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A high-Reynolds-number turbulent flow subsumes several intermittent fields; some examples are
the rates of dissipation of turbulent energy and scalar variance, square of turbulent vorticity and
rate of strain, etc. These intermittent fields display different degrees of correlation among them.
Motivated by the need for characterizing such coexisting distributions of intermittent fields in fully
developed turbulence, the multifractal formalism—which we have already found useful in describ-
ing such intermittent distributions singly —is extended to more than one variable. The formalism is
first illustrated by studying joint log-normal as well as joint binomial distributions. It is then ap-
plied to simultaneous measurements in several classical turbulent flows of the joint distribution of a
component of the dissipation of kinetic energy, the dissipation rate of passive scalar variance, as
well as the square of a component of turbulent vorticity. This allows simple but realistic models of
simultaneous cascades of more than one variable to be developed.

I. INTRODUCTION

Multifractal measures arise in a variety of applications.
Distributions whose moments scale in a nontrivial
fashion were used by Mandelbrot! to characterize the
spatial distribution of dissipation in turbulence. A
geometric interpretation of such distributions in terms of
interwoven sets of singularities with varying dimensions
was then proposed by Frisch and Parisi,” who coined the
name multifractals. These ideas were then used to de-
scribe the scaling of velocity-structure functions in tur-
bulent flows.> In dynamical systems, such concepts were
shown to be useful in characterizing the invariant mea-
sure of chaotic attractors.>* This has also been applied
to experiments on the transition to chaos in closed and
open fluid flows.>® In fractal growth processes like
diffusion-limited aggregation the probability distribution
of growth has been shown’ to be multifractal in many in-
stances. For a general account of the wide range of appli-
cations of multifractals, the reader is referred to the re-
view article by Paladin and Vulpiani.?

The multifractal nature of the dissipation rate € of ki-
netic energy in fully developed turbulence was studied ex-
perimentally in Ref. 9 using linear sections through a
variety of turbulent flows. The relevance of these findings
to the singularities of the equations of fluid motion was
discussed in Ref. 10, and it was shown that one can mod-
el the multifractal spectrum obtained from linear cuts in
terms of binomial cascades.!! For an extension to multi-
nomial models, see Ref. 12. Using both planar and linear
sections, the dissipation rate y of passive scalar fluctua-
tions was also shown to be multifractal.!>!* Further,
there is experimental evidence that the field of squared
vorticity (or its absolute value) can also be described by
multifractal measures.!> Thus, in turbulent flows, there
appears to be a variety of multifractal measures embed-
ded in the same spatial domain. As an example, we show
in Figs. 1(a) and 1(b) typical segments of (a single term
each of) € and y along the same linear cut in a fully
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developed turbulent flow. (For convenience, experimen-
tal details are relegated to a subsequent section.) The
question then naturally arises about the degree of correla-
tion among these different quantities. In other words, we
are interested in the joint statistics of two or more such
quantities, each of which is singly represented by a mul-
tifractal.

The natural way of describing such situations is to ex-
tend the multifractal formalism to more than one vari-
able, this being the main purpose of the paper. The basic
theory of joint multifractal measures is presented in Sec.
I1I, and illustrated with simple special cases in Sec. IV.
Section V deals with application of these ideas to mea-
surements in a heated turbulent wake, where the joint
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FIG. 1. Simultaneous of &' ~(du,/dt)* and

signals
X'~ (3T /dt)* obtained in the turbulent wake of a heated
cylinder, both normalized by their mean values. The segment of
data shown corresponds to a length of approximately 10L,
where L is the integral scale of the flow estimated from the au-
tocorrelation of the velocity signal.
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multifractal distribution of the dissipation of kinetic ener-
gy, as well as the dissipation of passive scalar fluctua-
tions, is presented. Section VI deals with the joint mul-
tifractal distribution of the dissipation and squared vorti-
city in measurements performed in the atmospheric sur-
face layer. These measurements have been performed
only on single components of the dissipation and vortici-
ty. The conclusions are contained in Sec. VII. But first,
a brief review of the multifractal formalism for single
multifractal distribution is presented in Sec. II, where we
also provide a useful definition of intermittency ex-
ponents in terms of the statistics of the local singularity
strengths.

II. BRIEF REVIEW OF SINGLE

MULTIFRACTAL MEASURES

Multifractal distributions are best described by the
scaling properties of coarse-grained measures. Typically,
if p,(x;) is the measure in a box of size r centered around
position x;, one can define a as a local singularity
strength at position x, by*

px)~(r/L)* . (1)

Here L is some large scale. Typically,* the set of boxes
where a has values within a band da around a has a frac-
tal dimension f(a). This means that the number
N,(a)da of boxes of size r that contain values of « in that
range scale according to

N (a)da~(r/L) ' “da . )

The total number of boxes of size r in the entire space of
dimension d is proportional to (r/L)” ¢ Therefore, the
probability II,(a)da of encountering values a in such a
band da in some box scales as

I,(a)da~(r/L)? /'9¢a . 3)

Several cautionary notes must be made when interpret-
ing the exponent f(a) as a fractal dimension: The first is
that f(a) relates to the scaling behavior of N,(a) or
I1,(a) only when a is defined according to (1) using the
same resolution r used to compute N,(a) or II,(a). This
means that f(a) cannot be measured by defining an iso-a
set using Eq. (1) at some resolution r =17, say, and then
covering this fixed set with boxes of varying sizes r' >,
counting them to obtain N,.,), and then obtaining f(a)
from N,(a)~(r')"/“. In such a case one measures
another effective exponent (for a detailed analysis of this
issue, see Ref. 16). The second note is that there exist dis-
tributions for which f(a) can take negative values; for
such cases f(a) cannot be interpreted as a dimension,
but d —f(a) is still the scaling exponent of I1,(a).!” Fi-
nally, it has been shown'® that the scaling relations (2)
and (3) have logarithmic prefactors that depend on
In(r /L), which complicate the direct measurement of
f(a) from such relations. We will return to this issue
below.

On the other hand, the scaling of the gth “cumulant”
of p,(x;) with the box size r involves the exponents (q)
according to'®

Sp,(x)9~(r/L)"?, (@)

(p,(x;)9) ~(r/L)"9*4 (5)

where the sum and averaging are performed over all
boxes. Also, it is often convenient to define a set of ex-
ponents D, according to

D,=1(q)/(g—1). (6)

The exponents D, are usually called “generalized dimen-
sions,” and correspond to the dimension of a set which,
when used to intersect the original measure, produces
divergence of moments of order g (see Ref. 17). In addi-
tion, if the support of the measure is a fractal set with
fractal dimension D, —0<d, then the total number of
nonempty boxes [where p,(x)#0] is proportional to
(r/L) %0 In such cases, one replaces d in Egs. (3) and
(5) by Dg.

One can relate the exponents 7(q), @, and f(a) by
evaluating averages as integrals over all values of a, and
using the method of steepest descent for small values of 7.
One then obtains*

flalg))=qalq)—1(q) , (7a)
and
_d(q)
alq) dq. (7b)

These relations form a Legendre transformation. [One
replaces a function 7(q) by its slope a and its intercept
f(a).] The parameter g selects a specific value of the
variable a according to Eq. 7(b). High positive values of
g emphasize high-intensity regions of the measure (low
values of a), and high negative values of ¢ emphasize
low-intensity regions of the measure (high values of a).

