluation of experimental
data, whereas that below was obtained via a careful extrapolation of the
histograms of log E,. More recent work using the multiplier method is in
agreement with these results, including the extrapolated part of the curve
(Chhabra & Sreenivasan 1990b). Some salient features of the curve are the
minimum « corresponding to the largest singularity in the distribution of
¢, the maximum « corresponding to its least intense regions, the maximum
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. — — Figure 17 The f(2) curve for one-dimen-
! L /BA——\,, q sional cuts of ¢ computed from generalized
4 R dimensions (small circles and error bars),
L 4{ "\"\I and comparison with several models. The
) AR circle at f=o =1 is the original non-
fla) [ 7 1 intermittent theory of Kolmogorov (1941).
R 4 The square at f= o = 0.87 represents the
: fractally homogeneous f-model of Frisch
et al (1978). The two triangles correspond
-2 r 7 to the temporal wave-pocket model of
L 1 L Nakano (1988). This last model is not a
cascade model. The dushed line is the log-
normal approximation with yu = 0.26.

value of f(«) = 1 (showing that there is some dissipation everywhere along
a line cut), and the special point f = a, which we describe momentarily.

The multifractal description of intermittent quantities is (by and large)
more general' than other descriptions, most of which turn out to be
special cases (Figure 17). For example, Kolmogorov’s (1941) space-filling
dissipation corresponds to the point (1,1) in the f~o plane. Similarly,
the f-model, in which only the fraction § of the space is occupied by
homogeneously distributed dissipaiive regions, corresponds to another
point (Dg, Dy) on the plane depending on the § as well as the number of
subboxes receiving the measure from the parent box. If the f{«) curve can
be approximated by a parabola, the log-normal approximation results.
(This occurs for a process whose s-distributions are random with Gaussian
statistics.) As can be seen from Figure 17, log-normal approximation is
not adequate except for the central portion of the curve. Low-order
moments can be approximated quite well by the log-normal curves but
not the high-order ones (Antonia & Sreenivasan 1977, Anselmet et al
1984). The random f-model is also inadequate because the dimension of
the support in that model is less than 1.

The following are the main features of the f(«) distribution. For more
details, the papers already cited should be consulted.

1. It should be reiterated that the f(a) of Figure 17 is constructed by
measuring the energy dissipation rate, which (in conventional thinking) is

' The Kolmogorov-type reasoning is in fact more ambitious than the multifractal formal-
ism. The former not only discusses the statistics of ¢ but also of the velocity ficld itself. For
example, the 1941 theory makes a definite prediction for the velocity-derivative skewness,
whereas no such predictions are possible in the multifractal picture. The derivative skewness
is a dynamic quantity with special significance and cannot be predicted on the basis of
dimensional or other arguments that do not invoke the Navier-Stokes equations explicitly;
it is therefore no surprise that Kolmogorov’s theory cannot predict it correctly.
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believed to be the end-product of a cascade process. By averaging over
various-sized boxes and examining the scaling properties in the range that
encompasses the traditional inertial range, the expectation is to be able to
extract the f(«) spectrum for the inertial-range analogue of ¢—namely,
the scale-to-scale energy flux. This can be checked as follows. Define the
scaling exponents £, of the moments of velocity difference AV, between
two points separated by a distance r as |AV,|” ~ r. The scaling exponents
&, have been measured carefully for the inertial range by Ansclmet et al
(1984). On the other hand, Meneveau & Sreenivasan (1987a) have shown
that the ¢, are related to the generalized dimensions D, as

&= (p3-1)D,;+1 (6.1)

and can be obtained as a function of p from the measured D, data. If the
measured D, curve and the f(«) spectrum are inertial-range properties,
then the two ways of getting the exponents ¢, must be identical. Figure 18
compares the two sets of £,. It is clear that they agree very well, justifying
the earlier expectation—at least for positive moments. Note also that the
log-normal distribution yields a significantly different trend.

2. Meneveau & Sreenivasan (1987a) and Sreenivasan (1990) have shown
that the multifractal data are in good agreement with the measured sta-
tistical features of ¢ itself—for example, the Reynolds-number variation
of the variance of ¢ (or the flatness factor of the velocity derivative). That
is, for low-order moments, the same scaling that holds for the inertial
range also holds approximately for the dissipation range. Indeed, the f(z)
curve constructed for the dissipation range (Chhabra & Sreenivasan 1990b)
agrees for the most part with that for the inertial range.

