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On local isotropy of passive scalars in turbulent
shear flows

By K. R. SREENIVASAN
Mason Laboratory, Yale University, New Haven, Connecticut 06620, U.S.A.

[Plate 1]

An assessment of local isotropy and universality in high-Reynolds-number turbulent
flows is presented. The emphasis is on the behaviour of passive scalar fields advected
by turbulence, but a brief review of the relevant facts is given for the turbulent
motion itself. Experiments suggest that local isotropy is not a natural concept for
scalars in shear flows, except, perhaps, at such extreme Reynolds numbers that are
of no practical relevance on Earth. Yet some type of scaling exists even at moderate
Reynolds numbers. The relation between these two observations is a theme of this

paper.

1. Introduction

Kolmogorov’s (1941) similarity theory introduced the concept that small scales of
motion in high-Reynolds-number turbulence are statistically homogeneous, isotropic
and universal, and led to certain quantitative predictions. Kolmogorov’s original
paper, about four pages long, has been enormously influential even in fields besides
turbulence. There have been modifications of the original ideas, some by Kolmogorov
(1962) himself, but the broad expectation has always remained that some type of
universality prevails at small scales. It is also believed that the same basic ideas can
be extended to scalar fields advected by turbulence, and that the universal behaviour
of the small-scale velocity field would manifest ‘naturally’ in the scalar field (see
Obukhov 1949 ; Corrsin 1951 ; Batchelor 1956 ; Monin & Yaglom 1971). The purpose
of this paper is to examine the degree to which local isotropy and universality apply
to scalar fields.

Specifically, the problem is this: consider a high-Reynolds-number turbulent flow
in which the motion can be decomposed without ambiguity into a time average (or
the ‘mean’) and the superimposed turbulent fluctuation. The turbulent jet sketched
in figure 1 provides an example. The mean flow is taken to possess a strong spatial
variation, or shear, in one direction, say y; this is also the direction of inhomogeneity
in the turbulence structure. Into such a flow inject a scalar, for simplicity, at a length
scale comparable with that of the energy-containing motion of turbulence. A
measure of this latter scale (designated as L here) is the correlation, or ‘integral’,
length scale. We assume that the scalar is passive in that the turbulence dynamics
is not influenced by its presence. Low levels of heating or small doses of a dye injected
into the flow provide two examples. The scalar field established under such
circumstances will have a mean field (with a non-zero average spatial gradient in the
direction y) and a fluctuation field. The questions we seek to address are: At high
Reynolds numbers, what are the scaling properties of the fluctuating scalar field at
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Figure 1. Schematic of a turbulent jet (for example, water jet flowing into water) and the
coordinate axes. The outer boundary roughly reflects the average growth of the jet. Typical mean
velocity distribution and directions of the principal strain rates in the jet are shown.

scales much smaller than the injection scale ? Are there any properties of the scalar
field which are universal, in the sense that they do not depend on details of the
manner of injection of turbulent energy and of the scalar itself?

These questions have been addressed before, but this paper emphasizes certain
features that do not seem to have been appreciated well enough previously. As a
background, we present in §2 the spirit of universality of the small-scale turbulent
motion itself. We then examine in §3 the strength of the arguments linking
universality of small-scale turbulent motion to that of an advected passive scalar,
and assess the relevant experimental evidence. There is a final discussion in §4 where
principal conclusions are restated.

2. Universality of the small-scale motion of turbulence: a brief review
(@) The hypothesis and the experimental evidence

The basic notion underlying Kolmogorov’s hypothesis is that of local isotropy,
which implies that turbulence scales small compared to L are statistically
homogeneous and isotropic. The first hypothesis states that the multivariate prob-
ability distributions of the velocity difference in a direction 7, Au; = u,(x) —u;(x+r),
are functions only of r = |r|, the average energy dissipation rate, {e¢), and the
kinematic viscosity, v, of the fluid. Specifically, the nth-order structure functions

have the form AAw|™> = (&> 7)™3f,(r/ 7). (2.1)

Here, 9 = (1¥/{e))i is the Kolmogorov length scale formed out of v and <¢), and the
functions f, are universal; 5 is on the order of magnitude of the energy dissipation
scales. One can also define the Kolmogorov velocity formed out of v and ¢ as
v = (v{eD)i. Note that the local Reynolds number vy/v = 1, which implies that 7 is
of the order of magnitude of the smallest dynamical scale.
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The second similarity hypothesis is that, at very high Reynolds numbers, there
exists a range of scales 7 < r < L, called the inertial range, in which the structure
functions become independent of viscosity; that is, f,(c0) = K,, where K, are
universal constants independent of the flow. We then have

lAu "y = K, (<eyr)"2. (2.2)

Kolmogorov spelled out his hypotheses for the real space, but much of the later
dissemination of the hypotheses and speculation on their physical content has
occurred via wave-number description (Batchelor 1953; Kraichnan 1959; Leslie
1973). Fourier representation is natural for infinitely extended homogeneous fields,
but not necessarily so for inhomogeneous flows where the structure in real space and
the scales in Fourier space are only loosely related. However, once we accept the
wavenumber description, we can quickly see its advantages: it allows a convenient
identification of the scales of motion with Fourier modes: one can conceive of a local
energy cascade across wavenumber space and argue that there must be a statistical
decoupling of large and small scales; one can estimate that the cascade occurs faster
with the decreasing scale size so that, even in the infinite Reynolds number limit, the
energy flux across the entire spectrum is accomplished on a time scale of the order
of the large-eddy turnover time. There is also the distinction to be made between the
energy flux across wave numbers and the energy dissipation rate which is its
manifestation at the small-scale end of the cascade. The Fourier-space abstraction of
events occurring in real space has thus created a rich folklore of nonlinear physics,
but it has also led to some problems; we shall return to them in subsequent sections.