According to Eq. (4), 7(g) can be measured from log-
log of 3,[p,(x;)]? vs r/L. Then a and f(a) are usually
computed using Egs. (7). In principle, one can obtain a
and f(a) directly from the scaling relations (1) and (2),
but in Ref. 18 this was shown to be practical only when
the available scaling range is very large, this being so be-
cause of the logarithmic prefactors in Eq. (2). Another
method of directly measuring a and f(a) using pu-
weighted averaging was proposed in Ref. 20 and applied
to turbulence in Ref. 21. In this method, one defines a
new normalized variable u,(x;;q) in terms of the original
multifractal measure according to

pr(xi )
pYAEN
i
Again, pu,(x;;q) varies from box to box, but it also de-
pends on the parameter g. One now computes a as the

mean value of In[p,(x;)]/In(r /L) with respect to this
measure 4,(x;;q). This is given by

alg)=3[p,(x;;9)In(p,)/In(r/L)] , 9

K (x;59)= (8)

where the sum is performed over all boxes of size r. Re-
calling that
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(q)=In(3pf)/In(r /L)

(in the limit of r—0) and taking its derivative with
respect to g, it is easy to show that the definition (9) coin-
cides with a(q) obtained earlier from Eq. (7b). In order
to compute the dimensionality associated with this value
of a(g) one uses the usual definition of the dimension of a
measure

2lp,(x;59)0np,(x;59)]

i

dim[,u,(x;q)]=lirr(1) (10)

In(r /L) ’
where, again, the sum is taken again over all boxes of size
r. It is now easy to show, using the definition of the mo-
ment exponents 7(q) and the Legendre transform, that
dim[u,(x;q)] is equal to the exponent f(a) computed
according to Eq. (7a). Thus, in practice, a and f(a) can
be directly measured as slopes of plots of numerators of
Egs. (9) and (10) against In(r/L). Such a procedure does
not suffer from the influence of prefactors.

Another interesting question concerns moments of the
local scaling exponent « itself. For this purpose, it is use-
ful to introduce the following generating function'? G(q):

G (@)= [ pla)r/Ly’* ' Pogq | (1)

where, as noted before, D is the fractal dimension of the
support of the measure. We first consider derivatives of
G (q) with respect to g, evaluated at g =0:

dG(q)

—fla)+D,
d
dq ¢

=In(r/L) [ apla)(r/L) (12)

q=0

It is easily recognized that the integral corresponds to
(a), averaged over all nonempty boxes of the measure.
From the evaluation of the integral in Eq. (11) using the
steepest-descent method, we also know that

G(g)=(r/L)" " P (13)
and that

dGlg) | _jy(r/0)279) (14)

dq |9=0 dq 4=0

Comparing this with Eq. 12, we recognize that

drlq)
dgq

(a)= (15)

q=0

From Eq. (7b), we see that this is also a(q =0), which we
will denote by «, from here on. Taking the second
derivative of G (g), one can similarly show that

2
d—G(zq—)l ~ =[In(r/L)]¥a*)
dq =0

=[In(r/L))*{[In(r /L)] " 'd?r/dq?
+(dr/dg)},—o . (16)

From this it follows that o , the variance of a, is given by

2
a§=((a~a0)2)=[ln(r/L)]_'d—diZq—) . (17)
q

¢9=0

Thus, for multifractals, the variance of the variable a is a
function of r, and decreases as r decreases. As a matter
of future convenience, we now focus on the variance o,

of In(p,). Since In(p,)~aIn(r /L) from Eq. (1), we obtain

2
o2, =—419D | L. (18)
dq q=0

Therefore, for multifractal measures, the variance of the
logarithm of the measure in a box of size r increases with
decreasing box size. It is convenient to define an inter-
mittency exponent u according to??

p=— d*r(q)

(19)
dq*?

q=0

Taking the derivative of G(gq) to order n, it is easy to
show that the nth centered moment of a is given in terms
of 7(q) and the box size r as

d"r(q)

((a—ay)")=[In(r/L)]' "—1=
dq”

(20)

q=0

One can again define generalized intermittency exponents
of order n, p1,,, according to

—_d'1lq)

n (21)
H dq"

q=0

The next chapter is devoted to a generalization of these
ideas to multivariate distributions.

II1I. JOINT MULTIFRACTAL DISTRIBUTIONS:
THEORY

As outlined in the Introduction, it is of interest to
characterize jointly the distributions and properties of
several multifractal measures coexisting in the same spa-
tial region. Our interest in such a problem stems from
the realization that in turbulent flows, there exist distinct
multifractal measures embedded in the flow field. For in-
stance, the dissipation of turbulent kinetic energy ¢, the
dissipation of passive scalar fluctuations Y when a scalar
is advected by the flow, the magnitude of the vorticity
field, etc. There exist other situations in physics where
several multifractal measures of interest coexist in the
same region. For instance, in problems of diffusion limit-
ed aggregation, both the growth probability distribution
and the harmonic measure are believed to be multifrac-
tals, both lying on the boundary of the aggregate. (It is
expected that both are the same at any point, and a way
to check this would be to measure their joint distribu-
tion.)

For notational simplicity, the treatment will be done
for bivariate distributions, but extension of these ideas to
more than two multifractal distributions is trivial. Sec-
tion IIT A introduces the concept of joint multifractal
spectra and Sec. IIIB focuses on joint moment ex-
ponents. In Sec. III C, we describe the application of u-
weighted averaging for obtaining the joint multifractal
spectrum. Section III D introduces the intermittency and
correlation exponents for joint multifractals.
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A. Joint multifractal spectra

The situation we have in mind is that of two distinct
multifractal measures coexisting in the same spatial
domain. As usual, we divide the domain into boxes of
size r and define p,(x,) and p,(x;) as the integrated mea-
sures in such boxes centered around the position x;.
From here on, the superscript prime is used to distin-
guish one measure from the other. We then define two
local singularity strengths a, and ', according to

p(x;)~(r/L)* (22a)

and

plx;)~(r/L)* (22b)

and focus on the joint distributions of the variables a and
a'. N,(a,a’)dada’ will denote the number of boxes of
size r in which the variable a has values in a band da
around a, and ' in a band da’ around a’. In analogy to
the usual multifractal formalism, it is convenient to
define f(a,a’') as the scaling exponent of N,.(a,a’') ac-
cording to

N (a,a)dada'~(r/L) /' *“dada’ . (23)

From a geometrical point of view, Eq. (23) has the follow-
ing meaning. If we concentrate on a set of boxes of size r
where a has a certain value, and a' has another given
value, then f(a,a’) is the fractal dimension of this set.
Another way of expressing this is to say that f(a,a’) is
the dimension of a set resulting from the intersection of
an iso-a and iso-a’ set.

The curve f(a,a’) will therefore characterize the scal-
ing properties of the joint distribution of the local ex-
ponents a and a’. Thus the multifractal formalism is ex-
tended to more than one measure.?’

B. Joint moment exponents

Consider joint moments of the form
([p,(x)1p,(x;)}¥) or, alternatively, sums of the form
3[p,(x;)}¥p,(x;)]P. The joint moment exponent 7(q,p)
is defined according to

> (p,(x)p,(x;) P~ (r/L)"%P . 24)

i

The sum is performed over all boxes (one uses 0°=0).
The scaling exponent 7(g,p) is analogous to 7(q) for the
case of a single multifractal. The parameters g and p
have the following meaning. For high positive values of ¢
and p,7(q,p) characterizes the scaling behavior of regions
where both measures are very intense. Large negative
values of ¢ and p focus on regions where both measures
are very sparse. Large positive g and large negative p em-
phasize regions where the first measure is very intense,
but the second measure is very sparse, and vice versa.

If D, and D, are the moment exponents for individual
measures, we have as special cases of Eq. (24) that

l)Dq

S o, (x))0p (x,)PP =0~ (r /L) e (252)

(p—l)Dp

Sp,(x)19 " lp,(x;))P~(r/L) , (25b)

or
¢,0)=(¢—1)D, ,
(0,p)=(p —1)D, .

(26a)
(26b)

We can in principle obtain 7(q,p) by computing
3.0,(x;)9p,(x; P for a variety of box sizes r and also as
the slope of plots of In{ 3;[p,(x;)19p,(x;)1°} vs In(r /L).