3. Sreenivasan & Meneveau (1988) have shown that the dimension of
the set of all singularities of the energy dissipation is definitely less than I,

5
‘ﬂ - Figure 18 The scaling exponent of the
1 velocity structure function in the inertial
§p 34 range. Symbols correspond to the measure-
T T T ments of Anselmet et al (1984), whereas
2 the continuous curve is obtained from
ensemble-averaged D, results using (6.1)
14 (from Meneveau & Srcenivasan 1987a).
! The dashed curve is for the log-normal
0 - . distribution with u = 0.26.
Q 10 20
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although very close to it; the best estimate is 0.96. Most of the dissipation
occurs on a subset of these singularities, whose dimension asymptotically
approaches 0.87 (2.87 in three dimensions). This is the special point /' = «
mentioned earlier, corresponding to the dimension of the measure-theo-
retic support of ¢. Since this is less than 3, all the dissipation asymptotically
lives on a set of volume zero. It was argued that this set is likely to be in
the form of fractal surfaces. However, the rate at which this asymptotic
state is attained is very slow in Reynolds number. It may be interesting to
note that the f-model assumes that the entire dissipation occurs uniformly
on a set of dimension 2.87.

The set corresponding to = « is inhabited by weakly singular regions
(since o is not far from 1) that are quite prevalent (since f is not far from
1). It follows, asymptotically, that the entire dissipation comes from many
weak peaks whose magnitudes are several orders of magnitude smaller
than the rare strong ones. The latter, however, control high-order
moments. The measure-theoretic supports of higher powers of ¢ have
smaller dimensions. One can determine them from the f(«) curve rather
easily [see (5.9)].

4. In the asymptotic limit of infinite cascade steps, one can show that
the variance of box-averaged dissipation ¢, behaves as y log (L/r), where
u is called the intermittency exponent (see also Kolmogorov 1962). The
exponent u can be written as 4 = —d’t/dq’),_ . Using the measured multi-
fractal data, Meneveau et al (1990) have shown that u = 0.26 +0.03.

5. We recall from Section 3.6 that the simple estimate of 7/3 for the
interface dimension did not consider fluctuations in the flux across the
interface. However, fluctuations of ¢ cause fluctuating interface thicknesses
as well as fluctuating inner cutoffs, both of which cause fluctuations in the
flux. They can be accounted for in the multifractal formalism (Sreenivasan
et al 1989b, Meneveau & Sreenivasan 1990a). The final result for the
interface dimension is

where D, is the generalized dimension of order 1/3. Using the measured
value of D;; (=0.96), one gets D = 2.36, in excellent agreement with the
measurement (Table 1).

6. Even though the tails of the f(«) curve might not be entirely reliable,
no reasonable extrapolation suggests the existence of the virtual part,
which means that all order moments of ¢ are finite—putting to rest the
discussion about the divergence of high-order moments of ¢ (Mandelbrot
1974, Schertzer & Lovejoy 1985).

7. The measured multifractal spectra have been modeled well by simple
multiplicative processes (see Section 6.4).
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Note that these deductions are robust against the precise partitioning
of the measure [i.e. the number of offsprings arising from a parent scale
(see Chhabra & Sreenivasan 1990b)].

6.2 The Scalar Dissipation Rate

It is important to discuss the scalar-dissipation measurements for two
reasons. First, when the Schmidt number is large, there are two different
scaling ranges (Section 3). Second, in the K-range, all three components
of ¢ have been measured in three-dimensional space (Prasad & Sreenivasan
1990a), in a way that is closest to the ideal requirements. In Prasad et al
(1988) and Ramshankar (1988), two components of y were measured in a
larger flow domain and with better resolution. In the B-range, Sreenivasan
& Prasad (1989) measured the multifractal spectrum of the scalar dis-
sipation by using finely resolved one-dimensional sections. Finally, there
is considerable interest in % because of its role in modeling the prediction
of scalar variance and of its influence on the mean reaction rates in
combustion. For example, when y is high, extinction may occur in the
flame sheet, leaving holes and pockets of unreacted, premixed mixture
(Bilger 1989).