It should be noted that (2.1) and (2.2) arise fundamentally from dimensional
arguments and that they stand or fall on the support they derive from experiments.
In particular, these arguments neglect, at any scale » in the inertial range, the
possible contributions of the fluctuations of ¢ over volumes of larger size. This is the
so-called intermittency effect, whose first recognition is usually traced to a comment
by Landau (Landau & Lifshitz 1963, p. 126; see also Kolmogorov 1962). Landau’s
comment referred to possible non-universality because the averaging of ¢ is typically
performed over many large scales which are flow-specific. It is occasionally thought
(Kraichnan 1990, 1991) that the intermittency of small-scale turbulence is decoupled
from the energy dynamics and that Kolmogorov’s (1941) universality may be exact
for second-order statistics (i.e. n = 2). Chorin (1986, 1988) has argued that the five-
thirds law without any corrections is consistent with intermittency. This issue needs
separate consideration, and will be discussed elsewhere.

Be that as it may, it is now fairly well accepted that the structure functions obey,
instead of (2.2), the relation

JAw ") = K, ey r)tv, (2.3)

for y < r < L, where §, # in for n large. See figure 2. In assessing these data, serious
consideration must be given to the convergence of high-order moments of Au,,
especially for high Reynolds number flows such as the atmospheric surface layer. The
key to an accurate determination of high-order scaling exponents at high Reynolds
numbers is the fact that the inertial range is quite extensive (that is, there are many
steps in the cascade). One can take advantage of this feature and obtain the
exponents reliably (Chhabra & Sreenivasan 1991a).

On the whole, it thus appears clear that Kolmogorov’s original version needs
modification. The simplest way of incorporating the intermittency corrections is to
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Figure 2. The scaling exponent §, for the velocity structure functions. The symbols are for a
turbulent duct flow and a jet, from Anselmet et al. (1984). The continuous line is from Chhabra &
Sreenivasan (1991b) for the atmospheric turbulence.

Figure 3. The probability density p(M) of the multipliers M for the eddy breakdown ratio m = 2,
3 and 5 (in order from right to left). These were obtained as follows. A long record of turbulent
energy dissipation was obtained by measurement. The total energy flux was calculated by
integrating the dissipation over the entire record, and the integral was set to unity. The record was
split into two equal parts and the fractions M, and M, of the energy flux in the two pieces were
obtained. The same process was successively repeated by further subdivision of the two pieces. For
the nth step, we have 2" multipliers. The probability density of these multipliers was obtained by
considering many such data records. By assuming that there is a direct relation between the
breakdown process and this successive averaging procedure, we obtain an insight into the cascade
process. Different symbols correspond to different levels of the cascade in the inertial range. The
triangular distribution is a simplistic approximation to the binary case (m = 2). Data from
Chhabra & Sreenivasan (1991b).

state formally (Barenblatt 1979) that the self-similarity on the variable r/L is
incomplete, and assume (without serious justification) that the functions f, (r/#,r/L)
in (2.1) tend to K,(r/L)™» as r/L—>oc0 and r/9-—>0, where u, are undetermined
constants presumed to be ‘universal’ in the sense of being independent of the flow
and the scale. This immediately yields (2.3).

Figure 2 encourages the belief that, independent of the modifications required,
some sort of universality may prevail in the inertial range dynamics (because the {,
are independent of the flow). It is clear that turbulence dynamics in real space must
involve vortex-stretching and folding in three dimensions, and all useful modifi-
cations of Kolmogorov universality should abstract this feature adequately. Most
existing models invoke a cascade of some sort, and bear little resemblance to vortex
stretching. Also, universality is not a priori guaranteed because vortex stretching
even at small scales might involve the large scale, especially in shear flows. Yet
phenomenological models (Kolmogorov 1962; Obukhov 1962; Yaglom 1966;
Mandelbrot 1974; Frisch et al. 1978; Schertzer & Lovejoy 1984; Meneveau &
Sreenivasan 1987) based on universality and the concept of cascades may contain
certain important elements of the inertial-range physics. One representation of the
cascade models is given below.

Proc. R. Soc. Lond. A (1991)
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(b) Cascades and scaling exponents

At present, there is no means of verifying a cascade picture by directly measuring
the scale-to-scale energy transfer rate or flux in the inertial range but some evidence,
relevant to the real space, can be given if we assume that the scaling properties of the
energy flux at any desired scale r are the same as those of energy dissipation rate
averaged over r. This is not completely correct, but probably adequate for
considerations of the type discussed below. Assume further that at each cascade step
a parent eddy fragments into m subeddies among which the energy flux is divided
unevenly, and further that the process of fragmentation and uneven divisions
continues until viscous effects are encountered. There is in general no reason to
expect that any given step of the cascade will repeat the previous one in detail, but
if statistical similarity exists, it should be recognizable as an invariance in the
fragmentation process. We proceed as follows. A long record of energy dissipation is
obtained from measurement. The total energy flux over the duration of the record is
calculated by integrating the dissipation rate ¢ over the record length, and is set to
unity. The record is split into m equal parts and the fractions M,, M,,...,M,, of the
energy flux are obtained; for obvious reasons, we shall call the M;s the multipliers.
The number of subeddies (by which we mean m) could vary from one step to the next
but, for now, assume that m is independent of the step. We repeat the process of
subdivision and obtain the multipliers at each stage. For the nth step, we have m"
multipliers. The probability density of the multipliers can be obtained by considering
many such data records. The distributions given in figure 3 were obtained from
atmospheric data (Chhabra & Sreenivasan 1991b) by assuming, in turn, that m = 2,
3 and 5. Different symbols for each m represent different levels of the cascade in the
inertial range. The fact that for each m these distributions are nearly identical at
different levels suggests, within the framework of assumptions used, the existence of
a self-similar process in energy flux. The situation is similar for other flows in the
inertial range.

