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Abstract.  This is a selected summary of our recent work on the “dynamical systems
approach” to the understanding of transition and turbulence in the so-called open
flows, and covers three topics: universality in transition to chaos in wakes, the de-
scription and dynamics of intermittent fields in fully turbulent flows, and the nature of
vorticity and scalar interfaces in turbulent free shear flows. I propose to show that
novel techniques from low-dimensional chaos and fractal geometry yield new and
useful information on quantities of central interest in turbulence, but the way ahead is
long and uncharted.

1. Introduction and the scope of the paper

The so-called “turbulence problem” is not a monolithic entity. Its three
essential elements are the origin of turbulence, the dynamics of fully
developed turbulence, and the control of turbulence—by which is meant
“making turbulent flows behave the way one wants.” The origin of tur-
bulence may have some relation to the onset of complexity in nonlinear
systems in general, and hence the currency for notions such as “univer-
sality.” On the other hand, a universal solution to the turbulence control
problem is unlikely to exist, because it is specific to a given set of flow and
geometric constraints. Fully developed turbulence has a mix of the “uni-
versal” (now in the slightly different sense of being common to a class of
turbulent flows) and the particular, both of which are essential to pre-
dictive undertaking: The scaling properties of the turbulent energy dissi-
pation and small scale mixing are examples of the former class while the
variation with Reynolds number of the drag on a circular cylinder be-
longs to the latter. The different elements of the turbulence problem are
all important in their own right, and the tools of trade are appropriately
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different. The corollary is that the mastery over no single set of tools will
be adequate to address the problem in its full glory.

Just as the turbulence problem is a diffuse one, so is the “dynamical
systems approach”: As Holmes' points out, it is a loose but rich mixture
of many tools including mathematical theorems, numerical work, exper-
imental studies, and model building. As a result of recent developments
in dynamical systems, one is now in a position to say essentially every-
thing of interest (at least in a certain parameter range) about the dy-
namics of some paradigmatic nonlinear systems possessing global
universality—the period-doubling system being the best known example.
The situation is less satisfactory when such global universality is absent.
The procedure then is to use the center manifold reduction and classify
all possible phase portraits by unfolding the appropriate parameters.” In
particular, one attempts to study all stable attracting sets. Except when
the number of parameters needing unfolding is small (one or two), the
possibilities are so huge that one is unlikely to succeed in any generality.
One often strings together, by taking recourse to hindsight and symme-
try, a number of local bifurcations “explaining” a particular sequence. In
rare circumstances, one has been able to generate dynamical equations by
this knowledge.

This paper is devoted to aspects of the dynamical systems approach to
the turbulence problem. The first qualification is that it concentrates
completely on the so-called “open flow systems,” by which I mean a large
system (e.g., large aspect ratio) with a directionality due, for example, to
the superimposed mean velocity. The decision to omit mention of some
excellent work in “closed flow systems” simply reflects my belief that
there are many articles written on the topic, and that there is a general
feeling that such flows, at least when “small” and restricted to some
parameter ranges, are amenable to the dynamical systems approach. The
situation, it appears to have been perceived, is either less clear or essen-
tially hopeless for open flows. One purpose of this paper is to address this
issue; the other is to discuss fully turbulent flows.

There are some reasons (Ref. 3; see also Ref. 4) to believe that open
flows behave differently from closed flows. In all closed flows—of which
convection in small aspect ratio boxes and a narrow gap Taylor-Couette
apparatus are familiar examples—the boundary is fixed so that only cer-
tain classes of eigenfunctions can be selected; this does not hold for open
systems. For closed flows, each value of the control parameter (say, the
rotation speed of the inner cylinder in the Taylor—-Couette apparatus)
characterizes a given state of the system globally. Consider, as an exam-
ple of open flows, a fluid jet emerging from a circular nozzle. For a given
Reynolds number, the flow is laminar and steady at the exit of the nozzle,
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periodic somewhat downstream, and undergoes transition to strong tur-
bulence even further down. Unless these different states are in some sense
independent, it is difficult to see how notions from low-dimensional dy-
namics can be relevant to this flow. Further, the nature and influence of
external disturbances (or “noise”) are delicate and harder to ascertain.
In some cases (such as pipe flows), sustained (as opposed to transient)
noise is essential for the continued loss of stability of the basic system.
This only means that things are more complex, and the question of what
circumstances permit low-dimensional description becomes extremely
important.

This paper (which is a modified account of Ref. 5) is by choice a
summary of recent results covering a range of topics under the broad
heading—nothing will, however, be said here on the control of transi-
tional and turbulent flows—and not a detailed account of any single
problem. Parts of this work have yet to be taken to their logical conclu-
sion, but selective questions can already be asked and partially answered.