Figure 19 shows the multifractal spectrum of y obtained from figures
such as 14b. Since both one- and two-dimensional sections have been
measured directly, checks on additive laws as well as on the existence of
latent f(«) have been possible. Further, the results of including outer
intermittency effects (or the boundary of the flow) have been investigated.
These have not been included in Figure 19, since they are essentially
identical to the left of the peak as well as to the right until the f(«) curve
dips below about 1.36, this being equal to the interface dimension in planar
cuts. Below this point (marked by an arrow in Figure 19), the f(«) curve
of y for the whole image is undefined. The interpretation appears to be
that when the interface (which itself is a singularity surface) is included in
the measurement of f(«), there are by definition no nonsingular regions:
From Figure 7, it is clear that the interface occurs often enough to bias
boxes of nearly all sizes. Much of the analysis done for ¢ has also been
done for y (Sreenivasan et al 1989a). In particular, the intermittency
exponent in the K-range was found to be 0.36 +0.05, showing that y is
more intermittent than e&. Most of y occurs on sheetlike structures of
dimension close to 2.87 that occupy zero volume in the limit of infinite
Reynolds number. Meneveau et al (1990) showed that the dissipation
regions of y and e are weakly correlated, and that the scaling exponents
for the structure functions of temperature obtained from the measured
multifractal spectrum are consistent with direct measurements of Antonia
et al (1984). Mention should also be made of Ramshankar (1989), who
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Figure 19 The f(«) curve for y obtained for five different interior regions of the turbulent
jet. The continuous curve is the average (from Prasad et al 1988). The dashed curve is the log-
normal distribution with the scalar intermittency exponent of 0.36.

measured the Reynolds-number evolution of the multifractal spectrum
for .

Figure 20 shows the D, curve obtained for the B-range compared with
that in the K-range [whose f(x) equivalent is shown in Figure 19]. The
former was computed by plotting the sum of the box-averaged measures
in the B-range and by measuring slopes. The additive law has already been
invoked for the data. The generalized dimensions in the B-range are quite
close in magnitude to that of the support. Among other things, this means
that intermittency corrections in the B-range are negligible. As for the
interface, one can expect that there are some finite Schmidt-number cor-
rections. Sreenivasan & Prasad (1989) argued that all D,’s are identically
equal to D, in the limit of infinite Schmidt number, and that sub-Kol-
mogorov-scale fluctuations are indeed space filling and nonintermittent.
Classical methods must be completely adequate here.
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Figure 20 The generalized dimensions for the scalar dissipation y in the two scaling ranges.
Symbols correspond to the B-range for several different realizations, and the solid line
represents the mean. The dashed line shows the results of Prasad et al (1988) for the K-range
(from Sreenivasan & Prasad 1989).

6.3 Further Multifractal Results and Joint Multifractals

Similar multifractal properties have been measured (although in less detail)
for absolute values of vorticity fluctuations (Fan 1988, Meneveau et al
1990) and the absolute values of the Reynolds shear stress (Kailasnath
1988). (Of interest in turbulence are vorticity and the Reynolds stress
without the absolute sign. It is unclear how one should deal effectively with
intermittent processes that are both positive and negative.} Chorin (1982,
1988a, 1990) computed the dimension of the L, support of vorticity and
found values that seem compatible with the measurements of Fan. How-
ever, this will not be discussed further. One primary difference between
enstrophy and energy dissipation 1s that for the former the scaling appears
different in the dissipative and inertial ranges. It has also been possible to
demonstrate that most of the contribution to the absolute value of the
Reynolds stress in the logarithmic region of the boundary layer (for ex-
ample) comes from ubiquitous but small-amplitude events, rather than
from some small number of powerful events.

Finally, Meneveau et al (1990) developed the theory of joint multifractals
and measured joint multifractal spectra. The primary motivation for this
work is the realization that a high-Reynolds-number turbulent flow sub-
sumes several intermittent fields simultaneously, and that these fields dis-
play different degrees of correlation among them; for example, the same
set supports energy and scalar dissipation rates that have some degree of
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correlation among them. As before, one divides the domain of interest
into boxes of various sizes and computes the integrated measures, say p,(x)
and pi(x), in boxes of size r centered around the position x. One can define
two local singularity strengths o and o according to p,(x) ~ (r/L)* and
p{x) ~ (r/L)*, and focus on joint distributions of the variables o and «’.
N(o, ') do do” will then define the number of boxes in which the variable
ais in a band dx around «, and o is in a band do” around «’. In analogy
to the usual multifractal formalism, one writes N,(a,o) ~ (r/L)**) and
interprets f(a, a’) as the dimension of a set resulting from the intersection
of the iso-a and iso-o sets. The f(o, ") surface characterizes the scaling
properties of the joint distributions of the local exponents « and «’. Mene-
veau et al (1990) obtained the joint multifractal spectra for energy dis-
sipation and vorticity, as well as for energy and scalar dissipation rates.
They carried out an analysis of measurements and showed that many of
the previously known scaling properties follow as special cases of this
general formalism. In particular, the inertial-range scaling exponents for
the scalar structure functions, defined analogously to those for velocity
and measured by Antonia et al (1984), are consistent with joint multifractal
results. A by-product of this work is the conclusion that the scalar and
energy dissipations are weakly correlated, implying that the effect of mean
shear on the former will always be rather large and perhaps explaining
why the structure is not locally isotropic (Mestayer et al 1976, Gibson et
al 1977, Sreenivasan et al 1979, Mestayer 1983).