From any one of these distributions, it is possible to obtain the more familiar
scaling exponents, for example the {, and the multifractal scaling exponents
(Mandelbrot 1974 ; Hentschel & Procaccia 1983; Frisch & Parisi 1985; Halsey ef al.
1986 ; Mandelbrot 1989). Recall that if F,(r) is the amount of dissipation in a box of
size r centred around x, then one can decompose the spatial distribution of energy
dissipation into interwoven sets of singularity strength o (where E,(r) ~ #**) whose
fractal dimension is f(«) (defined according to the relation N(r) ~ r~/® where N(r) is
the number of boxes containing singularities of strength o). When averaged over a
large number of samples, it is more appropriate to define the averages <o) and {f(a))
of o« and f(«) respectively ; the averages are related to the exponents {7(¢g)) defined
by Z E,(q) ~ 7@ which are determined by the multiplier distribution (Mandelbrot
1989; Chhabra & Sreenivasan 1991c¢). In one dimension, we have

{7(9)) = log,, <M?>, (2.4)

alg)y = 7(q)>/9g, (2.5)

Sfla)y = qadq)y —<7(9)>- (2.6)

It is easy to show (Meneveau & Sreenivasan 1991) that the scaling exponents ¢, are
given by by = Toat 1. 2.7)

The exponents ¢, obtained via the multiplier distributions of figure 3 agree well with
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the measured data of Anselmet ef al. (1984), as shown already in figure 2 for m = 2.
In fact, p(M) for m = 2 can be approximated by a bilinear distribution shown in
figure 3. This simple approximation is adequate for most purposes; in particular, the
¢, so obtained agree well with measurement. Even simpler, and equally effective,
approximations to p(M) are possible but will not be discussed here.

From this point of view, one may understand the sample-to-sample fluctuations
in 7(q) or f and « (Meneveau & Sreenivasan 1991; Chhabra & Sreenivasan 19910)
as follows. Any single realization will not sample the entire probability space
characterized by the miltiplier distributions of figure 3, thus resulting in fluctuations.
Chhabra & Sreenivasan (19915) have shown empirically that the fluctuations in fand
o are correlated.

We remarked earlier than m could depend on the cascade step. The scaling
exponents {, are insensitive to this detail (Chhabra & Sreenivasan 19910b), precisely
because turbulence does not appear to prefer a special rule for scale-to-scale
fragmentation. The f(et) curve obtained by all the p(M)s of figure 3 agree, to within
reason, with each other.

(¢) Local isotropy

At least at the level of second-order statistics, the evidence (see Monin & Yaglom
1971) in favour of Kolmogorov’s hypothesis is considered so solid that it is often
forgotten that there is room for worry. Note that all measurements of figure 2 invoke
Taylor’s hypothesis, namely r = At-{U), where At is a time increment in a temporal
signal measured by a point probe and {U) is the local mean velocity in the direction
of the main stream, and that (2.3) has not been subject to rigorous tests of local
isotropy. Conclusions from second-order statistics, for which data are available, are
not comforting. For example, local isotropy implies that

E ) = Ew(Kx) = %[Eu(Kx)_Kx aEu(Kx)/aKx]ﬂ (28)

where the suffixes u, v and w refer, respectively, to the spectral densities of
fluctuations in directions z, y and z; see figure 1. «, is the component of the
wavenumber in the direction z. The most detailed test of (2.8) appears to have been
made by Champagne (1978), who states that the computed spectra K, («,) and (k)
are in fair agreement with experiment, though consistently higher in the dissipative
wavenumber region. This is not an overwhelming endorsement. The few existing
measurements of H,(«,) and E,(«,)—for example Laufer (1954) in the pipe flow,
Klebanoff (1955) and Mestayer (1982) in the boundary layer, Kistler & Vrebalovich
(1966) in grid turbulence —show hardly any § region, and almost all of them are
unsupportive of the result from local isotropy that the ratios 3£,(x,)/4£,(«,) and
3E,(x,)/4E (k,) should be unity in the inertial range (see figure 4). The Reynolds
numbers in most of these flows have been thought to be respectably high.

These lapses of local isotropy have been voiced before (Saffman 1968 ; Kraichnan
1974 ; Nelkin 1989). If they are real, they deserve serious attention; if they are due
to experimental artefacts, they deserve to be set right immediately. The prevailing
suspense simply stymies progress.

o(Kz

(d) Summary

While there is a rough collapse of spectra in the dissipative region (Monin &
Yaglom 1971) accurate measurements at high enough wavenumbers do not exist,
and so one cannot be definitive about universality even for second-order statistics.
In fact, it is not hard to argue that the non-universal effects of intermittency must

Proc. R. Soc. Lond. A (1991)
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Figure 4. Test for local isotropy in the inertial range. The abscissa is the spectral frequency divided
by the Kolmogorov value. The ordinate is the energy ratio described in the text which should be
unity in the inertial range. 4, pipe flow, R, = 450 (Laufer 1954); o, boundary layer, R, = 171
(Klebanoff 1955); 0, & grid turbulence, R, = 520 and 670 respectively (Kistler & Vrebalovich
1966); m, boundary layer, B, = 616 (Mestayer 1982). Since the Reynolds number in all but one of
these experiments are comparable, the inertial range is also comparable; as a rough guide, the 3
region in £,(«,) lies in the range 3 x 107® < f/f, < 0.1. Instead of being unity, the energy ratios show
no consistent behaviour. There are various concerns that one can express about some of these data,
but the point is that an important concept such as local isotropy deserves better validation.

influence the dissipation range; nor is it hard to model these effects in some fashion.
The elegance of Kolmogorov’s original ideas, which implied a single universal
exponent, is lost: instead, we are led to hypothesize an infinity of exponents for
which there are no compelling theories. On the bright side, there are reasons to think
that some degree of universality prevails in the inertial range dynamics. Even though
the connection between the physics of vortex stretching and folding on the one hand
and the mechanics of cascades on the other remains very vague, experiments permit
the belief that the notion of cascades may usefully abstract the scale-invariant
process presumed to occur in the inertial range.

