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The wavelet transform is applied to two-dimensional dye concentration data in turbulent jets at moderate Reynolds numbers.
This reveals the nature and limitations of scale similarity of the inner structure of the scalar, and the stringiness associated with
small scales. For comparison, two-dimensional Brownian motion 1s also treated.

The wavelet transform [1-3] has recently been
applied to turbulence data [4,5]. It was suggested
that the bifurcating patterns which resulted gave vis-
ual evidence that the Richardson cascade [6] was
present. However, it was shown in another investi-
gation [7] that a process as non-deterministic as
Brownian motion produces a visually similar bifur-
cating pattern to that of atmospheric and other tur-
bulence data [8.9]. Therefore, while the assertion
about the cascade may be true, further analysis is
clearly indicated. In the present investigation we ap-
ply the wavelet transform to the study of two-di-
mensional axial and meridional sections of a tur-
bulent round jet flow [10]. (This is in contrast to
the above cited works, most of which are restricted
to one-dimensional records. Exceptions are the work
of Argoul etal. [12] and Ameodo et al. [13] in which
the wavelet transform is applied to two-dimensional
aggregates and the recent treatment of two-dimen-
sional turbulence by Farge and Rabreau [14]. We
have also applied wavelet transforms to the three-di-
mensional jet data of ref. [11], but this will not be
presented here.) As we will show, the wavelet trans-
form, which is primarily a visual tool, 1s well suited
to revealing the similarity and inner structure of a
flow. It also leads to physical insights which only have

been hinted at in previous discussions of the tur-
bulent jet.

The wavelet transform of a function u(x) 1s de-
fined as

o0

| i}
Uia.x)= 7 | g(%—’)u(y)dy, (1)

where N=dim[x] is the dimension of the space. g(x)
is localized at the origin and satisfies

[ g(e) dx=o0. (2)

Most previous applications of the transform were to
time records and questions of causality led to com-
plex g(x) [15]. In the present instance we consider
genuine spatial records and such fine points can be
disregarded. Also, while different wavelet functions
have been proposed they appear to produce no truly
significant variations in the results [4]. In the fol-
lowing we take

g(x)=V’exp(—x?/2)
=(x*—1) exp(—x2%/2), (3)

which is known as the Mexican hat.
In fig. 1a we display a two-dimensional laser in-
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Fig. 1. (a) A laser-induced-fluorescence image of a two-dimensional section of a turbulent jet at a nozzle Reynolds number of about
4000. Different colors indicate different levels of concentration, with deep red indicating the largest level and the deep blue indicating
the background or zero concentration. The color strip alongside the plate indicates the color code used in the picture. (b) shows the
conformally mapped jet as discussed in the text. The streamwise inhomogeneity in concentration has been adjusted by the normalization
discussed. This is the image on which the wavelet analysis has been presented.

duced fluorescence image of a longitudinal slice of
an axisymmetric water jet [9]. The nozzle Reynolds
number was 4000, the Schmidt number of the dye
particle [16] is of order 1000 (which can therefore
be regarded as non-diffusing) and the image covers
approximately 8 to 24 nozzle diameters down-
stream. The image was captured digitally on ap-
proximately 1000x 1000 pixel files, each pixel hav-
ing a range of 2'> gray levels. The average
Kolmogorov scale in the image is approximately 2
pixels. Direct application of the wavelet transform to
the image shown in fig. 1a does not reveal the true
inner structure of the flow because of the spread of
the jet and the consequent streamwise inhomogene-
ity. This can be corrected to show the structure in a
more revealing fashion. The underlying physics of

the turbulent jet provides us with a framework for
dealing with this issue, and this is now briefly
reviewed.

A schematic of the jet is indicated in fig. 2. Well
away from the nozzle we conclude, on dimensional
grounds, that the diameter of the jet scales as

yocX . (4)

The same O(x) growth is also true for the Kolmo-
gorov scale. From conservation of momentum trans-
port in the downstream direction the axial velocity
scales as [17]

Uc (5)

I
X
As a result, the Reynolds number remains constant.
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Fig. 2. A schematic of the jet. The linear growth rate of the far
ficld extrapolates to zero at a visual origin x, which in this case
is about 3} nozzle diameters upstream of the nozzle. The nozzle
contour and upstream flow management is standard. See ref. [11]
for details. The basis of conformal mapping, eq. (7), is that the
area element dx,dy, centered at x, grows lincarly to the area ele-
ment dx,dy; centered at x,. The interface convolutions are only
schematic emphasizing downstream growth of scales, and should
not be interpreted literally.