Another area of progress (Cates & Deutsch 1987, Meneveau & Chhabra
1990) has been the recognition that f(«) for random isotropic processes
possesses useful information on spatial correlations (since any two boxes
at some cascade level—even if distant—share the same forefather at some
earlier level).

6.4 Modeling of the Measured Multifractal Distributions

Recall that the multifractal description is only a static, or “quenched,”
description, and it is usually not possible to deduce dynamical models
uniquely. This is the penalty we pay for restricting attention to the physical
rather than the phase space. Some headway can be made by noting, as
already mentioned, that the multifractal formalism has thermodynamic
analogies. Specifically, then, the question is, Can one deduce something
about dynamics given merely thermodynamic information?

Consider the multiplicative process in which each parent interval breaks
up into ¢ number of new subintervals; we would have at the end of n stages
of the cascade &" pieces. The general procedure is to map such a process
on to an g-state n-particle spin system and find, by taking recourse to the
measured multifractal properties, the appropriate transfer matrix describ-
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ing the transition from the nth stage to the (n+ 1)st stage, or from an »-
particle system to an (n+ 1)-particle system.? One then has a dynamic
process yielding the observed thermodynamics. Usually, one can only get
the leading approximations to the transfer matrix (Feigenbaum et al 1986).
Chhabra et al (1989a) have examined the issue for dynamical systems
as well as for turbulence. Not surprisingly, inversion yields nonunique
solutions: There are many dynamic processes that yield the same thermo-
dynamics. However, the more complete our knowledge of the system,
the less nonunique is the inversion procedure. Meneveau & Sreenivasan
(1987b) have shown that the manifest f(«) is in good agreement with a
binomial cascade model in which a parent eddy breaks up (in one dimen-
sion) into two equal-sized eddies such that the energy flux is redistributed
between its two offsprings in the ratio 7/3. This allowed Meneveau &
Sreenivasan (1987b) to make several quantitative predictions (such as the
Reynolds-number variation of the flatness factor of the velocity derivative);
one can also compute the spectral density of ¢ to a good approximation
(Sreenivasan 1990). An extension to multinomial models can be made to
account for the latent part also (Meneveau & Sreenivasan 1990b). Another
way of accounting for negative dimensions is to use random multiplier
models (Chhabra & Sreenivasan 1990b). Binomial and multinomial models
have been constructed for other quantities, such as the scalar dissipation
rate. (In one dimension, the splitting ratio is 3/1.) Furthermore, joint
binomial models, also in agreement with measurement, can be deduced
from joint distributions (Meneveau et al 1990).

Because of the non-uniqueness in going from multifractals to dynamics,
one cannot claim that these models represent the true dynamics of energy
cascade—despite agreement with experiment. What one can say is that
simple dynamical models can be constructed in such a way that their
outcome is statistically the same, up to some level of approximation, as
the measured results. To determine the sense in which these models repre-
sent the true dynamic picture requires more information and is an area of
active research.

6.5 Fluctuations in Scaling Exponents

We have seen that both interface dimensions and multifractal properties
show sample-to-sample fluctuations, whereas each sample (of order 10L

2The number of particles at the last step of the cascade is approximately equal to log,
(L/n) = 3/4 log, Re and is not very large even for geophysical flows (Re = uL/v, where u is
the root-mean-square velocity). For example, for atmospheric turbulence, the number of
particles is of the order of 15. We are thus discussing in turbulence the statistical mechanics
of systems with a small number of particles, in strong contrast to molecular dynamics.



FRACTALS IN TURBULENCE 589

in the experiments described above, but technically of order L) has a good
scaling. Even in the atmosphere, where the number of cascade levels is
rather large, the sample-to-sample fluctuations are quite strong.