Local isotropy appears a doubtful proposition, at least in the inertial range and for
most Reynolds numbers of practical interest. This state of affairs does not seem
unreasonable. In the cascade picture, the number of cascades, N, is related to the
large-scale Reynolds number Re as N = log,, (Re). Here Re = «L /v, « being a large-
scale velocity, for example, §(u®+v?+w?)i, and we have used the relation Ret = L /7.
For a binary cascade where m = 2, N would be typically of the order 5 for most
laboratory flows and of order 10-12 for geophysical turbulence. This is not a large
number. For solar convection, this number is on the order 30. (Assuming, somewhat
facetiously, that the whole universe is a fluid system containing hydrogen and
helium, and taking current estimates for the size and speed of expansion of the
universe, one can estimate N to be no more than a few hundreds!)

Since local isotropy is taken for granted in all extensions of the Kolmogorov-type
arguments, we wonder whether its absence undermines the notion of universal
dynamics as a fundamental concept. In the next section, we shall investigate its
empirical status for the scalar field.

Proc. R. Soc. Lond. A (1991)
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3. The advected scalar field
(@) Some a priori considerations

Consider a dye blob introduced into a shear flow. It will be stretched by not only
the turbulent motion but also the mean shear (or the large-eddy motion), which is
non-universal. The usual argument for dismissing the mean shear effect is that the
scalar is primarily influenced by the straining due to the small-scale, universal,
turbulent motion. A typical ratio of the rate-of-strain due to small-scale turbulent
motion to that due to the mean shear is of the form

(Ce>/v)i/(«/L) = Re. (3.1)

Here, «/L represents the large-eddy strain rate and ({e)/v)! = (v/g) is the
characteristic strain rate of small-scale turbulence. However, the argument ignores
the fact that the small-scale turbulence is not space-filling —in fact, the volume
occupied by e tends to zero as the Reynolds number goes to infinity (Sreenivasan &
Meneveau 1988) —and that it is poorly correlated with the small-scale field (Meneveau
et al. 1990). Thus, even though turbulent strain rates are on the average much higher
than the mean shear, it is the mean shear that is the effective straining agent over
most of the flow. That the correlation time of the strain due to small-scale turbulence
is small compared with that of the mean shear renders the latter even more effective.
(The effect of mean strain must be manifest also on the vorticity field, but the self-
interaction is likely to make the effect weaker.)

Another traditional reason for expecting universality of the scalar field is the
presumed behaviour of a non-diffusive scalar in an inviscid flow (because we are
considering very high Peclet numbers). The scalar field is governed by the equation

Oc/0t+u-Ve = DV, (3.2)

where c is the scalar, u is the local fluid velocity and & is the scalar diffusivity. Zero
diffusivity implies that the scalar associated with a fluid particle remains unchanged
during its advection. Kelvin’s theorem asserts that the circulation along a fluid
contour, or integrated vorticity within the contour, also remains constant. This
similarity might suggest that the fate of the scalar field is intimately tied to that of
the vorticity field with which it is initially associated, and that the two together
might share some of the same qualitative properties. However, the effect of small
amounts of scalar diffusion is profound even at very high Peclet numbers. This can
be seen vividly in terms of the amplitude probability density function of the scalar.
Consider a scalar field in homogeneous and isotropic turbulence, introduced at the
initial instant in the form of many strips of small width, within which the
concentration is uniform, say unity; the probability density of the scalar field will
then have two delta functions, one at zero and the other at unity. No matter how
complex the velocity field and how much stretching and twisting the scalar strips
undergo (along with their associated vortex tubes), the scalar concentration in the
absence of diffusion will always remain either zero or unity, and the probability
density will remain unchanged. On the other hand, the asymptotic probability
distribution of the scalar in such a case is nearly gaussian centred around the
average of half (Eswaran & Pope 1988), and this occurs ultimately by the action of
diffusion alone. This simply shows that the non-diffusive limit, like the inviscid limit
in turbulence, is singular.

Finally, note that the scalar equation (3.2) is linear. The stochasticity of the scalar

Proc. R. Soc. Lond. A (1991)
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field in the eulerian frame is a consequence either of initial conditions or of the
stochasticity of the velocity field u, which appears as the coefficient of the spatial
advection term. It is often believed that non-trivial universality in systems with
many degrees of freedom manifests itself because of nonlinearity ; from this point of
view, it is @ priori not clear that the small-scale scalar field should be universal. We
might therefore say that a necessary condition for the universality of the scalar field
is that the velocity field be universal, but it is clearly not sufficient.

(b) The status of the Corrsin—Obukhov theory in the inertial range

Let 6 be the temperature fluctuation. The Corrsin-Obukhov (Corrsin 1951;
Obukhov 1949) expression for the spectral density of # in the inertial range is of the
form (assuming unity Prandtl number)

By(k,) = > x) kit (3.3)

where (162> = [E,(k,) dk, and {y) is the average rate at which the scalar variance is
being smeared by diffusion effects; f# is believed to be a universal constant. The
theory assumes, in analogy to Kolmogorov’s second hypothesis for the velocity field,
that the large scales do not affect inertial-range scales except by setting the average
energy dissipation rate {¢) and the average scalar dissipation rate {y>. As usual,
diffusive effects are assumed to be irrelevant for these scales. The rest of the
argument is dimensional

Turning to experiment, figure 5 shows a temperature spectral density measured
behind a heated circular cylinder. Using Taylor’s hypothesis, it can be interpreted as
a wavenumber spectrum. The inset shows that there is a sizeable and unmistakable
power law with an exponent of about —3§, which is far less steep than the expected
—32. The scaling at the low-wave number end extends to scales substantially larger
than L whereas, at best, it should have extended to no more than a fraction of L.
True wavenumber spectra, obtained from one-dimensional spatial cuts of the
concentration field (Prasad & Sreenivasan 1990a), show that these conclusions are
not artifacts of Taylor’s hypothesis.