Since the flux of dye concentration is constant, we
conclude from the scaling of (4) that the average
center line concentration is

1
coc e (6)
That the concentration is not constant (in spite of
the high Schmidt number) is a result of the entrain-
ment of unmarked fluid and its relatively rapid
digestion by the dyed fluid.

These remarks indicate that there is a similarity,
in the statistical sense, in the flow as indicated in fig.
2. Thus the two boxes indicated in the figure scale
with distance according to (dx;, dy,):x,=(dx.,
dy,):x,. These as well as the previous remarks in-
dicate the image in fig. 1a will be rendered homo-
geneous in the longitudinal direction (statistically)
if we introduce the conformal map

Z=In(x+1y). (7)
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This, as 1s well known, transforms a wedge to a slot
[18]. Equivalently, we transform

(X, ¥)=(r,0)=(e*0), (8)

where 6 is the polar angle and r the radius. Viewed
in this frame, the flow is statistically homogeneous
in the s=Inr direction and we, henceforth, use the
(s, #) coordinate system. In addition the contrast of
the image in fig. la should be enhanced linearly as
indicated by the falloff in concentration, (6), in or-
der to achieve homogeneity in contrast. The result of
these operations on fig. la is shown in fig. 1b. The
virtual origin of fig. la lies roughly 3.5 nozzle di-
ameters upstream of the nozzle. It is clear that in the
(s, ) coordinates this exhibits far more homoge-
neity in the downstream-direction than does fig. la.
Fluctuations from the mean behavior exist and
therefore the correction for the inhomogeneity is not
complete. Comparison of the two plates also indi-
cates the conformal nature of the map, (4). Local
shapes remain invariant under the map; for exam-
ple, circle-like structures go into circle-like struc-
tures. The conformally transformed picture also
brings out the presence of five or six large scale struc-
tures, which 1s the number of structures predicted by
similarity. This is not apparent from fig. 1a, itself

One further preliminary discussion will be useful
before applying the wavelet analysis to the image in
fig. 1b. In fig. 3 we show two-dimensional noise gen-
erated by the Brownian process. Brownian motion in
the plane is a random field U(x), xeR?, whose in-
crements, U(x,)—U(x,), are normally distributed
with mean zero and variance given by

CUx) =U(x2) %) o |2 =, (9)

Details for the procedure for generating this Brown-
1an process are given by Mandelbrot and van Ness
[19]. The left column of fig. 4 contains the wavelet
transforms of the image shown in fig. 3 under suc-
cessively smaller scalings, a, indicated in the cap-
tion. (Unlike one-dimensional records, where a
complete wavelet transform can be rendered as a sin-
gle image, we now need a series of images, one for
each scaling, a, to represent the transform.) These
images now serve as characteristic images for the
wavelet transform of a non-deterministic phenom-
enon, and can be compared with the wavelet trans-
form of turbulent flows such as the jet in fig. 1. In
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Fig. 3. Brownian motion in the plane generated according to the scheme suggested in ref. [19]. The spatial spectrum falls off like A —2.

addition, it is clear from (9) that Brownian noise
should be self-similar or universal under magnifi-
cation. (For a discussion of self-similarity in one di-
mension sce ref. [20].) In fact [19]. as a conse-
quence of (9), we should expect that

U(x) and Cle(ax) (10)

are statistically indistinguishable.

To explore this idea we show in the right-hand col-
umn of fig. 4 the wavelet transforms corresponding
to smaller scales, but enlarged to correspond to those
on the left. We see that the wavelet transform does
bring out the universality. It is the textural identi-
fication of these patterns that allows us to conclude
that the patterns have the form of (10); i.e. it has
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Fig. 4. Wavelet transforms, at scale a of Brownian motion shown in fig. 3. Left-hand column going from top to bottom: a=0.1; a=0.05:
a=0.01. Right-hand column, from top to bottom: a=0.05, magnified twice; a=0.02. magnified two and a half times; a=0.005, magni-
fied twice. The linear dimension of each of the pictures in the left column corresponds to a= 1.