The reason for this is believed to be that the evolution of turbulence
follows a multiplicative process that is inherently probabilistic. A single
sample does not exhaust the probability density function. By considering
many samples, one is essentially sampling the entire probability space.
This is the spirit behind supersampling.

But what type of samples is the best for supersampling? It appears that
taking line cuts via Taylor’s hypothesis and performing supersampling on
them is not the answer. In fact, the larger the co-dimension of the inter-
secting space, the worse off one is. Further, the errors in box counting can
accumulate with the sample size and may lead to spurious conclusions
(Chhabra & Sreenivasan 1990a,b). The multiplier method alleviates such
problems when the proper partitioning is known, but the situation remains
unclear if the proper partitioning is unknown. On the other hand, our
experience is that three- or (at the least) two-dimensional spatial data
possess good scaling as well as convergence.

Finally, it should be said that a deterministic explanation for the fluc-
tuations might in fact exist. At the moment, no one seems to have a clue
in that direction.

7. DETAILED NATURE OF SCALE SIMILARITY
IN TURBULENCE

We have seen that multifractal spectra, although rich in information
content, are statistical measures that cannot give an unambiguous picture
of the scale similarity prevalent ip turbulent flows. It is not clear as to what
precisely one should do to acquire this detailed knowledge, but we now
describe one such effort (Everson et al 1990) using wavelets (e.g. Combes
et al 1989). Wavelets have recently been promoted (for example, Argoul
et al 1989) as possible tools for efficient decomposition of turbulent motion
into eddies of various sizes. They are spatially compact objects used to
detect shapes and local gradients in a given signal by performing point-
by-point convolutions with the signal. There is much freedom in picking
wavelets, but for simplicity one can use a generic shape such as the “Mexi-
can hat,” which is simply the Laplacian of the Gaussian function. The
idea is to use wavelets of different sizes to pick out eddies of that size and
examine them for scale similarity.

Before discussing the findings of Everson et al (1990) in turbulent jets,
it is helpful to first describe their results on Brownian motion U(x) in a
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plane, which has the self-similar property that, under magnification or
contraction by a scale factor q,

U(x) and (1/a)U(ax) (7.1)

are statistically indistinguishable (Mandelbrot & Van Ness 1968).

Figure 21 (see color insert) shows two-dimensional Brownian motion
U(x) generated using a scheme suggested by Mandelbrot & Van Ness
(1968). Different colors in the figure represent different probabilities of
finding a particle executing Brownian motion—red and black being the
most probable and the least probable states, respectively. The color code
on the left of the figure graduates intermediate probabilities.

How does one visually demonstrate the presence of self-similarity in this
case? Everson et al (1990) performed wavelet decomposition of the data
and extracted scales of different sizes. The left column of Figure 22 (see
color insert) contains the wavelet transforms of Figure 21 under suc-
cessively smaller scales of the wavelet, as indicated in the caption. Unlike
one-dimensional records, for which a complete wavelet transform can be
rendered as a single image (Argoul et al 1989), one now needs a series of
images, one for each scale. To explore the idea of self-similarity, Everson
et al took the results from wavelet analysis at a scale smaller than is shown
in the left column of Figure 22, and enlarged parts of it to correspond to
the scales displayed. The right part of Figure 22 shows these expanded
patterns, each corresponding exactly to the scale used on the left counter-
part. The similarity of textural patterns confirms (7.1) and shows that
the wavelet transform is capable of visually displaying statistical self-
similarity. Moreover, Everson et al point out that the human eye can
discern such a similarity, probably performing autocorrelations in the
manner suggested by Julesz (1981).

One would like to be able to apply the same analysis to turbulent flows,
for example, to the velocity data in a plane. Since there is a dearth of good
planar velocity data, the jet concentration data of Figure 3 have been
analyzed. Direct application of the wavelet transform to the jet image
makes comparison between different regions difficult because the jet
spreads in the streamwise direction and there is a consequential inhomo-
geneity. Everson et al therefore performed the following correction for
these effects before applying the wavelet transform.

Well away from the nozzle exit, similarity arguments (for example,
Townsend 1956) show that the jet spreads linearly, and the characteristic
axial velocity decays as the inverse distance. The Reynolds number remains
constant. The characteristic concentration levels also decrease as the
inverse of the streamwise distance. Everson et al applied a conformal
transformation that converts a wedge to a slot and corrected for the growth
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of the jet. They also normalized the image for the expected decay rate of
the concentration levels. The corrected image is shown in Figure 23 (see
color insert). Properties of such rescaled jets appear fractallike without the
caveats of Section 3.