Figure 6 shows that the measured spectral exponent approaches —$ at high enough
Reynolds numbers. (No effort towards a comprehensive data collection was made,
but no conscious selection has been applied either!) Whether or not the exponent
approaches exactly 8 cannot be determined from this type of measurements.

The standard arguments of incomplete similarity proceed by writing on
dimensional grounds that

By(k,) = <e)™ x> k73 (k, L, &, 1) (3.4)

and that the function ¥ ~ 8, (k, L) as k, L 00 and ¢ ~ B,(k,7)° as (k, 1) - 0, where
B, B, v, and & are taken to be constants. (Although the ratios «,/«,, «,/k, could also
be important, the k,-spectra are integrations over «, and «, spaces, and we will
therefore not worry about them explicitly.) It follows that

By(k,) = pLe>Hx) k7 (K, L) (i, ), (3.5)
with g = f, B,. Alternatively,
Ey(k,) = p*<ed~ Ky kb, L)+, (3.6)

where f* = fRe %% is a Reynolds-number-dependent prefactor.
Proc. R. Soc. Lond. A (1991)
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Figure 5. A typical spectral density of temperature fluctuations in the wake of a heated circular
cylinder. The oncoming mean air speed was 1770 cm s7*, and the cylinder was 20 mm in diameter.
Measurements were made approximately 100 diameters downstream of the cylinder on the wake
centreline. At the measurement station, the root-mean-square temperature fluctuation was about
0.36 °C. The inset shows that the slope is close to 3 with about 1.5 decades of scaling.

Figure 6. The variation of the scaling exponent from different sources listed below. Flows
considered are the following. Uniform temperature gradient in uniformly sheared turbulence:
Tavoularis & Corrsin (1981), spectral slope = 1.28, R, = 200-250, scaling range = 109 —2L (ca. 1.5
decades); wake of a heated cylinder: present measurements, 1.30, 175, 10y —2L (ca. 1.5 decades);
wake of a heated cylinder: present measurements, 1.33, 330, 109 —L (ca. 1.5 decades); wake of a
heated cylinder: present measurements, 1.35, 350, 109 —2L (ca. 1.5 decades); heated boundary
layer: Mestayer (1982), 1.49, 616, 109 —2L (ca. 1.7 decades); atmospheric surface layer: present
measurements, 1.6, 1500, 10y — ?? (more than 2 decades); atmospheric surface layer: Pond et al.
(1966), 1.63, ~ 2000, 10y — ? ? (more than 2 decades) ; dye concentration in wakes (true wavenumber
spectra): Prasad & Sreenivasan (1990«), 1.37, 160, 29— > L (ca. 2 decades). It is probably no
accident that the scaling exponents in the few measurements of K (k,) fall on the mean curve
through the data given here.

That the spectral exponent is a slowly increasing function of the Reynolds number
suggests that the asymptotic state is approached slowly (that is, & is a Reynolds-
number-dependent constant). It can be shown, within a cascade picture, that this
feature decreases the time required for the scalar variance to be transferred from the
large scale to small scale; for the spectral exponent of —3, this time will be reduced
by a factor proportional to Re®?. An implication is that the small scales will have
even less time than usual to reach statistical equilibrium. Alternatively, compared
with the Corrsin—-Obukhov value (y = 8 =0), the scalar variance flux will then
accumulate at higher wavenumbers. For v—§ = §, the relative rate of accumulation
is proportional to 3. The characteristic time for a given scale is then not merely the
local eddy-turnover time as is implicit in the Kolmogorov theory, but something
larger. This is consistent with diffusion effects influencing ‘inertial’ timescales of the
transfer process.

Even if we restrict attention only to high Reynolds numbers, some non-
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Figure 7. The variation of the constant £* in (3.6) from different measurements, all of which were
made at high Reynolds numbers.

Figure 8. Reynolds number variation of |S] in many shear flows including atmospheric data. The
abscissa is the microscale Reynolds number, proportional to Ret. The left two-thirds or so of the
figure were obtained in low and moderate Reynolds number laboratory flows, whereas roughly the
right third were obtained in geophysical flows. Different symbols indicate different sources as
described in Sreenivasan et al. (1979), from where this figure is adapted. Both trends suggested by
broken lines are possible. We draw attention to the fact that the ordinate starts at 0.4, not zero.

universality may still manifest itself through the constant g* in (3.6). According to
figure 7, this is a highly variable quantity from one experiment to another even
though the Reynolds numbers are all high (when based on the microscale) are within
a factor 2. How much of this variability is merely due to inaccurate measurement of
{x> remains unclear.