In the context of transition to chaos, much effort has been spent on
showing that transition to the chaotic state is universal in character.
(This statement needs more precision, and we shall return to it later.)
Predictions concerning universality (see Ref. 6 for the period-doubling
route, and Ref. 7 for the quasiperiodic route) have been tested in detail,
and there is enough evidence now that low-dimensional temporal chaos
has provided new as well as useful ideas and tools for analyzing early
stages of transition in (some types of) flow systems which are closed® as
well as open.3’9 In Sec. 2, I present a summary of some recent findings in
the wake of a circular cylinder to demonstrate the existence there of
universal features.

Experience shows that temporal chaos is of restrictive value once spa-
tial three-dimensionality and classical power-law behaviors set in. Fully
developed turbulence is high-dimensional'® and has distinct spatial struc-
tures, the gap between what one can do with low-dimensional chaos and
what one needs to do in fully developed turbulence being very wide
indeed! One type of advance made in a low-dimensional chaotic system
that has found some application in turbulence is the invention of several
dynamical measures of stochasticity such as Liapunov exponents'' and
scaling functions,® or static measures such as the Hausdorff-Besicovich
dimension,? fractal dimension,' generalized dimensions,"* multifractal
spectra,15 and various entropies.16 Such measures have been made acces-
sible to an experimentalist because of the important notion that an at-
tractor can be constructed by suitably embedding a time series in phase
space,'” even though circumstances do exist in which the technique might
not be accurate or even useful. These measures cannot be obtained in
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practice for a high-dimensional phase space, but progress has been made
by treating an instantaneous realization of a flow as a kinematic object
consisting of various measures distributed on fractal sets embedded in
three-dimensional physical space. 1 shall summarize this progress in Secs.
3-5, and remark on the possible utility of such measurements. Brief
concluding remarks will be presented in Sec. 6.

2. Universality in transition to chaos in wakes behind
cylinders

Briefly, with increasing Reynolds number, the flow behind a stationary
circular cylinder first undergoes a Hopf bifurcation'®" from the steady
state to a periodic one characterized by the vortex shedding mode at a
frequency f,, say. We have shown'” that the supercritical state (above the
critical Reynolds number of 46 when based on the cylinder diameter D
and the oncoming velocity) can be modeled by the Landau-Stuart equa-
tion, and experimentally determined the relevant constants. These details
appear not to depend on the aspect ratio (length to diameter ratio) if it
exceeds about 60.

I had shown earlier’ that a quasiperiodic motion sets in at a somewhat
higher Reynolds number. A view has been expressed” that the quasi-
periodicity observed in Ref. 3 could be the result of aeroelastic coupling
between the cylinder and the flow, but I must emphasize that no percep-
tible cylinder vibrations were present in our experiments; see Fig. 1.
Recent work?' has shown that the observed quasiperiodicity is due to
changes in spanwise direction of the vortex shedding pattern. It is of
interest to note that quasiperiodicity is absent in recent numerical
calculations*® on the ideal two-dimensional flow past an infinitely long
cylinder in an infinite domain (the latter simulated by prescribing bound-
ary conditions appropriately on a finite domain), but that complex effects
from finite boundaries do give rise to the experimentally observed quasi-
periodicity. Even very large aspect ratio cylinders in experiments produce
quasiperiodicity if either the cylinder diameter or the oncoming stream is
slightly nonuniform along the cylinder span. One may infer that quasi-
periodicity is a real feature of most wakes set up in real systems.

A higher Reynolds number gives rise to chaos.® To observe universal-
ity expected to accompany the breakdown of quasiperiodicity to chaos,
complete control on flow parameters must be maintained. In contrast to
the vortex shedding, features of quasiperiodicity depend on cylinder as-
pect ratio, its end conditions, and other boundary effects, all of which are
not totally under control for a stationary cylinder. It is thus useful to
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Fig. 1. The bottom figure is the time trace from the output of the optical probe (MTI
Fotonic sensor) mounted to measure possible transverse displacements of the circular
cylinder situated in uniform stream. The cylinder is “shedding” vortices at a frequency of
287.5 Hz and as discussed in Ref. 3, the quasiperiodic behavior in temporal dynamics is
evidenced by the presence of sidepeaks with a difference frequency of 36 Hz. The power
spectral density of the time trace is shown in the upper figure. The spectrum shows peaks
at 14, 28, 60, 120 and 180 Hz. The last three are related to the response of the optical
probe to indicator lights of the electronic instrumentation in an otherwise darkened
laboratory. The first two frequencies are related to floor (and thus tunnel) vibrations
which have since been damped— the data presented here were obtained in 1985 —with
no effect on the observed wake dynamics. More details are forthcoming in Ref. 21.

explore quasiperiodic dynamics of the wake by transversely oscillating
the cylinder in a controlled manner.