The top row of Figure 24 (see color insert) shows the result of wavelet
analysis on this image at four scales. In contrast to the Brownian-motion
images of Figure 22, the structures at different scales are in fact different.
Basically, there are two types of structures in the jet, which (following
Everson et al) we might call beads and strings. As the scale decreases,
structures shows a transition from beadlike to stringlike behavior. The
strings are highly anisotropic. The beads are of the extent of the wavelet
size, and strings are sections of sheetlike structures. Application of wavelets
to the three-dimensional data of Prasad & Sreenivasan (1990a) shows that
the sheets possess strong three-dimensional convolutions. We have already
provided some information about these sheets in Section 6.2.

Although wavelet analysis indicates the self-affine nature of the scaling
transformation in the scalar field, it is useful to investigate this further by
proceeding, as was done for the planar Brownian motion, through a series
of magnifications. The bottom row shows expanded versions of the wavelet
picture, analyzed at a scale that is 2.5 times smaller than the rightmost one
on the top row, but magnified to bring parts of the picture to the same
scale as those in the top row. The arrows in the bottom four pictures
correspond to the one in' the top-rightmost picture. The stringlike struc-
tures persist under magnification, thus emphasizing the structural change
at small scales.

At least for scalars, the tendency to stretch and fold in a highly aniso-
tropic fashion suggests that the models that assume equal splitting—no
matter how well they agree with measurements—reflect the average fea-
tures and not the entire physics. As in all probabilistic processes, the
agreement between a model and some of the statistical measures cannot
be regarded as the whole story.

8. SUMMARY AND CONCLUSIONS

We have discussed a number of examples in which fractals and multi-
fractals have played a role in turbulence. The exploration is still in its
growth phase.

Anyone who has watched a fluid in turbulent motion is aware of the
wealth of its details and complexity. Presumably, the simplest equations
that describe most of those features are those formulated by Navier and
Stokes. One can take the attitude that solving them on the computer will
tell us all we need to know. The reality is different. In all complex systems
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including high-Reynolds-number turbulence, progress can be made only
by abstracting the essential features of what is obviously a very rich
phenomenon. The framework of Kolmogorov’s (1941) theory is one such
attempt. (Although these arguments have been made independently by
many other illustrious people, we have essentially used Kolmogorov as
the most prominent name.) In fact, the elegance and intuitive appeal of
the argument have been responsible for much of the early focus on its
verification. It is correct for mean values, and one can go some way
with it as a working tool; its ubiquitous use in the general storehouse of
turbulence work is to some extent justified.

However, it is not correct when applied to the skewness of the velocity
and temperature derivatives and to high-order moments, and it blatantly
ignores intermittency. The revitalization of the carlier theory in 1962 also
fell short when pushed further. Its limitations are increasingly felt as
the experimental and computational capability has increased. Again, the
abstraction of the details of the physics is inadequate. In particular, log-
normality is inadequate for high-order moments, besides being funda-
mentally unsound: High-order moments are governed by very rare but
extremely large events that fall outside of the central-limit theorem. The
multifractal formalism provides a way in which these moments can be
discussed. With this formalism, it is possible to go farther than log-nor-
mality (see, for example, Figures 17-19, where the comparisons between
log-normality, multifractal results, and experiment are given). But, does
this represent the ultimate level of truth, even if by that we mean nothing
fancier than the Navier-Stokes description? It is not clear, given the present
level of experimental uncertainty about high-order moments, that multi-
fractal scaling extends to those very rare events; the tail of the f{(a) curve
for the atmosphere is very hard to obtain with absolute accuracy, and
the issue may therefore be extremely difficult to settle. At any rate, as
demonstrated in Section 7, the physics of production of small scales is
more complex than that assumed by simple multifractal scaling. This,
however, is not an inherent limitation, and it can perhaps be accounted
for satisfactorily by inventing an appropriate self-affine transformation
from scale to scale; a preliminary attempt recently made by the author
appears to be promising. One must also be careful to note that the multi-
fractal arguments give no completely satisfactory solution for dynamically
important quantities such as the skewness of the velocity derivative.