The next question concerns the relation between the
exponents 7(g,p) and the joint-distribution exponent
f(a,a’). For this purpose, one writes the sum of Eq. (24)
as a double integral over all values of a and a’ according
to

2[p,(x,— )]q[PrI(-x, )]PNZ(r/L)aq +a'p

~ff(r/L)"(a‘“’)dada' , (27a)
where
gla,a’)=aq+a'p—fla,a’) . (27b)

At this point, we apply the method of steepest descent to
evaluate the integral at small values of r. Therefore

Ep’(](pr')p~raq+a'p—f(a,a') (28)

or
T(g,p)=aq+a'p—fla,a'), (29)

where a and a’ are given by the conditions

_af(:—’al)zq (30a)

a

df(a,a’) _ (30b)
da’

Taking partial derivatives of Eq. (29) with respect to g in
order to invert the transform, one obtains

orlg.p) _ ,, ,0a 9Of da , da’ 3df O
dg @ qaq da g p dg da’ dq

(31)

But using 3f /da=gq and df /da’=p, and repeating the
same procedure for p and a’, we obtain the double Legen-
dre transforms that relate the triads (,q,p) with (f,a,a’)
as

alg,p)=9dr(q,p)/9q , (32a)
a'(q,p)=9ar(q,p)/dp , (32b)
fla,a')=alq,p)g +a'(q,p)p —7(q,p) . (32¢)

Given the function 7(q,p), one can therefore obtain the
distribution function f (a,a’), and vice versa.

C. Obtaining f (a,a’) using the method
of u-weighted averaging

We will not attempt to measure f(a,a’) by directly
analyzing the scaling properties of joint histograms
N,(a,a’) that could be constructed from both measures.
The reason, as described in Ref. 18, is that the results
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would suffer from logarithmic corrections if applied to
experimental data with a limited scaling range. Instead,
we obtain f(a,a’) directly by implementing the method
of u-weighted averaging for joint multifractal measures.
To this effect, we first note that we have two control
parameters g and p. Their role was explained in the last
section. Define a new normalized p measure, which de-
pends on the box size r, and on both p and g, according to

Ax ) 1p,(x;)1P
u,(x;59,p)= L ][p, ] . (33)
2p,(x) ¥, (x)Y

The average value of a=In[p,(x;)]/In(r /L) with respect
to this yu-measure will be given by

alg,p)= 3 {u,(x;;9,p)n[p,(x;)]} /In(r /L) .

1

(34a)

Similarly, the scaling exponent a’(q,p) of the second mea-
sure will be given in terms of the average value of
a'=In[p,(x;)]/In(r /L) according to

a'(q,p)=3 {p,(x;;9,p)In[p,(x;)} /In(r /L) .

i

(34b)

Therefore, one can argue that the p-measure pu,(x;;q,p)
“highlights” a particular set on which a=alg,p) and
a'=a'(q,p) are the mean values of the local singularity
strengths. Again, the dimension of the measure-theoretic

support of i, (x;;q,p) is given by
2t (xi39.p)Inlp, (x:59,p)])

dlm[,u,(x,;qyp)]=}1i’}) In(r/L)

(35)

Dim[y,(x;;4,p)] is therefore the dimension of a set on
which a(g,p) and a'(q,p) are the mean local exponents of
both measures. By simple manipulations, it is easy to
show that dim[u,(x;;q,p)] corresponds to f(a,a’') as
defined in Eq. (7a). Thus, we have extended the method
of u-weighted averaging to joint multifractal distribu-
tions. One can now measure a and a’ from plots of
il (x;59,p)n[p,(x)]} and 3, {p,(x;9,p) In[p;(x;)]}
vs In(r/L), and f(a,a’) from plots of
3 i, (x5, p)In[p,(x;59,p)1} vs In(r/L). Different pairs
of (a,a’) are scanned by tuning the parameters (g,p).

D. Definition of intermittency and correlation exponents

Let us now define a bivariate generating function
G (g,p) according to

Glgp)=[ [(r/L) TP g aar . (36)

Evaluating the partial derivatives of G (g,p) at the origin,
the following resuits are obtained:

2
((a—apP) =[in(r /L))~ 2TLL) ., (37a)
aq q=p=0
2
((a’—a(',)z)—':[]n(r/L)]_laT(qz’ ) (37b)
9p g=p=0

The individual intermittency exponents of both measures
can therefore be obtained by

p=—d(q,p)/3q> \ (38a)

g=p=0"

/.L’=—82'r(q,p)/8p2\q:p=0 . (38b)

Next, it is of interest to compute p, the correlation

coefficient between a and a’ defined as

_ ((a—ap)a’—ap))
((a—ag))*{((a' —ap)*)'"?

Taking mixed derivatives of G (g,p) one obtains the fol-
lowing general expression for p:

p (39)

9 9 I
_ dp d _ dq dp
- 1 /2 = 72 (40)
3%r 3’r 3*r ¥r
2 4.2 2 42
dq° dp g=p=0 199" 3p a=p=0

This is also the correlation coefficient between In[p,(x;)]
and In[p,(x;)].

It is clear that such a formulation can be carried fur-
ther to N joint-multifractal measures. For such cases,
one obtains a joint moment exponent 7(q,4,,...,qy),
and the second-order statistics of the local scal-
ing exponents a'',a'?,...,a™ can be described
by a covariance matrix defined according to

py=—3"7(q1,q2 - - - ,qx)/34;3¢;.
E. Statistical dependence and independence

In this section we analyze two limiting cases, where the
two measures are either independent or entirely depen-
dent.

1. Independent distributions

When p,(x;) and p,(x;) are independent, one can write
that

S, ) VP (x) P ~r =X, (x) VI, (x) 1)

=r «p,x)1([p,(x)P) . (41
Therefore, 7(q,p) of independent multifractals is

m(g,p)=d +(g —1)D,+(p —1)D, .

X (42)

From this it follows directly [applying Eqgs. (7)] that
fla,a)=fla)+fla')—d . 43)

This can also be obtained by realizing that the probability
of an iso-(a,a’) set is the product of the individual in-
dependent probabilities of finding an iso-a set and an iso-
a’ set. Therefore,

nr(a’a')~(r/L)d_f(a,a')~Hr(a)Hr(al)~r2d—f(a)-f(a')’
(44)

from which (43) follows directly.
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2. Completely dependent distributions

In such cases, when a has a certain value, a’ has al-
ways the same value. Therefore, there is a one-to-one re-
lation between a and a’, which we write as a'=a’(a).
Now,

S, (x) Vlp,(x) ) P~ (r /L)1 P O=S@ 45)

where a is the solution to

of(a) da’
ST =g p S
oa q "aa

Of course, this should be equal to the results that one ob-
tains by expressing a as a function of a’:

Sp, (x)p/(x) P~ (r /L3P =) o (47)

(46)

where a’ is the solution to
af'(a’) da
————=p+qg— .
aal p q aal

Therefore, 7(q,p) for completely dependent joint mul-
tifractals is

(48)

(q,p)=qa+pa’(a)— f(a)=pa’'t+qala’)—f'(a'),

(49)

where «a in the first equality is given by the solution to
Eq. (46) and a’ in the second equality is given by the solu-
tion to Eq. (48).

IV. TWO SPECIAL CASES

In this Section, we analyze joint log-normal and joint
binomial distributions. Log-normality is traditionally be-
lieved to be a reasonable approximation of the distribu-
tion of small-scale quantities in turbulence, whereas bino-
miall1 models arise naturally in describing cascade mod-
els.

A. Joint log-normal distributions

If both measures are formed by multiplicative process-
es, the variables In[p,(x;)] and In[p,(x;)] are each given
by the sum of the logarithm of some multipliers. The
central-limit theorem would then suggest that both vari-
ables p,(x;) and p,(x;) form a joint log-normal distribu-
tion. The purpose of this section is to elaborate on the
properties of joint log-normal distributions. However,
for general multifractals, we expect log-normality to be a
good approximation only around the maximum of the
distribution, and not near its tails.?%%3

The probability density function of two joint log-
normal variables p, and p, has the form

(p,,p.)=Qnap,ploa’) 'exp(s) , (50a)

where

6=[2(1—p*] {[In(p,)—m]*/0?
—2p[In(p,)—m][In(p,)—m'] /o0’
+[In(p,)—m'*/0"?} . (50b)

Here, m,m' and o%,0'? are, respectively, the means and

variances of In(p,) and In(p,), p being their correlation
coefficient. From Sec. II, we know that these values are
given by

m =aqgln(r/L) , (50c¢)
m'=qgln(r/L) , (50d)
o*=pIn(L/r), (50e)
o*=pu'In(L /r) . (50f)

Here 1 and p’ are the intermittency exponents of each of
the individual log-normal measures. This type of distri-
bution was proposed by Van Atta?® for describing the
joint distribution of the dissipation of kinetic energy and
passive scalar variance.