In the work described in Ref. 9, the cylinder was placed in a specially
designed wind tunnel that allowed more than the usual degree of control
on flow parameters, and was oscillated transversely (in the first mode) at
various known amplitudes. The Reynolds number was fixed at some
value in the supercritical state (55 being the Reynolds number for which
the bulk of the data has been obtained). The flow velocity was monitored
by a standard hot-wire placed approximately 15D downstream and 0.5D
to one side of its rest position. The imposed modulation on the cylinder
was at the desired frequency f;, the amplitude of oscillation A4 being then
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a measure of the nonlinear coupling between the two modes. The system
thus has two competing frequencies f, and f; , yielding two control pa-
rameters f,/f, and the nondimensional amplitude of oscillation, 4/D.
Once the external modulation is imposed, we expect f, to shift to f}
(say). By mapping the entire plane of f,/f, and A/D, one can observe
many features common to a class of nonlinear systems with two compet-
ing frequencies—no matter what precise differential equation governs the
system. This is the spirit of universality.

In particular, these universal aspects of transition from quasiperiodic-
ity to chaos have been worked out in detail for the sine circle map and are
believed to be universal for any map with a cubic inflection point. In the
subcritical state, iterates of the map lock on to rational frequency ratios
in the so-called Arnold tongues which increase in width as the nonlin-
earity parameter increases. At the critical state corresponding to the
onset of chaos, universal features occur. To observe them, it is best to
proceed without phase locking, this constraint naturally leading to the
choice of the golden mean o for the frequency ratios: Note that the
irrational number o is least well approximated by rationals (since it
contains only 1’s in its continued fraction representation), and hence best
suited for avoiding lock-ins—which in principle are possible at all ratio-
nal frequency ratios.

Olinger and Sreenivasan’ have demonstrated that the wake of an os-
cillating cylinder at low Reynolds number is a nonlinear system in which
a limit cycle due to natural vortex shedding is modulated, generating in
phase space a flow on a Torus. They experimentally showed that the
system displays Arnold tongues for rational frequency ratios, and ap-
proximates the devil’s staircase along the critical line. At the critical
golden mean point accompanying quasiperiodic transition to chaos, spec-
tral peaks were observed at various Fibonacci sequences predicted for the
circle map and, except for low frequencies, had the right magnitudes. A
pseudoattractor was constructed by the usual time delay and embedding
methods'” from the time series of velocity at the critical golden mean
point, and Poincaré sections were obtained by sampling data at intervals
separated by the period of forcing. The resulting Poincaré section was
embedded in three dimensions (in which it was nonintersecting in all
three views), and a smoothed attractor was obtained by performing av-
erages locally. The data were then used to compute the generalized
dimensions'* by using standard box-counting methods; in the appropriate
log-log plots, the scale similarity regime extended typically over two
decades. The multifractal spectrum, or the f(a) curve, was then obtained
via the Legendre transform discussed in Ref. 15. The multifractal spec-
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trum as well as the spectral peaks showed that the oscillating wake be-
longs to the same universality class as the sine circle map.

To push this correspondence further, consider the scaling function
invented by Feigenbaum.® This compact way of describing the dynamics
of the system contains complete microscopic description (not merely
statistical averages) of the attractor—modulo the information on its em-
bedding dimension. The attractor at the onset of chaos can be regarded as
constructed by a process that undergoes successive refinement and leads
eventually to the observed scale-similar properties. Such a process can be
mapped onto a subdividing tree structure whose branches now are the
iterates of the dynamical system; the scaling function correctly organizes
the intervals to be compared from one level of refinement to another.
Extracting Feigenbaum’s scaling function experimentally is a nontrivial
task, but one can instead use a suitably modified version®® based on
comparing intervals within a single periodic orbit rather than of two
different orbits at the same level of stability. Olinger ez al.’ have obtained
this modified scaling function at several successive approximations to the
critical golden mean point, and shown that it is in good agreement with
that calculated for the sine circle map.