What have we gained? This review has shown that fractals and multi-
fractals are useful tools when used with an awareness of their restrictions.
If the three-dimensional spatial structure—or at least its two-dimensional
section—1is examined, we have been able to ascertain the existence of
reasonable scaling even at moderate Reynolds numbers. (As mentioned in
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Section 3.2, the situation with respect to temporal data is much less
certain.) We have shown the consistency of fractal scaling with several
classical Reynolds-number scalings that arise out of the Kolmogorov path.
We have, on certain occasions, been able to explore beyond them. We
have been able to focus more on physical space and quantify in a reasonable
way some of its features. Specifically, we have been able to show the
following:

1. The scalar interface in the K-range appears to have approximately
the same fractal structure as the vorticity interface, and the dimension is
2.36. This is much the same for cloud boundaries and, under certain
conditions, flame surfaces. The property that surfaces can be characterized
in this way should be useful for obtaining the scaling laws for scalar mixing
(as we have outlined) and in combustion (which, as mentioned in Section
4, is being actively explored at present). Fractals can also be useful in other
contexts, such as the stretching of material lines.

2. We have shown that multifractals have an overwhelming role to play
in the description of the various facets of turbulence: dissipation rates,
absolute values of vorticity and Reynolds stress, etc. (Although it would
at some point be useful to make detailed and highly controlled measure-
ments at very high Reynolds numbers, the basic features of the measure-
ments discussed here appear to be reasonably robust.) We can ascertain
with some confidence the asymptotic fractal properties of the distributions
of these quantities. For example, to know that all the energy and scalar
dissipation rates are asymptotically distributed on fractal sets of known
dimension could be of some value in turbulence modeling and in providing
a conceptual framework for theoretical work. It is certainly useful to know
that the contribution to the mean values of intermittent quantities comes
almost exclusively from weak and frequent peaks rather than from strong
and rare ones. The fact that the energy and scalar dissipation are not
strongly correlated is again useful in our understanding of the limitations
of local isotropy of scalar fields. The multifractal formalism provides a
versatile framework for pursuing the description of turbulence. It also has
a formal connection with thermodynamics and statistical mechanics, thus
automatically bringing us in contact with a broad field of intellectual
endeavor in physics.

What have we not been able to do? We do not truly understand why
fractal and multifractal scaling holds for turbulence—at least as a reason-
able approximation. Indeed, there is no satisfactory explanation of how
fractals arise even in model nonlinear systems. We do not understand
well the source of the fluctuations in fractal dimensions and multifractal
parameters and their relation to the possible dynamical scenarios. We have
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not yet been able to make a good connection to fluctuations in statistical
mechanics of finite-sized systems. Both of these are areas of active research
and will probably be understood sooner or later.

However, the outlook for certain other aspects is not so optimistic,
unless magical inspiration or breakthrough in analytical tools occurs. By
focusing on the physical space, we have lost track of the dynamic evolution.
We have merely been able to suggest the type of scaling that exists in a
single or several independent realizations of the flow. We do not know
how to infer the true dynamics from such static descriptions—although
we have tried and, in some restricted sense, succeeded. But we cannot, for
instance, definitively support or deny the existence of a true Richardsonian
cascade. This requires different apparatuses that focus on analysis in space-
time. Purely from the point of view of measurement technology, such
measurements at high Reynolds numbers remain a somewhat distant hope.

Alas, such apparatuses as exist today for undertaking a study of spatially
extended dynamical systems are good only for some specific low-dimen-
sional problems. And turbulence is decidedly high-dimensional (Landau
& Lifshitz 1959, Constantin et al 1985) and is spatially structured while at
the same time being random. Some intelligent work can be done in model-
ing subspaces of turbulent flow fields, such as near the wall where the
Reynolds number is inherently low (Aubry et al 1988) or in the sub-
Kolmogorov-scale range where the fractal tools might in fact be unneces-
sary, but the tools of today are still primitive for handling the general
problem of turbulence.

Will the fractal approach survive and flourish? It is trite to say that
fractals by themselves cannot solve the turbulence problem—whatever
that may mean. To the extent that these are mere tools, the future depends
on how intelligently and judiciously they are employed. But these tools
have two advantages. First, they enable us to venture beyond the existing
statistical tools, which are rather heavily based on central-limit-type argu-
ments. Second, they have allowed us to enter a number of areas of non-
linear science—thought to be beyond scientific description only a few
years ago—making it easier to produce connections with those other fields.
And this can only be beneficial in the long run.
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Figure {4a  From the LIF map of the concentration field, one can calculate the “*dissipation”
rate of the variance of concentration fluctuation. This is shown for one realization of a jet at a
Reynolds number of 4000. The gradients of the concentration required for computing x were
approximated by finite differences of the concentration field. Only two components of x are
included here. The spatial resolution of measurements is estimated to be between {(n) and
2 (7). Different colors represent. in some nonlinear scaling, different magnitudes of the dissipation
rate: magnitudes increase from deep blue through red. The figure shows that different magnitudes
of dissipation inhabit different but interiwined sets. The purpose of the multifractal analysis is
to disentangle information about the dimensions of these sets and the strengths of the measures
living on them.