Using p,(x;)~r% and p,(x;)~r® and recalling that
H,(a,a’)~rd_f(“""), we obtain that f(a,a’) of joint
log-normal distributions is given by

fla,a')=d—[2(1—pH]7!
X[(a—ay)*/u

—2pla—ag)a’ —ay) /(uu' N?

+la'—ay)/u'] . (51)

This is an elliptic paraboloid, whose eccentricity and in-
clination are controlled by the correlation coefficient p.

Applying relations (32), we can obtain a, ', and
f(a,a’) as functions of parameters g and p. The results
are

alg,p)=d +u/2—[ug+plup)'’?p], (52a)
a'(g,p)=d+p' /2—[u'p+plun')’?q], (52b)
fla,a')=d —[ugq*+2p(uu' ) *qp +u'p?1/2 . (52¢)
Finally, 7(g,p) for joint log-normal measures is
T(g,p)=(q+p —1)d +(qu+pu')/2
—[ng*+2p(pp’) *qp +u'p?1/2 . (52d)

Notice that for a multivariate log-normal, the scaling ex-
ponent of the joint distribution can be written as

(m (2 N
flaVa?, ... a™)
=d —Ha"—a"p; (a—af’], (53)
1

where " is the inverse of the covariance matrix of the
local exponents a'”.

B. Joint binomial multifractal measures

A joint binomial cascade produces two distinct binomi-
al measures defined on the same unit interval. It
proceeds as follows: One starts with two uniform distri-
butions defined on the unit interval. At the first iteration
(n =1), the unit interval is split into two equal pieces of
length §. The total measure of both distributions is now
multiplied by multipliers M and M’ (the prime again dis-
tinguishes between the two distributions), where M and
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M' are random numbers selected according to some rule.
This then determines the new values of both measures on
each of the two pieces. At the second iteration (n =2),
both pieces divide again into equal pieces of size 4, and
for each piece a random choice for both M and M’ is
made, according to the same rule as before. After many
steps, two distinct multifractal measures are generated on
the same unit interval.

The simplest nontrivial choice for this process is to
select M and M’ from a binomial distribution. For in-
stance, M =p, or p,=1—p, with equal probability, and
M’'=p] or p,=1—p; also with equal probability (say
p1>+ and pj >1). There are now several possibilities
concerning the degree of correlation of the multipliers M
and M' at each piece. If the two multipliers are selected
in a completely independent manner, both measures will
be independent joint multifractals (see Sec. IIIE1). On
the other hand, if every time a piece receives for the first
distribution a multiplier M =p,, it receives for the other
distribution the multiplier M’'=p] (or whenever M =p,
then M'=p,), then the two resulting multifractal mea-
sures are completely dependent (see Sec. IIIE2). Com-
pletely anticorrelated measures would result if M =p,
whenever M'=p), and M =p, whenever M'=p].

A plethora of intermediate possibilities exists in terms
of the degree of correlation between the two processes.
For illustrative purposes, we will focus on two cases. The
first one consists of a process where with probability y
both multipliers M and M’ are completely dependent,
and with probability 1—7 they are anticorrelated. We
now compute 7(g,p) of such a joint binomial distribution.

In general, each p(x;) and p,(x;) will be given by the
product of n realizations of the multipliers M and M'.
Therefore

2o ) Vp(x )P ~r ™ KLp, (x) )P/ (x,) 1)

~r—‘<ﬁM,9(M;>P> . (54)
i =1

The averaging is performed over all boxes. One can also
compute the average of 3 ;[p,(x;)]%p,(x;)]? over the en-
tire distribution of M and M'. If we assume that there
are no correlations between the cascade steps at different
levels, we can write

S x)Vp(x )P ~r T MM P (55)

One can now write

(MM'?) ZY(MqM'p)corr+(l_y)<MqM’p)anticorr .

(56)

Now we recall that M can take values p, and p, (with
equal probability), and M’ can take values p} and p;. In
such a case the moments are given by

(57a)
(57b)

(MIM?) . =[p{(p1 ¥ +pi(p2F)/2,
<MqM’p)anticorr=[(pY(p:2 )p+pg(p'l )p]/z :

Substituting these values in Eq. (56) and using r =277,

we obtain 7(q,p) for such a joint distribution as
mg,p)=—log,{y[p{(p1 P +pi(py )]
+(1=y)p{(p3¥+pi(p1 "]} . (58)

To compute the intermittency and correlation exponents,
we evaluate derivatives of 7(g,p) at ¢ =p =0 to obtain

2
y.=—3——2- =In(p,/p,)n(p,/p,)/(41n2) , (59a)
q" lo,0
[ p— aZT —_— ’ ’ ’ !’
p=—-—=1| =In(p}/py)n(p}/py)/(4In2), (59b)
dp 0,0
O | (1= 2y )n(p, /pyin(p’ / ')/(41n2) . (59¢)
39 |o ¥)n(p, /p,)n(p; /p; n2). (59

Therefore, using the definition of p [Eq. (40)], we obtain
p=2y—1. (60)

This is consistent with the expected behavior of p as a
function of y.

If one assumes, as the second example, that the two
processes are completely correlated with probability 7,
while being completely independent with probability
(1—7y), one can show that 7(q,p) is now given by

m(g,p)= —log){y(p{+p§)+(1—y)/2[(p| ¥+ (p; )]
X[p{(p1¥+pi(p5»]} . (61)

The individual intermittency exponents are the same as
before, but the correlation exponent p turns out to be

pP=Y . (62)

Both Egs. (61) and (58) give the same result when ex-
pressed in terms of p: namely,

(q,p)= —log,{p(p{+p3)+(1—p)/2[(p] ¥+ (p}) V]
X[p{(p1P+pi(p5¥1} . (63)

It appears at this level of description that the details of
how precisely the partial degree of correlation comes
about is immaterial. We will return to joint binomial
models after analyzing experimental results in the next
section.

V. JOINT MULTIFRACTAL DISTRIBUTION
OF (3u, /3x)* AND (3T /3x )?

In turbulent flows, it is usually thought that some cas-
cade process*®?’ is responsible for the transfer of kinetic
energy from the large scales to the small scales of motion.
The cascade ends at the smallest scale of motion, the Kol-
mogorov scale 7, at which the flux of kinetic energy to
smaller scales equals the dissipation €, defined as
ou; Ju; 2

ax, a‘" (64a)

Here v is the kinematic viscosity of the fluid, and the u;’s
are the instantaneous turbulent velocity components. If
the turbulent flow is advecting a passive scalar of concen-
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tration 6, then there is also a flux of the scalar variance to
smaller scales.””?® At the smallest scales it is equal to ¥,
the rate of dissipation of passive scalar fluctuations,

defined as

2 |

64b
o (64b)

x(x,t)=T

I is the molecular diffusivity of the scalar 6. Such cas-
cade processes generically produce very intermittent dis-
tributions of dissipation, a well known feature of small
scale turbulence. As mentioned already, both € and y
have been shown individually to be multifractals. This
section is devoted to the study of their joint distribution.
For experimental reasons, we can only study the joint dis-
tribution of single terms of Egs. (64). This means that we
will only consider surrogates € and Y’ of dissipation,
defined as

2] (65a)
£ = ax N a
and
3 |
X=|=— , (65b)
dx

where u, is the streamwise velocity component, and x is
the streamwise coordinate. For the scalar, we use heat; 6
is then the fluctuating temperature 7.

Joint measurements of velocity and temperature were
performed by Antonia and Van Atta?® in a heated jet.
Using Taylor’s hypothesis they measured a correlation
coefficient between In(du,/dx)? and In(dT /3x)* of the
order of 0.5. Similar measurements were made by An-
tonia and Chambers®® in the atmospheric surface layer.
They obtained slightly lower estimates for the correlation
coefficient.

The aim of the present section is to make similar mea-
surements in the turbulent wake of a heated cylinder, and
to measure the entire joint distribution of ¢’ and y'. We
expect a joint multifractal distribution, and analyze ap-
propriate experimental results using the theory outlined
in Sec. ITI. In Sec. V A we present the experimental pro-
cedure. Section V B explains data processing and Sec.
V C presents the results. Section V D contains a compar-
ison of the present results with the previous ones on
structure functions of temperature; we also present some
modeling ideas using joint binomial measures.