These are detailed tests of (metric) universality, comparable to that in
some experiments in closed flows. I find it remarkable that a complex flow
such as the wake should conform to predictions for the circle map. This
does not mean, however, that transition to chaos and chaos itself can
necessarily be described in every flow equally neatly and in as much
detail, or that they all belong to some universality class or another. It is
believed that the wake is special because of the global nature of the
vortex-shedding instability, which confers upon the flow an extraordinary
spatial organization, but a broad knowledge of what special circum-
stances or features of the flow render such questions useful is accumu-
lating only slowly.?* There is room for further work, but it is clear that the
dynamical systems approach is useful even for some classes of open flows.
For further remarks on the implications of the results, I refer the reader
to the papers cited.

In addition to demonstrating universality in a familiar flow, the work
just summarized has the practical value of predicting the width of lock-in
regions, and of organizing under a broad umbrella many isolated results
on oscillating cylinders. I must remark, however, that the relevance to
Sully turbulent state is unclear of these and similar demonstrations of uni-
versality accompanying transition to chaos; in fact, the role of chaos in
bringing about turbulence is an outstanding question. In simple dynamical
systems—the circle map and the logistic map being two specific
examples—one has been able to discover the underlying dynamical struc-
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ture of the asymptotic state by unraveling the bifurcation sequence as the
control parameter evolves. A lesson often emphasized® is that the order-
ing of the asymptotic state may be discerned by understanding the or-
dering during the evolution of the system to that state. This statement
can at best be partially true, if that, for fluid turbulence. If the striking
similarity between the coherent motion in a fully turbulent flow and the
corresponding motion in its transitional stage is not accidental, it is prob-
ably true that the former can be understood in terms of transitional
structures. On the other hand, it appears futile to seek the key to the
understanding of universal aspects of fully developed turbulence in the
transition process because different transition scenarios lead to the same
end product. Some thoughts on these issues are taking shape, but I shall
now move on to the fully turbulent state.

3. Internal intermittency in turbulent flows

As already remarked, an instantaneous realization of a fully turbulent
flow such as a jet is an object I wish to study. In this section, I concen-
trate on aspects of internal structure which, in regions far away from the
boundary, are statistically independent of the boundary and initial con-
ditions; the specific quantities examined are the distribution of the tur-
bulent energy dissipation, the *“‘dissipation” rate of the variance of a
passive scalar, and absolute values of turbulent vorticity and the Rey-
nolds shear stress. These quantities are all dynamically important and
distributed in some complex way in the three-dimensional real space.
(The former two are always positive, but of real interest are vorticity and
the Reynolds stress without the absolute sign. It is at the moment unclear
as to how one should deal effectively with intermittent processes which
are both positive and negative.) Figure 2 shows the distributions of one
component of energy dissipation along a line in the fully turbulent part of
a laboratory boundary layer at moderate Reynolds number and in the
atmospheric surface layer at a much higher Reynolds number. It is clear
that the spatial distribution becomes increasingly intermittent as the Rey-
nolds number increases. The intermittency of the scalar “dissipation” as
measured on a planar cut is shown in Fig. 3 . This outstanding feature of
high Reynolds number turbulence implies that thorough spatial mixing
does not occur on small scales. The inexorable tendency to attain uniform
levels due to molecular smearing is continually countered by the nonlin-
ear processes that tend to maintain the observed inequalities from place
to place.

Two points of interest here are the description of such intermittent
distributions and the identification of the dynamical scenarios leading to
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Fig. 2. Typical signals of € = (du/d?)? normalized by its mean. The upper trace (a) was
obtained in a laboratory boundary layer on a smooth, flat plate at the moderate Reynolds
number R; of 150 (based on the Taylor microscale and the root-mean-square fluctuation
velocity in the main flow direction). The lower trace (b) was obtained in the atmospheric
surface layer a few meters above the roof of a four-story building. The Reynolds number
R, is about 1500. It is believed that the statistics of €' are representative of those of the
total energy dissipation. For a description of experimental conditions, see Refs. 26 and 28.
The figure is taken from Ref. 28.

them. Such highly intermittent processes cannot be described efficiently
by the conventional moment methods known to be successful for Central
Limit type processes. In particular, if a process is Gaussian, its mean and
variance describe the process completely; for others close to Gaussian, a
few low-order moments contain most of the information. On the other
hand, for processes of the type shown in Figs. 2 and 3, the first few
moments give little clue to the nature of the process.