statistically universal form. Moreover, the eye is able a process that corresponds to forming the
to detect this universality, (According to a hypoth- autocorrelation. )
esis of Julesz [21] the eye classifies texture through In fig. 5 we show the wavelet transforms of the im-
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Fig. 5. Wavelet transforms of the conformally mapped jet shown in fig. 1b. Scale sizes across top row are: a=0.05, a=0.02, a=0.01;
across lower row a=0.005, a=0.002, a=0.001. The longer dimension of the picture corresponds to a= 1.

age in fig. 1b at the indicated scalings, a. The trans-
formed concentration at small scale size decays and
therefore each rendition in the sequence of fig. 5 has
been normalized so that the highest transformed
concentration is displayed as a deep red and the low-

est as a deep blue. Green in each signifies the zero
point. (A sigmoidal function based on the incom-
plete beta function is then used to color-code the rest
of the picture. See ref. [7] for more details.)
Perhaps the first observation worth making is that
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Fig. 6. Upper row contains wavelet transforms of the jet (repeated from fig. 5), going from left to right: a=0.05, a=0.02, a=0.01,
a=0.005. Second row, going from left to right: a=0.002, magnified twenty-five times: a=0.002, magnified ten times; a=0.002, magni-
fied five times; a=0.002, magnified two and a half times. The location of the magnified region is indicated by arrows, which point to the

same features in each picture.

there is no resemblance to the Brownian motion im-
ages seen in fig. 3. This is in contrast to the similar
comparison in the one-dimensional case where a
strong resemblance existed between the two [7]. In

320

fact, we see that there is a great deal of structure at
all scalings. Looking from the largest to the smallest
scales we see two types of structures present. These
we term beads and strings. Going from a=0.05 to
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Fig. 6. (Continued).

a=0.001 we see a clear transition from predomi-
nantly beads to what appears to be predominantly
strings. Two other features are well brought out by
the wavelet transform. First, it is clear that the scalar
structure is strongly anisotropic. This is perhaps best
illustrated by the a=0.001 wavelet transform, which

displays the smallest scales of the problem. The same
picture also illustrates the transition from the edge
region, where the strings are aligned at roughly 45°
from the axis, to the central region where they are
roughly perpendicular to the center line. We note that
45° is the direction of the principal rate of strain of
the flow.
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The beads are of the extent of the wavelet, viz. a.
They mark regions of overall concentrations of dye,
red, to regions of undyed fluid, blue. The strings are
really sheet-like structures as a little thought indi-
cates. Also a wavelet transform of a section merid-
ional to the axis supports this assertion. Such sheet-
like structures have already been indicated as spa-
tially high frequency or dissipative structures in the
velocity field [22,23]. It is of some importance 10
observe that sheet-like structures are all very pro-
nounced at a=0.001, when the scale size is in the
neightborhood of the Kolmogorov scale. This fact
may be of basic importance to our understanding of
mixing. Application of wavelets to the three-dimen-
sional data [11] shows that the sheets possess strong
three-dimensional convolutions.

Although the wavelet analysis appears to show the
transition from beads to strings, it is necessary to di-
rectly investigate the self-similarity of the flow by
proceeding, as we did for two-dimensional Brownian
motion, through a series of magnifications. This is
indicated in fig. 6. The arrows in the bottom four
pictures correspond to that in the rightmost picture
in the top row. The bottom row contains the mag-
nified versions of the transformed pictures shown in
fig. 5. Thus we see that the string-like structures per-
sist under magnification, thus emphasizing the es-
sential lack of self-similarity of the pictures. This is
especially true when we focus on the off-axis regions
of the jet.

A complete discussion of self-similarity of the in-
ner structure of the jet is hampered by two factors:
the moderate jet Reynolds number and the inherent
inhomogeneity of the flow. Although we have at-
tempted to correct for this latter aspect in the
streamwise direction, it is clearly not complete; no
corrections were applied to inhomogeneities in the
radial direction.

We thank Rahul Prasad who obtained the jet im-
ages and Lareef Zubair for his help in handling the
data, and acknowledge many useful discussions with
Bruce Knight. Computing work was done at the
Pittsburgh Supercomputing Center supported by the
National Science Foundation. The research reported
here was supported by DARPA/URI under grant
number N00014-86-K0754.
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