A. Experimental procedure

Joint measurements of velocity and temperature were
performed in the wake of a heated cylinder. The temper-
ature fluctuations were measured with a 0.6-um-diameter
cold wire, operated at a constant current of 120 uA. The
cold-wire electronics was based on the design by Peat-
tie.! The velocity fluctuations were measured using a 5-
pum diam hot wire, operated at an overheat of 1.7 on a
DANTEC 55M10 constant-temperature bridge. Both the
sensors were made of Pt—10% Rh. The actual lengths of
both the sensors was 0.5 mm. The free stream velocity
was 9 m/s and the rise of mean temperature above the
ambient was 2.5°C. The cylinder diameter D was 1.9 cm,

so that the Reynolds number based on it is about 12 000.
The measuring station was at x /D =90 from the cylinder
at the fluid dynamic centerline. The cylinder was heated
uniformly with internal heating elements. Forty files of
1.2X 10° data points were taken using two-channel data
acquisition. The signal from the cold wire was filtered at
4.0 kHz, and that from the hot wire at 6.3 kHz, using two
DANTEC 55D26 signal conditioners. The signals were
sampled at a data acquisition frequency of 15 kHz on a
12-bit analog-to-digital (AD) converter of a MASSCOMP
5500 computer. The Kolmogorov scale was estimated to
be of the order of 7=0.03 cm, the integral scale comput-
ed from the autocorrelation of the velocity signal was 7
cm, and the first zero crossing of the autocorrelation
function occurred at around 25 cm.

One of the most important considerations in operating
the hot and cold wires simultaneously is that the two
wires must in principle be as close together as possible,
but yet there must be minimum interference between
them. In principle, the distance between the two probes
needs to be closer than a Kolmogorov scale but, in such
closeness, the hot wire, which operates at temperatures of
the order of a few hundred degrees, tends to contaminate
the cold-wire signals. Much effort was invested on this is-
sue, and details will be reported elsewhere. The net result
is that an optimal configuration was arrived at by placing
the cold wire 0.5 mm upstream of the hot wire and at
right angles to it, so that the upstream-downstream view
was a cross. This configuration practically eliminates
thermal effects of the hot wire on the cold wire. A fur-
ther discussion of this point is given in Sec. V C.

The quantities ¢ and y' were obtained by simply
differencing the velocity and the temperature signals ac-
cording to

. | 9u ’ 2

e~ |, ~[u (e +8t)—u (1)), (66a)
ar |’

X~ |5 ~[T(t+8)—T )], (66b)

where 8¢ was the sampling interval corresponding ap-
proximately to two Kolmogorov time scales. Here we
use Taylor’s frozen flow hypothesis. The use of Taylor’s
hypothesis for this purpose has been partially substantiat-
ed by the results of Refs. 13, 14, and 32. In subsequent
stages of data processing, €' and Y’ will be normalized, so
that we need not worry about numerical prefactors in
Eqgs. (66). As already noted, Figs. 1(a) and 1(b) show typi-
cal segment of data of €’ and ' along the same linear cut.
It appears from these typical data segments that no
strong correlation exists between the intense peaks of
these two signals. The actual correlation will be
quantified more rigorously in the following sections.
Clearly, €’ is less intermittent than y’.

Now let us divide the entire data set into disjoint
“boxes” of size r. We define E,(x;) and X,(x;) as the to-
tal €’ and ¥’ contained in a box of size r centered at posi-
tion x;, normalized by the total dissipation on the entire
data set of length L considered. L is much larger than the
integral scale. That is,
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fx _,p Elx")dx’
E,(x;)=—" ) (67)
fLe'(x')dx’
0
x,+r/2
[ L, X/(x")dx’
X, (x;) ="+ (68)
fOLX'(x’)dx’

If ¢’ and ' form a joint multifractal distribution, we ex-
pect that

E.(x)~r® (69)
X, (x)~r®, (70
N,(a,a')~r Sl@a) (71)

in addition to
SLE,(xp) VX, (x) PP ~rT@P) (72)
i

Here ~ means “proportional to” (the prefactors in these

relations may differ greatly from unity). The sum in Eq.
(72) is performed over all (disjoint) boxes of size r.

B. Processing the data

We are now interested in evaluating the following sums
over all boxes of size r contained in the data set of length
L:

Z,u,(x,-;q,p)ln[E,(x, )17, (73)

Su,(x,59,p)I0[X,(x,)], (74)

2 xi5g,p)nlp,(x,59,p)] (75)

In E[E,(x,)]"[X,(x,-)]"] , (76)
where |

1 (x134,0) = [ E, (x, ) J9LX, (x, )} / SLE, (x)JLX, ()] |

(77)

In Ref. 9, the basic observation was made that if L was
chosen to be very large in order to guarantee the conver-
gence of moments, the extent of the power-law regimes
was consistently shorter than if L was chosen to be of the
order of 30 integral scales or so. (We point out that in
many cases the scaling range is larger than the usual iner-
tial range, but this needs better quantification.) The issue
is documented in detail in Ref. 12. For completeness, we
present both procedures of measuring the scaling ex-
ponents. In the first method, the quantities of Egs.
(73)—(77) are obtained by using L =4.3 X 10* times the in-
tegral scale, that is, we use all 5X 10% data points avail-
able from the measurements. Here it is of interest to
study the speed of convergence of moments. To show
that the number of data points considered here is
sufficient to guarantee such a convergence, it is best to
plot moments of the form (efy?) as a function of the
number of data points used to compute the averages.

Here €, and y, are the dissipation rates averaged in a box
of size r, or ¢,=E,/r, x,=X,/r. This is done for
different box sizes r. The results are shown in Figs.
2(a)-(d) for different choices of g and p. For convenience,
we plot the (normalized) results in logarithmic units, and
divide by (g +p —1). As can be seen, after 5X 10° points,
the convergence is good (especially for box sizes
r/m=30), even for moments of order as high as
p t+q=8.

In the second method, we obtain the sums of Egs.
(73)=(77) using L =40 times the integral scale, that is, we
use 5X 10° data points only. This is then repeated for 20
such segments of data.
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FIG. 2. Convergence of moments as a function of the length
of the data. Different symbols correspond to different box sizes
r. Circles, r/n=10; squares, r/n=30; diamonds, r/n=100;
triangles, r/7=300. (a) shows the convergence of the fourth
moments of €,. (b) shows the same for y,. In (c), we show the
convergence of the fourth negative moment of y,, and (d) is for
a mixed moment of order 8 (¢ =4, p =4).
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The calculation of the quantities in (73)-(77) is repeat-
ed for a variety of values of g and p. A total of 172 pairs
of (g,p) are used, equally spaced at the interval of 0.5 be-
tween —4 and +4. Twenty-four different box sizes be-
tween r /=5 and r /9=1000 are used. We then obtain
the exponents alq,p), a'(p,q), f(q,p), and 7(q,p) from
the slopes of plots of the computed quantities as a func-
tion of the box size. Figures 3(a)-3(d) show such plots
for the method of long-term averaging. a(q,p) is obtained
from plots such as Fig. 3(a), a' (g,p) from Fig. 3(b),
f(a,a’) from 3(c) and 7(q,p) from plots such as 3(d). No-
tice that for convenient representation, we plot

In[S[E,(x;)]X,(x;) ]/ e tp 1

instead of expression (76), so that the slopes shown in Fig.
3(d) correspond to 7(q,p)/(q +p —1) rather than to
7(q,p).

Representative samples of the relevant plots for the
method of short-term averaging are presented in the Ap-
pendix.