Multifractal measures, as they are called in the present parlance of
dynamical systems, have built-in intermittency which therefore makes it
logical to examine their usefulness in our context; see Mandelbrot,'*
Hentschel and Procaccia,'* and Ref. 15. Essentially, multifractals are
built up by a procedure (which is often rather simple) that proceeds from
one scale (the parent scale) to the next smaller ones (the offspring) in
such a way that the measure (roughly, the amount of a positive quantity
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Fig. 3. Dissipation rate y of the concentration fluctuation ¢ as a function of the two
coordinates x (axial) and y (radial) in the fully turbulent part of an axisymmetric jet.
The figure covers a grid of 150X 150 pixels. The nozzle Reynolds number is about 4000,
and the center of the picture is about 15 nozzle diameters downstream. y (c) was approx-
imated by the sum (de/dx)? + (dc/dy)2 + (dc/dz)? obtained at the Kolmogorov scale
resolution; (y) is the average of y. The figure is taken from Ref. 51.

such as the rate of energy dissipation) contained in the parent scale is
unequally divided among its offspring. When this procedure repeats
many times, the measure on the offspring of each successively higher
generation will become increasingly uneven. If the basic rule determining
the unequal division from a parent scale to its offspring is independent of
the generation level, one expects certain scale-similar properties. Because
the measure on an arbitrary offspring at a given generation level is de-
termined by the product of the multipliers (that is to say, numbers char-
acterizing the unequal division of the measure) of all its forefathers, a
multifractal can be associated with a multiplicative process. The first
order of business would be to determine the multifractal properties of the
intermittent process interesting to us, and, if possible, identify the asso-
ciated multiplicative process—if one exists.

Because the measure concentrated on an offspring at any level is the
product of the multipliers of all its forefathers, it is clear that the scaling
will only be local; there is therefore the expectation that many, in fact
infinitely many, scaling indices will be required for a meaningful descrip-
tion. The purpose of analysis then is to quantify these various scaling
indices and unravel their other properties. A possible vehicle for doing
this is the f(a) spectrum'® to which I have made reference already in Sec.
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Fig. 4. The multifractal spectrum f{a) obtained from Legendre transforming the gener-
alized dimension data; a direct method of measurement yields the same results. Circles
correspond to a long data set (107 points) in the laboratory boundary layer on a smooth,
flat plate, and the squares to that in the turbulent wake behind a circular cylinder (5 X 10°
points). Both flows have moderate Reynolds numbers (R; on the order of 200). The
dashed lines represent results from ensemble averaging over many short data segments,
each of which is of the order of ten integral scales. The error bars correspond to the
standard deviation observed from the analysis of short records. The solid line is the
average from Ref. 26 in various flows, including the atmosphere. To transform f{a)
values from one dimension to three dimensions, add 2 to the ordinate. The applicability
of this additive law has been discussed in Ref. 28 from which this curve has been taken.

2; the difference, however, is that we are now considering distributions in
three-dimensional physical space rather than in the phase space. The
Sf(a) curve has been measured for positive definite quantities character-
izing small scale turbulence. (For the energy dissipation see Refs. 26-29,
for the scalar dissipation rate see Ref. 30, for the squared and absolute
vorticity see Refs. 31-32, and for the absolute value of the Reynolds
stress in the boundary layer see Ref. 33. I invite the reader’s attention
especially to Ref. 28 where there is a detailed discussion of the measure-
ment techniques, signal/noise ratios, the ambiguities in determining the
scaling regimes, and scaling exponents.) Typical f(a) curve for the en-
ergy dissipation is given in Fig. 4 . Some of its salient features are the
minimum value of a corresponding to the largest singularity in the dis-
tribution of €, the maximum value of a corresponding to the least intense
regions of €, the maximum value of f(a), which is 3 (showing that there
is some dissipation everywhere in the flow domain), and the point f= a,
which corresponds to the fractal set on which all the dissipation is con-
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centrated in the limit of infinite Reynolds number.** Towards the end of
this section, I shall remark briefly on fluctuations in D/’s and f(a)’s.

The multifractal description of intermittent quantities is more power-
ful than other descriptions, most of which turn out to be special cases.
For example, Kolmogorov’s space-filling dissipation®® corresponds to the
point (3,3) in the f~a plane. Similarly, the B-model,* in which only the
fraction 8 of the space is occupied by homogeneously distributed dissi-
pative regions, corresponds to another point (Dg, Dg)on the plane de-
pending on the precise value of 3. If the f(a) curve can be approximated
by a parabola, Kolmogorov’s log-normal approximation®” results. The
random B-model®® is also inadequate because the dimension of the sup-
port in that model is less than 3.

These measurements have allowed interesting inferences to be made,
and I shall illustrate some of them presently (Sec. 4). I must point out
here that the overwhelming conclusion of this work is that multifractals are
a plausible vehicle for describing intermittent fields in turbulent flows.