(¢) The status of local isotropy

In analogy with the velocity gradients, the spatial derivative 06/0x is believed to
get its contributions primarily from the high wavenumber part of the spectrum; it
is @ priori not obvious that taking just one derivative of 6 ensures the accuracy of the
preceeding statement, but there is some empirical evidence (Mestayer 1982) that this
is so. If small scales are statistically isotropic, all odd-order moments of this
derivative, in particular {(06/0x)%), must vanish: By reflectional symmetry (a part
of the isotropy condition) we should have {{( 60/690 3% = —{(00/0x)%), so that the
derivative skewness S( = {(00/0x)%>/{(06/0x)2)%) must be zero. Measurements, on the
other hand, show that |S| is of the order unity (ﬁgure 8) even at geophysical Reynolds
numbers. These measurements invoke Taylor’s frozen flow hypothesis, but it is
believed that this will not affect our conclusion seriously. Also, questions raised by
Wyngaard (1971) about the velocity sensitivity of the temperature probe have been
adequately addressed by Mestayer et al. (1976) and Gibson et al. (1977). The issue of
probe resolution has been examined by Sreenivasan ef al. (1977) and Mestayer (1982).
It is unfortunate that the measurements possess much scatter, and that figure 8 can
be interpreted either as having an asymptotic value of about 0.8 independent of
Reynolds number, or as showing a weak trend towards zero at some very high
Reynolds number. In the former case, local isotropy is violated outright; in the latter
case, all reasonable extrapolations of the data suggest that |S| does not attain the
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expected zero value at any Reynolds number relevant to Earth; only turbulence
manifest in heavenly bodies such as the Sun and other stars may possess such high
Reynolds numbers! Our intention is not to convey that this conclusion is unshakable,
but that it is forced by the existing measurements. Clearly, a result of this
importance deserves to be based on more satisfactory data obtained in better-
controlled circumstances.

One other point is highly relevant. The derivative skewness is non-zero in
homogeneous as well inhomogeneous shear flows. To learn more about the
dependence of S on the shear, measurements were made in several slightly heated
homogeneous turbulent flows (Sreenivasan & Tavoularis 1980). Several different
values of the mean shear, mean temperature gradients, and the relative signs of the
two gradients were used in combination. It was found that S vanished only when the
mean shear and the mean temperature gradient were both zero or close to it. In all
other cases, it was found that: \

(a) sgnS = —sgn (d<U) /dy)sgn (d<T")/dy), where {U) and {T) are the mean
velocity and mean temperature respectively (see also Mestayer et al. 1976 ; Gibson
et al. 1977; Mestayer 1982);

(b) 8| varies roughly linearly with the magnitude of (L/6')-d<{T/dy for small
magnitudes, but becomes independent of it beyond some range;

(¢) |S| depends on the history of the mean shear d{U)/dy.

We conclude that the quantity S, believed to be a small-scale property of the
scalar, is directly linked to the mean shear (or the large-structure). While the
Reynolds numbers in these flows were only moderately high, data at higher Reynolds
numbers obtained by Mestayer et al. (1976), Gibson et al. (1977), Mestayer (1982),
including some in the atmosphere, are completely consistent with (a) above.

Local isotropy also demands the skewness of the derivatives 06/0y and 06/0z to
vanish. Measurements (see, for example, Sreenivasan et al. 1977) confirm that 06/0y
has the same magnitude of skewness as 00/0x (but has the opposite sign), but the
two-dimensionality of the mean flow (i.e. homogeneity in the direction z) renders the
skewness of 00/0z zero.

Yet another requirement of local isotropy is that the different components of the
scalar dissipation y = 9|grad 6|* must be equal. Measurements in the boundary layer
(Sreenivasan et al. 1977) have shown that the ratios of (060/0x)%/(00/0y)? and
(06/0x)?/(060/02)* are typically 0.7 and 0.5 respectively. Very nearly the same values
were obtained for the concentration field of a dye in a jet (Prasad & Sreenivasan
19900). Lest it .be thought that this is a low Reynolds number effect, we should
mention that our unpublished temperature measurements in the atmosphere confirm
this fact.

Finally, local isotropy is not compelling in the inertial range either. Local isotropy
implies certain relations between the «,-spectra of 90/0x on the one hand and those
of 90/0y and 00/0z on the other (Van Atta 1977). As shown by Van Atta, the
measured spectral density (Sreenivasan et al. 1977) of 06/0y compares poorly with
that calculated on the basis of local isotropy and the measured spectral density of
00/0x. (A similar comparison for 06/0z is good, this being no surprise because of the'
strong large-scale z-symmetry in two-dimensional flows.)

Taking the available measurements on their face value, we should ask: Why this
lack of local isotropy ? It is easy to see that the scalar field in the presence of mean
shear is not isotropic in detail. From a planar cut through the dye concentration field
in a turbulent jet, one can obtain the dissipative structure Z|gradc|>. The many
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Figure 10. (@) Some typical time traces of the temperature fluctuations in the atmosphere,
measured by Phong-Anant ef al. (1990) simultaneously by using four temperature probes at heights
of (i) 1, (ii) 2, (iii) 4 and (iv) 8 m above the ground. (The probe at 4 m is 1 m upwind of the others.)
Using Taylor’s hypothesis, the time traces are equivalent to taking spatial cuts by a fast-moving
probe. Arrows indicate two examples of sharp structures extending over several metres of the
atmospheric surface layer. Note the characteristic ramp-like features, say between the left vertical
line and the second arrow. Their typical lengths in this figure are of the order of 50 m. (b) The angle
of inclination of the temperature ramps estimated directly from the height difference between any
two probes, the wind velocity at an average height between them, and the relative time difference
of arrival of the fronts at those heights. The angle is plotted against the geometric mean of the two
heights in question. Estimates based on a different statistical method yield nearly the same results.
More extensive temperature measurements made in a moderate-Reynolds-number, slightly heated,
laboratory boundary layer (Chen & Blackwelder 1978) are also consistent with the present picture.

elongated structures in figure 9, plate 1, represent sheet-like objects in three
dimensions; limited three-dimensional measurements (Prasad & Sreenivasan 19905)
verify this premise. Although the precise shape of these sheet-like structures depends
moderately on the definition used to identify them, some of their statistical
properties can be quantified reliably (Prasad & Sreenivasan 1988, 1990b); in any
case, it is clear that their size in one direction is quite commonly on the order of the
large scale L though small in the perpendicular direction. Their sizes in the third
direction are in-between. (It is thus more sensible to designate them as thin
structures rather than small scales but, for convenience, we shall occasionally use the
standard terminology.) The dye structure in the far-field of a turbulent wake
(cylinder Reynolds number of 1500) shares the same features.