The slopes are obtained by least-square error fits
through the points within a range of scales in which the
graphs appear most linear. As can be seen in Fig. 3, for
the long-term averaging procedure such a range is unam-
biguous (1.5 decades) for the expressions involving Y’
only, the dissipation of the scalar (this is, when ¢ is close
to zero). However, the plots involving €’ only (where p is
close to zero) seem to possess shorter linear segments.
Thus it seems that Y’ possesses a larger range of self-
similarity than does €’. It is not entirely clear why this
must be so, but one possible reason is that y’ represents
the scalar dissipation more accurately than €' does € be-
cause, unlike €, Y does not contain any cross terms [see
Egs. (64)].
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FIG. 3. Log-log plots obtained from the measurements in the
heated wake of a cylinder, corresponding to different choices of
q and p. Starting clockwise from the upper left, the slopes of the
linear fits (using a scaling range of r/17=30 to 250; solid lines)
correspond to alq,p) a'(q,p), 7(q,p)/(qg +p —1), and f(a,a’).
Circles with + correspond to (g,p)=(4,0); circles=(0,4);
squares =(0.5,2); X =(0,0); triangles =(—1,0) and diamonds
=(0, —4).

At any rate, it appears that the best linear fit can be ob-
tained in a range between r/7=30 and r/%=250. The
fits were then obtained automatically for all 172 pairs of
(g,p). Such fits are shown as solid lines in Figs. 3. In or-
der to obtain a qualitative idea about the uncertainty of
the results because of the precise selection of the scaling
range, the fits were also made in a range at smaller scales
(r/m=20 to r/n=100), and in a range at larger scales
(r/m=40 to r /q=400).

For the second method of using shorter data sets when
computing the quantities in (73)-(77), we observe from
the figures in the Appendix that the linear regimes are
somewhat more extensive, but also that there is larger
scatter in the data points. Shown as solid lines are linear
least-square error fits through the points in a range be-
tween r /n=25 and r /7=400. The procedure is repeated
for 20 data sets, and the exponents are obtained by fitting
automatically for all 172 pairs of (g,p). The results vary
somewhat from one data set to another, but the mean of
all 20 realizations is used as representative. The corre-
sponding standard deviations have also been computed.

The results of both procedures are given in the next
section.

C. Results

By the procedures outlined in the previous section, we
obtain al(g,p), a’(q,p), f(q,p) and 7(q,p). Next we can
obtain f(a,a’) as an explicit function of a and a’ by in-
terpolating the f values on an equally spaced mesh in a
and a'. The resulting contour plot is shown in Fig. 4 for
the long-term averaging method. Figures 5(a) and 5(b)
show f(a,a’) resulting from the use of the other scaling
ranges r /11=40 to 400 and r/1=20 to 100, respectively.
This gives an estimate of the uncertainty of the results as-
sociated with the selection of the precise scaling range.
Figure 6 shows the mean f(a,a’) obtained from all the
realizations of the short-term method. Figure 7(a) shows
this mean result minus two standard deviations of the in-
dividual results, and Fig. 7(b) shows the mean f(a,a’)

FIG. 4. Positive (manifest) portion of f(a,a’), obtained from
log-log plots like Figs. 3 using long-term averaging. Lines are
iso-f values corresponding to f(a,a’')=0.01, 0.4, 0.7, 0.9, and
0.95. This contour plot represents the fractal dimensions of
iso-(a,a’) sets of the joint multifractal distribution of € and y in
the turbulent wake of a heated cylinder. The scaling range used
to obtain this result was from r /=130 to 250.
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FIG. 5. Analysis of the sensitivity of f(a,a’) on the scaling
range used. (a) shows the contour plots of f(a,a’) using a range
of r/17=40 to 400. (b) shows the contour plots using a range of
r/n=20 to 100. The contour lines represent the same levels as
the ones in Fig. 4. The sensitivity is relatively high due to the
moderate Reynolds number of the flow.

plus two standard deviations of the individual results.
This gives an estimate of the uncertainty of the result as-
sociated with the individual shorter averages.

Figures 4 and 6 are the main results of this section.
They are the positive (manifest) part of f(a,a’) for one-
dimensional intersections through the joint field of ¢’ and
x'. Due to the relatively moderate Reynolds number of
the flow, the uncertainty of the results is quite large as
seen from the magnitude of the error estimates in Figs. 5
and 7. However, we believe that the main features of the
joint multifractal distribution of €’ and y' are clearly visi-
ble is these results. We also note that both results from
long-term averaging and the mean of short-term averag-
ing are similar, the differences being of the order of the
uncertainty itself. The difference is larger at the low in-
tensity part of the distribution, where the influence of
noise, and the occasional “irrotational” portions of the
signals (see Ref. 12) are of relevance.

Let us now briefly remark on the distribution of a and
a’ separately. We see from Fig. 4 and 6 that the limits
of a (singularity strengths of &') are a;,=0.5 and

FIG. 6. Positive (manifest) portion of f(a,a’), corresponding
to the mean of 20 short-term results (see Appendix). The scal-
ing range used to obtain this result was from » /7=25 to 400.

(a) (b)

T T T T
2 b 2 b .
St @ 1 Sit @ 1
1 1 1 1
0 0 1 2 0 0 1 2
(2 [43

FIG. 7. Illustration of the variability of f(a,a’) from one
realization to another, using short-term averages. In (a) we plot
the mean of f(a,a’) minus twice its standard deviation, and in
(b) we plot the mean of f(a,a’) plus twice its standard devia-
tion. The contour lines represent the same levels as the ones in
Fig. 6.

a,.,~1.8 (where f =0 on the linear cut), in agreement
with the results of Ref. 9. Also, the limits of a' (singular-
ity strengths of x') are a,;,~0.4 and a,,,,~1.8, in rough
agreement with the result of Refs. 13 and 14.

In order to allow for a more detailed comparison with
previous measurements, we notice that f(a), the fractal
dimension of an iso-a set, can be obtained as a function of
f(a,a’) by noting that

M (a)da= fa‘H,(a,a')dada’~rd_max"f(a'a‘) ,
(78)
for small r. Therefore
fla)=max,f(a,a’) . (79)

Similarly f'(a’), the dimension of iso-a’ sets is given by
f'(a’)=max,f(a,a’) . (80)

Figure 8 shows a comparison between f(a) obtained
from f(a,a’) via Eq. (79) and that measured in Ref. 9.

fla,a)

MAXgr

fla)

o

FIG. 8. Comparison of f(a,a’) with previous results on
f (a) of the single multifractal distribution of €. Circles and er-
ror bars correspond to the mean and uncertainty of the results
of Ref. 9. Squares are the maximum of f(a,a’) over a’, using
long-term averaging. This is the dimension of iso-a sets, for any
o' value. Triangles correspond to the mean value of
max,f(a,a’) using short-term averaging. The dashed lines
represent the sensitivity on the scaling range for the long-term
averaging, and again two standard deviations for the short-term
averaging.
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FIG. 9. Comparison of f(a,a’) with previous results on
f'(a') of the single multifractal distribution of x’. Circles and
error bars correspond to the mean and uncertainty of the results
of Refs. 12 and 14. Squares are the maximum of f(a,a’) over a
using the long-term averaging. This is the dimension of iso-a’
sets, for any a value. Triangles correspond to the mean value of
max,f (a,a’) using short-term averaging. The dashed lines
represent the sensitivity on the scaling range for the long-term
averaging, and again two standard deviations for the short-term
averaging.

They agree with each other within the experimental un-
certainty. Figure 9 shows f'(a’) obtained from Eq. (80)
and from Refs. 13 and 14. Except for the right-most
part of the curve (which is influenced by noise), the agree-
ment is quite good.

Returning to the general shape of f(a,a’), we notice
that it is stretched in the a’ direction, consistent with the
previous observation that y’ is more intermittent than ¢’.
However, it is not very eccentric and tilted, which seems
to suggest that a and a’ are not strongly correlated. This
will be quantified using the moment exponents 7(q,p)
below.

The function 7(q,p) is shown in the form of contour
plots in Figs. 10 and 11, again for both averaging
methods. The different bundles of lines in Fig. 10 corre-
spond to different iso-7(q,p) values. The middle line in
each bundle is obtained from fits using the scaling range

Tlg.p)

FIG. 11. Contour plots of 7(q,p) measured from slopes of
plots like Figs. 2830 (see Appendix) using short-term averages.
The bundles of contour lines correspond to 7=—10, —5, —2,
0.01, 1, 2, 3, and 4. The curves in the middle of each bundle
correspond to the mean of the 20 realizations (see Appendix);
the other two correspond to the mean value plus and minus two
standard deviations.