In the measurements mentioned above, the spatial resolution was lim-
ited to scales of the order of the Kolmogorov scale. If the Schmidt num-
ber o (the ratio of the fluid viscosity to scalar diffusivity) is much larger
than unity, the smallest scalar scale, the so-called Batchelor scale,*® 7,, is
much smaller. In such cases, there are two scaling regimes —roughly
speaking, that between L and 7 and another between 1 and 7,—and it is
possible to examine these two scaling regimes separately. In Ref. 40, we
have explored the multifractal spectrum of the scalar dissipation in the
scale range between n and 7, using one-dimensional sections. Finite
Schmidt number corrections remain important even when o is of the
order 1000, but the primary conclusion is that all generalized dimensions
are essentially equal to the fractal dimension of the support in the limit of
infinitely large Schmidt numbers; equivalently, the multifractal spectrum
is simply the point (3,3) in the f~a plane. The natural conclusion is this:
It is not necessary to invoke multifractals—or even ordinary fractals—for
describing scalar fluctuations in the range between m and ny; classical tools
should be adequate here.

4. The dynamical information

Recall that the multifractal description of Sec. 3, general though it is, is
only a static description. It is usually not possible to deduce dynamics
from such static descriptions, but some headway can be made by noting
that the multifractal description of dynamical systems is equivalent to
thermodynamic description of statistical mechanical systems.*' Specifi-
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cally, then, the question is: Can one deduce something about dynamics
given merely thermodynamic information?

Consider the multiplicative process in which each parent interval
breaks up into “¢”” number of new subintervals; we would have at the end
of n stages of the cascade a” pieces. The general procedure is to map such
a process onto an a-state n-particle spin system and find, by taking re-
course to the measured multifractal properties, the appropriate transfer
matrix describing the transition from the nth stage to the (n+ 1)-th
stage, or from an n-particle system to an (n + 1)-particle system. One
then has a dynamic process yielding the observed thermodynamics. Usu-
ally, one can only get the leading approximations to the transfer matrix.*!
Chhabra et al.** have examined the issue in detail with particular refer-
ence to turbulence, and shown (not surprisingly) that the procedure
yields nonunique solutions: There are many dynamic processes which
yield the same thermodynamics. However, a knowledge of the constraints
on the system can render the choice much less ambiguous. Meneveau and
Sreenivasan®’ have shown that the manifest part*—that is, the part with
/>0 in one-dimensional cuts—of the measured multifractal spectrum is
in good agreement with a binomial cascade model (designated in Ref. 43
as the p-model) in which a parent eddy breaks up (in one dimension)
into two equal-sized eddies such that the measure (say, the energy dis-
sipation rate) is redistributed between its two offspring in the ratio 7/3.
(For general multiplicative processes in three dimensions, see Ref. 28.)
This allows several quantitative predictions (such as the Reynolds num-
ber variation of the skewness and flatness factor of the velocity deriva-
tive) to be made; in Refs. 5, 26, and 43, we have shown that these
predictions are in good agreement with measurement.

Keep in mind that the inversion is nonunique, which means that I
cannot claim that p-models and other multinomial models represent true
dynamics of energy cascade—despite impressive agreement with experi-
ment. What one can say is that simple dynamical models can be con-
structed in such a way that their outcome is statistically the same, up to
some level of approximation, as those of the measured results. To deter-
mine, among the host of existing possibilities, the true dynamic picture
requires more information, and is an area of active research.

Similar binomial and multinomial models have been constructed for
other quantities mentioned earlier. Further, the multifractal formalism
has been extended®” to more than one coexisting multifractal measure.
The primary motivation for this work is the realization that a high Rey-
nolds number turbulent flow subsumes several intermittent fields simul-
taneously, and that they display different degrees of correlation among
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them. The formalism has been applied to simultaneous measurements in
several classical turbulent flows of a component of the dissipation rate of
the kinetic energy, the dissipation rate of the passive scalar, as well as the
square of a component of the turbulent vorticity field. Several joint bi-
nomial models, also in agreement with measurement, can be deduced for
these joint distributions. One further area of progress*® has been the
recognition that the f(a) curve possesses useful information on spatial
correlations (since two distant boxes at a higher cascade level share the
same forefather at some earlier level), and that it provides a vehicle for
quantifying the relative importance to transport of large amplitude but
rare events in comparison with small amplitude but ubiquitous events.