The presence of stretched structures does not in itself negate statistical isotropy
but the point is that, away from the jet axis, the elongated structures have a
preferential orientation. These structures have finite lifetimes but new ones, similarly
oriented, are born continuously. From a number of observations, it appears that their
predominant orientation is about 45° to the mean flow. It is probably no accident
that 45° is the principal axis for a two-dimensional mean strain field. It is also
known that the smoke injected into the outer part of a turbulent boundary layer
arranged itself into structures aligned in the 45° direction (Head & Bandyopadhyay
1981). Finally, this view seems consistent with the structures near the jet axis being
nearly horizontal in figure 9 because of the global symmetry (see figure 1).

The rough notion could thus be put forth that statistical isotropy is not ‘natural’
or ‘obvious’ for the small-scale scalar field in a shear flow. We are aware that the flow
Reynolds number in these examples is not very high, and so turn to the temperature
field in atmospheric turbulence whose large-scale Reynolds number is three to four
orders of magnitude higher. Unfortunately, we do not have the same detailed picture
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for the atmosphere, but there do exist (Phong-Anant et al. 1990) temperature traces
obtained at several heights by means of point probes; see also Antonia et al. (1979).
The traces show the prevalence of characteristic ‘ramp-like’ large structure
extending in a coherent fashion for many metres (figure 10a), with their fronts
oriented at approximately 45° to the mean flow (figure 10b). (Very near the ground,
the angle is smaller perhaps because of the direct effect of the ground.) By observing
the similarity between the ramp-like occurrences in the concentration field with the
stretched structures of figure 9, we tentatively conclude that the two have the same
source. These ‘fronts’ would then correspond to the thin structures mentioned
earlier, and are intimately related to large-scale features (in a manner reminiscent of
the long-time solution to Burgers equation).

Mention may also be made of the demonstration of Sreenivasan ef al. (1979) that
most of the contribution to the non-zero value of S comes from ramp-like structures.

(d) Higher-order statistics

Similar to the scaling of velocity structure-functions, one may conceive of scaling
exponents for the temperature structure functions. Such measurements (Antonia
et al. 1984), including some of our own, are not as definitive as the velocity structure
functions. At present, we cannot conclude much about universality.

4. Discussion and conclusions

The following summary remarks may be useful.

1. The asymptotic state of the scalar field is reached very slowly in Reynolds
numbers. For most Reynolds numbers, diffusive effects seem important even in the
‘inertial range’. There is hardly any credible evidence that this asymptotic state is
unique.

2. If local isotropy seemed somewhat dubious for the velocity field, it seems even
more so for the scalar field. Existing measurements suggest that local isotropy is not
attained in the dissipation range, except perhaps at such extremely large Reynolds
numbers as to be of no consequence in practice. While the evidence in the ‘inertial
range’ is less unequivocal, the situation is qualitatively the same.

3. The small-scale scalar field has a tendency to form well-defined ‘structure’ in
the real space, and it is an integral part of the large structure (as in temperature
ramps). Structures of disparate scales directly interact with each other without
several intermediate steps.

4. The predominant mechanism responsible for the elongated structures appears
to be the mean or large-eddy strain-rate over a large part of the volume occupied by
the scalar, probably precluding universality. The average description of the eddy
breakdown — if the stretching and folding effect can be called that —is quite unlike
the cascade picture usually visualized in Kolmogorov-type scenarios.

Given these, should we presume that the arguments rooted in Kolmogorov are
basically sound and spend our efforts at ‘modifying’ them (as was exemplified in
§3b)? Or, should we discard the familiar ground altogether and look for alternatives
more faithful to the observed structure? How can we model the interaction of
structures at different scales ? How do we explain the respectable scaling observed at
moderate Reynolds numbers ? Why exactly is the spectral exponent close to £ at high
Reynolds numbers ? What are the minimum conditions under which the £ law can be
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observed ? What is the correspondence between the structure in the physical space
and the scale in the wavenumber space ? An effort at fully understanding these issues
will be clearly well spent.

Kraichnan (1974) considered the possibility that the so-called inertial range is
merely the upper end of the spectra of coherent thin structures, but himself argued
against it for the velocity field. We speculate that Kraichnan’s arguments may be less
valid for the scalar field. If this is so, the Kolmogorov framework will be incidental
to the observed scaling.

A different view is that the localness of wavenumber interaction is not inconsistent
with the fact that the thin structure is strongly coupled to the large structure in
physical space, and that the Kolmogorov framework is a sound approximation. A
case in point is the solution to Burgers equation which is of the sawtooth type, not
very different from the ramp structures of figure 10a. For such structures, Kraichnan
(1974) has shown that the non-local transfer of energy from small wavenumbers to
large wavenumbers is small at any given instant of time; however, when integrated
over long times, the non-local interaction could add up to be large. Kolmogorov-type
arguments merely demand that the non-local transfer be small at any given instant
of time. It is therefore conceivable that the highly stretched objects, which are the
result of an integrated effect, do not negate local energy transfer in wavenumber
space. On the other hand, Kraichnan has also reminded us that this localness of
interaction is merely a reflection of the spectral roll-off rate, and may not have much
physical content to it. We tentatively conclude that the observed spectral scaling
should not necessarily force us into blindly accepting the physical content of
Kolmogorov-type cascades for the scalar field.

An interesting argument in this connection (Chorin 1990) is that the —2 law is
no more than a reflection of global conservation properties obeyed by a three-
dimensional stochastic field. Chorin advances this possibility on the basis of his
simulations of vortex filaments executing random walks according to a set of
stochastic rules. As pointed out by Chorin himself, there are many unresolved issues
about the relevance of these calculations to Navier-Stokes turbulence but, in itself,
it is interesting that some statistical mechanical system close to equilibrium should
have the scaling exponent of 3. Chorin’s claim has certain attractiveness to it and
deserves further study.