7(q,p) on the selection of the scaling range. The middle
lines in Fig. 11 correspond to the mean value of 7(g,p)
from the 20 realizations of the short-term method, and
the other lines correspond to twice the standard deviation
on either side of the mean. [To check the validity of Egs.
(32), we obtained alq,p), a'(g,p), and f(a,a’) by evaluat-
ing the first derivatives of 7(q,p). The results are indistin-
guishable from those of Figs. 4 and 6.]

In order to compute the second-order derivatives of
(or first derivatives of a@ and a’) required to obtain pu,u’
and p, we plot in Figs. 12(a) 3*7/3¢* for p =0 as a func-
tion of ¢, and in 12(b), 827/8p2 for ¢ =0 as a function of
p. To compute p, we plot 3>7/3q dp for p =0 as a func-
tion of g in Fig. 12(c) and for ¢ =0 as a function of p in
Fig. 12(d). The derivatives are evaluated to order
O(Ag?) using finite differences on the mesh with

r/n=30 to 250 on the long-term results; the other two 2
lines correspond to other scaling ranges mentioned o
above, and thus give an estimate of the sensitivity of 3
K4
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FIG. 10. Contour plots of 7(q,p) measured from slopes of
plots like Figs. 3(d) using long-term averages. The bundles of
contour lines correspond to 7= —10, —5, —2, 0.01, 1, 2, 3, and
4. The curves in the middle of each bundle correspond to using
a scaling range of r/7=230 to 250; the other two correspond to
r/m=40 to 400 and r /=20 to 100.
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FIG. 12. Second-order derivatives of 7(g,p) along the g and p
directions at ¢ =0 and p =0, obtained from centered differences
of the result of Fig. 10. The values of these curves at the origin
correspond to (from the upper left corner clockwise) u, ', and
p. The dashed lines correspond to the use of the scaling ranges
r/n=20 to 100 and 40 to 400.
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Ag=0.5. The solid lines correspond to the derivatives of
7(q,p) obtained from fits in the central range of the long-
term procedure. The dashed lines are obtained from the
values of 7(g,p) corresponding to the other scaling
ranges. The intercepts of these curves at g =p =0 are

12

07| —1~0.20+0.05, (80a)
dq 0,0
-

07| —1'~0.3420.05 (80b)
dp 0,0
— 12 12

o7 | — 97| _0.034+0.01 . (80c)
p3dq |oo 9PIq |o0

Figures 13(a)-13(d) show analogous results using 7(g,p)
from the short-term averaging procedure. The results at
g =p =0 are essentially similar to the long-term averag-
ing ones, and we shall not use them here explicitly. Us-
ing the definition of p given in Sec. IIID, we obtain
p=~=0.13£0.04. This relatively low degree of correlation
is consistent with the general shape of f(a,a’). We have
also computed the correlation coefficient of In(g,) and
In(y, ) directly for different box sizes. The results (circles)
are shown in Fig. 14. This is quite consistent with a
value of 0.13 for p obtained through 7(q,p). The squares
in Fig. 14 are the correlation coefficients of €, and ,.

A comparison is now appropriate between this value of
p and the measurements of Refs. 29 and 30. There, the
correlation coefficient of In(e,) and In(y,) was measured
in jets and the atmospheric surface layer for several
values of r. Their results are considerably higher than
the present ones, quite outside experimental uncertainty.
This discrepancy may be due to the following reason: A
problem that arises in jets is that the ratio of the fluctuat-
ing velocity to the sweeping velocity is not small, as op-
posed to wakes, where this ratio is indeed small. If one
operates a hot wire at a high overheat (as was done in the
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FIG. 13. Second-order derivatives of 7(q,p) along the g and p
directions at ¢ =0 and p =0, obtained from centered differences
of the result of Fig. 11. The dashed lines correspond to the
mean plus and minus two standard deviations, which is very
small at the origin.
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FIG. 14. Correlation coefficient of In(e,) and In(y,) as a
function of r (circles). Squares are the correlation coefficients of
€, and y,.

above-mentioned references), there may be a strong
influence of the hot wire on the cold-wire readings, thus
artificially increasing the observed correlation between ¢’
and )’. Our preliminary measurements in heated jets
indeed confirm this possibility. This issue will be report-
ed in detail in Ref. 33. This effect is not as severe in the
atmospheric surface layer as in jets, and the somewhat
smaller values of the correlation appear to be consistent
with our conclusion that the correlation is indeed small if
the two probes do not communicate with each other.

D. Implications on structure-function
exponents of passive scalars

By dimensional analysis, it is usually?’ argued that the
statistics of passive scalar differences |6(x +r)—6(x)|
should be similar to the statistics of /%, 1/®y!/2 where
€, and X, are the rates of dissipation averaged in boxes of

size r. Accordingly, one can write

([6(x +r)—0(x)]") =(AO") ~r"/5e, " /Sx"/2) . (81)

Unlike the velocity-structure functions, {(A6”") depends
on both the joint statistics of ¥ and €. Using E, =re, and
X,=rx, on the linear sections through the dissipation
fields, it follows that

(A07) ~r | (82a)
where
§n=1+7(qg=—n/6,p=n/2). (82b)

Thus we can obtain ¢, from a cut through the 7(q,p) sur-
face along the line g=-—p/3. The values of
7(—n/6,n/2) were obtained from Figs. 10 and 11 for
n =0 up to 8 by linear interpolation [since 7(q,p) is only
available on a mesh of spacing Ag=Ap=1]. In Fig. 15,
circles correspond to 1+7(g=—n/6,p=n/2) from
measurements of the previous section using long-term
averaging. Triangles correspond to results using short-
term averaging. Dashed lines are the estimates of experi-
mental uncertainty. Squares correspond to experimental
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FIG. 15. Scaling exponents &, of the temperature structure
functions of order n. Squares are experimental results from An-
tonia et al. (Ref. 34). Circles are the results using the present
results obtained from 7(g,p) using long-term averaging. Dia-
monds are from measurements using the mean of short-term
averages. The dashed lines are again estimates of the uncertain-
ty of the results.

results of £, obtained by Antonia et al.** directly from
temperature structure functions. The measurements
agree quite well for n up to 6. For higher moments, our
results fall below the results of Ref. 34. We will return to
the data in the next section, but note here that the reason
for the discrepancy for higher n is unknown. We also
note that getting 12th-order structure functions reliably
is quite demanding both in terms of length and stability
of data.

E. Modeling of the joint distribution of ¢’ and Y’

Antonia et al.** compared their results on the scaling
exponents of temperature structure functions to predic-
tions by B models and joint log-normal distributions.
Both types of models were shown to be inappropriate.
As a digression, we write here the expression for &, for
the case of joint log-normal distributions for different in-
termittency exponents ¢ and u'. The expression is

Co=n/3—n(u—3u)/12—n [p—6plup’ ) ?+9u’']1/72 ,
(83)
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FIG. 16. Scaling exponents §, of the temperature structure
functions of order n. Symbols as in Fig. 15. The dot-dashed
line is a joint binomial model with p,=0.7, p{=0.75, and
p=0.13. The solid line is the same model with p=0.3, which
seems to fit the data better. The double dot-dashed line is for
p=0.5. Joint log-normal distributions with ©=0.2, u'=0.34,
and p=0.13 or 0.5 give the two parabolas at the bottom.

which is obtained by substituting Eq. 52(d) into Eq. 82(b).
For u=p', this relation reduces to the equation given in
Ref. 34.

Now we illustrate that a joint binomial model with the
measured correlation can fit the joint multifractal spec-
trum quite well. We know from Ref. 11 that f(a) of €’ is
well represented by a p model with p,=0.7 and p,=0.3.
Similarly, f'(a’) of ¥’ can be fitted reasonably well by a p
model with p| =3/4 and p; =1. [These models are valid
for the positive (manifest) portion of the f(a) curve of
the one-dimensional cuts only.] We use our measured
value of p=0.13 and use Eq. (63) to obtain 7(—n /6,n /2)
for the joint binomial distribution.