Figure 2] A Brownian surface in a plane
generated according to the scheme suggested
by Mandelbrot & Van Ness (1968). A linear
cut of this surface gives the Brownian motion
on a line. The spatial spectrum falls off ac-
cording to the second power of the wavenum-
ber. Different colors represent different prob-
abilities, or heights of the Brownian surface
{from Everson et al 1990).

Figure 22 Wavelet transform, at scale a,
of the Brownian motion displayed in Figure
21. The left column, going from top to bot-
tom, corresponds to a = 0.1, a = 0.05,
and @ = 0.01. Right column, from top to
bottom: @ = 0.05, magnified 2 times; a =
0.02, magnified 2.5 times; a = 0.005, magni-
fied 2 times. The linear dimension of each
picture in the left column corresponds to
a = 1 (from Everson et al 1990).



Figure 23 The result of applying a conformal mapping to the jet shown in Figure 3. The
map, due to Everson et al (1990), corrects for the growth of the jet by coverting a wedge into
a slot. The downstream decay of the mean concentration has been normalized using similarity
considerations. The signal 1o the right corresponds to the vertical line cut shown in the jet.



Figure 24 Wavelet transform of the (mirror image of the) conformally mapped jet shown in
Figure 23. Scale sizes across top row are @ = 0.05, 0.02, 0.01, and 0.005. The longer dimension
of the picture corresponds to @ = 1. The bottom row, going from left to right: @ = 0.002,
magnified 25 times; a = 0.002, magnified 10 times; @ = 0.002. magnified 5 times: a =
0.002, magnified 2.5 times. The location of the magnified region is indicated by arrows, which
point to the same features in each picture. Focusing on other regions gives essentially the
same qualitative picture. It is clear that scale similarity for the Brownian motion is different
from that for the scalar structure in this jet (and. it appears. in other sheared flows) (from
Everson et al 1990).
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NOTE ADDED IN PROOF As we go to press, three further comments might
usefully be added. First, Miller & Dimotakis (1991) have confirmed the
conclusion of Section 3.2 that temporal records of concentration in a jet
do not have a fractal character, at least for thresholds near the mean. Their
results for threshold levels far from the mean are less clear (see their
Figures 11, 12). The work highlights the difficulty in treating one-dimen-
sional temporal records, which are inherently self-affine, in terms of self-
similar fractals. Miller & Dimotakis have not examined spatial records, to
which most of this review refers, but they do find that small extents of
streak images (i.e. images obtained by treating temporal signals from a
line array of diode elements as spatial images) show no evidence of fractal
behavior. This result deserves attention, even though the use of Taylor’s
hypothesis in two dimensions remains an unexplored domain.

Second, Vassilicos & Hunt (1990) have shown that spiral shapes satisfy-
ing certain geometric constraints possess a capacity dimension equal to
the measured value of ~2.35 for the scalar interface. On the basis of this
and other evidence, they speculate that turbulent motion may indeed
consist of many spiraling motions. While we do observe some spiral struc-
tures (with a few turns of order 2) in the small-scale scalar field, they are
not ubiquitous, and reality appears to be much more complex.

Finally, Barcy et al (1990) and U. Frisch (private communication, 1989)
have argued that generalized dimension D, for g < 1 cannot exist for the
dissipation field. This may indeed be the case, but measurements discussed
in Section 5 are for box-averaged dissipation whose scaling for negative ¢
extends only to some multiple of the Kolmogorov scale-—that is, coarse-
grained dissipation and the dissipation per se may have different charac-
teristics as far as negative ¢’s are concerned. As explained in the text, the
hope (which a posteriori appears to be justified) is that one may be able
to extract inertial-range quantities by box averaging dissipation quantities.
While there is no guarantee that this view is exactly right, evidence pre-
sented in the text shows that this might be sufficiently correct for positive
moments.
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