A very interesting aspect of the multifractal work in turbulence is that
even when the scaling appropriate to the measurement of f(a) is unam-
biguous as in high Reynolds numbers, the slopes fluctuate from one
system to another. These fluctuations may arise because the system is
small in the thermodynamic sense. Even at high Reynolds numbers
where the ratio of the external scale to the dissipation scale is large, Re =
(L/ 77)4/ 3, a system of size L (in practice, a few L’s) is not a large system.
The multifractal spectra computed from one such system to another
show fluctuations which are not random but structured.?® It is of course
possible to eliminate such fluctuations by blindly averaging over many
L’s but, aside from difficulties in interpretation, this diminishes the qual-
ity of scaling. (I therefore believe that the issue of proper averaging in
turbulence needs reexamination.) Mandelbrot’s work* has suggested
that these fluctuations probably arise from fluctuations in the multipliers
from one stage to another. This latter may arise in one-dimensional sec-
tions because the conservation of measure, which holds strictly for three
dimensions, does not hold for one-dimensional cuts except on the aver-
age. More work on this issue is in progress.

5. Interfaces in turbulent flows: An example of “outer”
dynamics

We now turn to “outer” dynamics of turbulence, typified by the interface
bounding the flow. It is well known*® that an unbounded turbulent flow
such as a jet develops at high Reynolds numbers ‘“‘fronts” across which
vorticity changes are rather sharp on scales larger than the characteristic
thickness of the front. This is the vorticity interface. A passive scalar
introduced in a fully turbulent flow gets dispersed by turbulence, but
itself possesses a scalar interface. The interest in such surfaces arises
because of their relation to entrainment and mixing.**®
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Interfaces are complex objects residing in three-dimensional physical
space, and convoluted over a range of scales which, according to conven-
tional wisdom, may be statistically self-similar. It is therefore thought "
that fractal description of such surfaces is possible. A primary property of
a fractal surface being its fractal dimension, much attention has been paid
to measuring it. At high enough Reynolds numbers, the scale separation
between the largest and smallest interface scales is rather large, and this
allows the use of fractals in its characterization. Unlike a mathematical
fractal, the scale-similar regime of the interface is bounded (just as in
multifractals of Sec. 3) on both sides by physical effects. When averaging
is restricted to systems of size L (or 10L), the upper cutoff occurs at
around the integral (or correlation) scale of motion, this being compa-
rable to (though distinctly less than) the gross size of the flow such as the
flow width; the inner cutoff occurs at a scale where the fluid viscosity is
felt directly. This latter scale is approximately the Kolmogorov scale 7
(or some close multiple of it). The fractal dimension thus characterizes
scale similarity in the approximate range between L and 7. For the scalar
interface corresponding to large Schmidt numbers, there are (as
described in Sec. 3) two scaling exponents or fractal dimensions, the
second one corresponding to the scale range between 1 and 7,.

Fractal dimension measurements of vorticity interfaces have been
made only in one-dimensional intersections,’"* but those of the scalar
interface in the scale range between L and 1 have been made using one-,
two-, and full three-dimensional mappings of the scalar field.*”! A de-
tailed discussion of the experimental procedures including considerations
of noise effects can be found in Ref. 50. In the scale range between 1 and
1, the requirement that the Batchelor scale be resolved allows only
trivial extents of the flow to be mapped in two and three dimensions; one
therefore has to resort only to one-dimensional intersections. Such mea-
surements have been reported in Ref. 40.

Table | summarizes the results on the fractal dimensions of both scalar
and vorticity interfaces. One principal result is that the vorticity interface
in several of the classical turbulent flows has a fractal dimension of 2 .36
+0.05, and that the dimension of the scalar interface in the scale range
between L and ) is also the same. This last result is consistent with the
understanding that the scalar is dynamically passive. The fact that the
dimension is independent of the flow is an indication that the scales that
produce the fractal character (scales less than the integral scale) possess
kinematic similarity at this level of description. In the scaling range
between 7 and 7,, the dimension is close to 3, that is to say, fluctuations
in this range are space-filling. This is consistent with the conclusion in
Sec. 3 that one need not invoke fractals to describe these sub-Kolmogorov



238 Dynamical systems approach

Table I. Summary of fractal dimension measurements in classical turbulent flows; from
Ref. 50.

Flow Scale range between 7 and L Scale range between® 77 and 7,

Method of measurement

1-D cuts® 2-D images 3-D images

Round jet 2.36 2.36 2.36 2.7(Sc = 1930)¢
Plane wake 2.40 2.36 2.36 2.7(Sc = 1930)
Plane mixing 2.39 2.34

layer
Boundary 2.40 2.38

layer

2All measurements are from one-dimensional cuts, with Taylor’s hypothesis.