We now come to the final point. Whatever alternatives one proposes, it seems to
us that they should remain as true as possible to events in physical space, and
incorporate the observed structure. How exactly this should be done remains
unclear, but the heart of the matter is the relation between the structure in real space
and the scale in the wavenumber space. Fourier decomposition is not a versatile
enough vehicle for the purpose, but the alternatives do not seem too compelling at
present; this is so in spite of the recent application to turbulence of orthonormal basis
functions such as wavelets (Argoul et al. 1989 ; Everson et al. 1990; Farge et al. 1990)
and wavelet-packets (Zubair et al. 1991) where the notions of scale and structure are
separately handled. ‘

Most alternative suggestions are likely to be anticlimactic, but consider the
following tentative model which treats the structure and scale separately. The model
attempts to determine an average real-space transformation according to which a
structure at one scale breaks down to substructures at a smaller scale. We use a
wavelet decomposition and assume that, by this means, the structures at various
scales can be identified. This analysis (Everson et al. 1990) shows that the large

Proc. R. Soc. Lond. A (1991)


http://rspa.royalsocietypublishing.org/

"Al

PROCEEDINGS THE ROYA

SOCIETY

OF

'ROCEEDINGS THE ROYAL

SOCIETY

OF

Downloaded from rspa.royalsocietypublishing.org on 20 February 2009

180 K. R. Sreenivasan

structures are blob-like whereas the smaller ones look more and more string-like (in
two-dimensional sections); at the finest scale resolved, the structures resemble those
in figure 9, as expected. One can now conceive of a simple affine mapping to model
the transformation of structures from one scale to another.

The transformation is obtained as follows. Let us identify the structures by a
simple scheme (involving contour identification) and count their number for each
wavelet scale. For the jet, the data show that this number increases by a factor of
2.6 whenever the scale decreases by factor 2. The number 2.6 is quite robust in the
scale range between 2L and a few #, and indicates that the division of a large
structure into smaller ones does not occur on the average in a binary fashion (which,
in two dimensions, would have increased the number of structures fourfold for a scale
reduction by 2). It also turns out, to an excellent approximation, that the aspect
ratio (that is, the length/thickness ratio) of the structures in the same scale range
increases by a factor of about 2 for each reduction in scale size by a factor 2.

Now for some speculation : if the fact that 2.6 is almost exactly equal to the square
of the golden mean is more than a happenstance in this case, we can make the
following model. At each stage of scale refinement by a factor 2, the generation of
new scales follows a golden mean rule; that is, the number of substructures in one
dimension increases according to the Fibonacci sequence 1,2, 3,5, 8, 13, .... Asis well
known, the ratio of succeeding numbers in this sequence converges to the golden
mean. This implies that, on the average one structure breaks down into two
substructures while, at the next stage, one of the substructures remains unchanged
whereas the other breaks down into two, and so on.

It remains for us to determine the rule according to which the scalar variance
associated with a structure gets split among its offsprings. At any scale, if the
structure that breaks down splits the scalar variance in the ratio 0.87/0.13, all the
measured scaling exponents such as those described in §26 can be duplicated quite
accurately. This is an invariant ratio in the scale range already mentioned.

The chief merit of this effort is probably that it explicitly recognizes the structures
at various scales; new and more far-reaching ideas along these lines are much needed.

I have benefited greatly from discussions over a period of time with Ira Bernstein, Michael Fisher,
Robert Kraichnan, Benoit Mandelbrot, Mark Nelkin, Philippe Similon and Larry Sirovich. The
typescript was carefully read by David Kyle, Juan de la Mora, Charles Meneveau, Mark Nelkin,
Philippe Similon and Anil Suri. Figures 3, 5 and 9 were obtained in collaboration with Ashvin
Chhabra, Rahul Prasad and Purushothaman Kailasnath. To them all, I am grateful. The work was
financially supported by AFOSR and DARPA.
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Note added in proof (3 May 1991). In some recent work (J. Brasseur, AIAA4 Paper
91-0230), the author has argued on the basis of his computations that there is a
strong interaction between the large and small scales of the velocity field, and that
the anisotropy of small scales is unlikely to vanish even in the infinite Reynolds
number limit if the energy-containing scales are anisotropic.
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igure 9. A two-dimensional image of an axisymmetric water jet was obtained by the laser induced fluorescence (LIF) technique. A Nd:YAG laser beam

haped into a sheet of 200-250 pm thickness using suitable lenses was directed into a water tank into which the jet fluid was emerging from a

vell-contoured nozzle and standard upstream flow management; the jet fluid contained small amounts of uniformly dispersed fluorescing dye (sodium
%lunr&scein). The fluorescence excited by the laser radiation was captured on a digital camera (a charge-coupled-device, with a pixel array size of
= 300x1035). The pixel intensity in the digital image was linearly related to the concentration of the dye. The laser had a power density of about 2X 107 8
SErer pulse, and a pulse duration of 10 ns. The flow is thus frozen to an excellent approximation. The region in the image extends from 8 to 24 nozzle
“.Cliameters. The nozzle Reynolds number was about 4000. The laser sheet thickness was between one and two <>, where <n> is the Kolmogorov thickness
E%veraged over the image. From the Lir map of the concentration field, ¢, one can calculate an approximation to the ‘dissipation’ rate, & |grad c|?, of the
ariance of concentration fluctuations (resolved only up to scales of the order of <#>). This is shown in the figure. The gradient of the concentration was
pproximated by finite differences; only two components of |grad c*| were calculated. Inclusion of the third component (Prasad & Sreenivasan 199056) does
siot alter the picture. Different colours represent, in some nonlinear scaling, different magnitudes of the ‘dissipation’ rate; magnitudes increase from deep

lue through red and, finally, white.

2]
O
.
b
b
O
®
=


http://rspa.royalsocietypublishing.org/