®These one-dimensional measurements for jets and wakes were made both with and
without Taylor’s hypothesis. Note that one-dimensional measurements often yield
slightly higher values for the fractal dimension, but the experimental uncertainties pre-
clude us from attaching much significance to it. The slight difference from one flow to
another may or may not be significant; the present thinking is that it is not.

“The Schmidt number is obtained from Ref. 52. Typical error bars for this estimate are
+0.03.

Sfluctuations in scalars. I must remark that this is true only in the limit of
infinite Schmidt numbers (if the Reynolds number is also proportionately
higher), and finite Schmidt number effects reduce this value; for o of the
order of 1000, the measured dimension in this scale range is 2.7+0.03;
see Ref. 40.

One use to which the fractal dimension has been put is in the expla-
nation of small scale turbulent mixing. The basic idea is that the prop-
erties of the scalar interface (say) and the mixing of the scalar with the
ambient fluid are related; the area of the surface involves fractal dimen-
sion and the ratio of inner to outer cutoff scales.*”*® The amount of
mixing is governed by large eddies in the flow, but the small scale mixing
is accomplished by diffusion across the surface whose geometry is deter-
mined exactly by this requirement. Thus, even though the process is
initiated by large scales, one can legitimately try to understand small
scale mixing by concentrating on the diffusion end. This approach neither
minimizes the role of large eddies nor resorts to gradient transport mod-
els usually discredited in turbulence theory. It has been shown*"*® that
this approach yields results of some universality, simply because the
small scale features are, to a first approximation, independent of config-



K. R. Sreenivasan 239

urational aspects of the flow. In particular, the arguments presented in
Ref. 48 yield semitheoretical estimates for fractal dimensions which agree
well with measurements.

The outstanding question is to show that the dynamics of the Navier-
Stokes equations (or, more precisely, that of the Euler equations, since
the effect of viscosity is believed here to be benign in that it merely sets
the inner cutoff) somehow implies that the features described here® are
indeed multifractal in nature—that is, they possess a certain type of
spatial scale similarity. In spite of much impressive work,>? these issues
have remained essentially untouched and invite the attention of a talented
reader. In particular, this question has to be reconciled with the much
poorer existence of scale similarity in temporal dynamics.

6. Conclusions

The dynamical systems approach has introduced a variety of new tools
and ideas for analyzing nonlinear systems. This is an outstanding accom-
plishment and deserves to become an integral part of the lore of nonlinear
phenomena, including turbulence. Whether all or some of them are useful
for furthering our knowledge and predictive capabilities of transitional
and turbulent flows depends to some extent on the ingenuity with which
these new tools are applied. Just as initial exaggerations on the impor-
tance of the dynamical systems approach to the turbulence problem were
unhealthy, so are gloomy thoughts that the approach is but a passing fad
to be disparaged. The success one can have with the application of these
new tools depends to some measure on how well one understands them,
and on how well one can reduce sophisticated mathematical formalisms
to realizable measurements. I have presented a summary of some results
in transitional and turbulent flows of the open type. These measurements
were inspired, in fact made possible, by recent advances in dynamical
systems.

It is often believed that the success of the dynamical systems approach
in open flows is much less tangible. Just so, but a part of the reason is the
culture of the community which works extensively with such flows. It is
true that not all open flows in the early stages of transition can be usefully
described by the dynamical systems approach, but so is it true that not all
closed flows can be described in this manner! As mentioned already, a
broad understanding of which types of flows can be so described is ac-
cumulating only slowly and its detailed discussion should therefore await
another occasion; but it seems that the classification of flows as “open”
and “closed” is probably not specific enough for present purposes.
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Many of the multifractal measures in real space have been useful, but
I should note that not all aspects of turbulent flows can be described by
fractals; in fact, there is some evidence to suggest that the behavior of
turbulence near the mean value of the signal possesses distinctively non-
fractal properties. For them, Central Limit type statistics are more ap-
propriate.

Finally, mere description of turbulence is no end in itself, and one
needs to make predictions by building working models. Some predictions
rendered possible from the present work have been summarized at ap-
propriate places. The point must be made that the inherent degeneracy of
the multifractal description makes it difficult to read conclusively into the
dynamical scenarios inferred. If other measures are better suited to de-
scribe turbulence, it is not clear what they are; a partial answer in low-
dimensional systems is discussed in Refs. 6 and 25. Turbulence has the
peculiar status of being at once a classical problem and one at the fore-
front of physics. There is no complete agreement as to what information
is essential and should be acquired, and there is room for fresh air here!
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