The dot-dashed line of Fig. 16 shows the result for
p=0.13. If we want to improve the fit, we see that
p=0.3 seems more appropriate (solid line). Also, if we
try to fit the results of Ref. 34 using joint binomial mod-
els with some higher value of p (e.g., p=0.5, the double
dot-dashed line of Fig. 16), we see that it still asymptotes
below the measurements of Ref. 34. The predictions of
joint log-normal distributions for ©=0.20, u’'=0.34, and
p=0.13 give the parabola shown in the bottom part of
Fig. 16. The other parabola corresponds to p=0.5 but
the same intermittency exponents. It is clear that they do
not agree with the data, not even up to n =6.

Returning to joint binomial distributions, Fig. 17
shows the entire f(a,a’) for the case of p=0.13 and Fig.
18 for p=0.3. The overall agreement between the model
and the observations in Figs. 4 and 6 is better for
p=0.13. This leads one to ask why the agreement was
better in regard to {, for p=0.3 instead of 0.13. The
reason is that (AT") (for n >0) will be dominated by
points where Y is high but € is low, or where a’ is low and
a is high. This corresponds to the lower right quadrant
of f(a,a’). In this region, we see that Fig. 18 is closer to
the measurements. Thus, it appears that even though
joint binomial models provide a useful “first-order”’ mod-
el for the joint distributions of ¢’ and ', much superior
to log-normal and 8 models, they do not reproduce every
detail of the observations. For instance, the slight asym-
metry of the lower-right and upper-left parts of Figs. 4

FIG. 17. Positive part of f(a,a’) of a joint binomial cascade
with p;=0.7, p;=0.75, and p=0.13. Lines are iso-f values
corresponding to f(a,a’)=0.01,0.4, 0.7, 0.9, and 0.95.
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FIG. 18. Positive part of f(a,a’) of a joint binomial cascade
with p, =0.7, p1=0.75, and p=0.50. Lines are iso-f values
corresponding to f(a,a’)=0.01, 0.4, 0.7, 0.9 and 0.95.

and 6 suggests deviations from predictions of joint bino-
mial models.

VI. JOINT MULTIFRACTAL DISTRIBUTION
OF ¢’ AND ?

One of the dynamically most relevant quantities in a
turbulent flow is the vorticity @ =V Xu. It is well-known
that vorticity fluctuations are intermittently distributed.
‘The square of the vorticity fluctuations is a positive
definite quantity like energy or scalar dissipation, and can
be addressed using the multifractal formalism. This has
been done in Ref. 15, where the f(a) curve for a single
component, namely the square of the ‘“‘streamwise” com-
ponent of the vorticity fluctuation, was presented from
experimental data. The f(a) curve obtained using nu-
merical data generated by directly solving the Navier-
Stokes equations® are in essential agreement with the
measured data.

The aim of the present section is to quantify the joint
multifractal distribution of the square of the streamwise
vorticity and the term €’ of the dissipation. Section VI A
presents issues related to the experimental procedure,
Sec. VIB contains a description of the data processing
techniques, and the results are presented in Sec. VIC.

A. Experimental procedure

The streamwise vorticity probe with four sensor wires
and eight prongs, according to the scheme described by
Wallace,® was constructed and tested. Briefly, eight fine
bead craft needles with diameters of 0.2 mm were used
as the supporting prongs, and the MV20-Mullite
(3A1,0;-2Si0,) round four-bore rods were used as the
probe body. The diameter of the Wallaston wire used as
sensor wires is 5 um and the distances between the planes
containing opposite wires are 1.9 mm, so that their
length-to-diameter ratio is about 380. This is sufficient to
reduce conduction effects to the prongs. The wire angles
varied between 44° and 46°.

The vorticity probe calibration was conducted in the
20X 28-in.? subsonic wind tunnel, and the flow for cali-
bration was uniform and irrotational. By measuring the

output voltage of each wire at various speeds over a cer-
tain range, the constants in King’s law were determined
for all four wires. More details about the probe
geometry, technical design and construction as well as
the calibration procedure can be found in Ref. 15.

Four sets of DANTEC 55M10 (constant-temperature
anemometer) and DANTEC 55D26 (signal conditioner)
were used for the four wires of the probe in the experi-
ment. Those wires were operated at a resistance overheat
ratio of 1.5. The characteristic frequency response of the
vorticity probe was estimated to be 5000 Hz. Thus the
setting of the low-pass filter of the signal conditioners at
4000 Hz was selected.

Data in the atmospheric boundary layer were taken on
the roof of a four-story building on a sunny and windy
day. The mean velocity of the wind was approximately 7
m/s. The position of the vorticity probe was horizontally
set 2 m above that roof.

The acquired signals were digitized using a 12-bit-
resolution high-speed analog-to-digital converter DT2821
with a multiplexer for multichannel analysis. The subse-
quent measurements were carried out in two steps. First,
the instantaneous voltages from the four wires were digi-
tized and stored on the hard disc of an IBM PC-AT com-
puter; before digitizing, analog signals were monitored on
an oscilloscope. Second, the instantaneous values from
the output of the digitizer were computed to give the
streamwise vorticity o,. All the data were later
transfered to a VAX station II for further analysis related
to multifractals.

Figures 19(a) and (b) show typical simultaneous traces
of ¢’ and > along the same linear cut. Both have been
normalized by their respective mean values. These seg-
ments of data reveal a stronger correlation than that be-
tween €' and Y’ in Fig. 1; this will be quantified in the
subsequent sections.

FIG. 19. Simultaneous signals of &'~ (du,/dt)* and w2 ob-
tained in the atmospheric surface layer, both normalized by
their own mean values.
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B. Processing of data

In analogy with Eq. (68), we define W,(x) as the
squared vorticity integrated over a box of size r according

to
x,tr/2

fx s 03 (x")dx’
[ Fa?(x")dx’
0

W.(x;)= (84)

Again, if ¢’ and a)i form a joint multifractal distribution,
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FIG. 20. Convergence of moments as a function of the length
of the data. Different symbols correspond to different box sizes
r. Circles, r/1=10; squares, r/n=100; diamonds, r /7= 300;
triangles, r/7=1000. (a) shows the convergence of the fourth
moments of €,. (b) shows the same for »?, the local average of
2 over boxes of size r. In (c), we show the convergence of the
fourth negative moment of w?, and (d) is for a mixed moment of
order 8 (¢ =4, p =4).

we expect that

E (x;)~r® (85a)

W,(x;,~r®, (85b)

N,((a,a')~r fl@a) (85c¢)
in addition to

SE, (x) W, (x;,)P~rmer (85d)

We need to evaluate expressions like Egs. (73)-(77) over
all data points available from measurements. Here

%300 =B, (x) VW, (x) ¥ | SLE <) FIW, (5 F -

(86)

For the atmospheric flow, the Reynolds number and the
scaling range are expected to be considerably higher than
for the laboratory flow of the previous section. However,
since we have only about a tenth of the data, we expect
the convergence of the higher moments to be incomplete.
Figures 20(a)-20(d) show the value of the moments as a
function of the length of the data set, and it can be seen
that the values at L =8X 10° can still not be considered
as converged. Nevertheless, the relative distance between
the moments at different box sizes r does not fluctuate ap-
preciably, meaning that the power-law exponent obtained
from the appropriate log-log plots should not change too
much as L is increased even further. We are thus in-
clined to believe that the data are adequately long to ob-
tain good approximations of the scaling exponents.
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FIG. 21. Regression plots obtained from measurements in
the atmospheric surface layer corresponding to different choices
of ¢ and p. Starting clockwise from the plot in the upper left
corner, the slopes of the linear fits (using a scaling range of
r/n=35 to 10% solid lines) correspond to alg,p), a'(q,p),
7(q,p), and f(a,a’). Circles with + correspond to (g,p)=(4,0);
circles=(0,4); squares=(0.5,2); crosses=(0,0); triangles
=(—1,0) and diamonds=(0, —2).
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FIG. 22. Positive (manifest) portion of f(a,a’), obtained
from log-log plots like Fig. 21. This contour plot represents the
fractal dimensions of iso-(a,a’) sets of the joint multifractal dis-
tribution of €’ and w2. The scaling range used to obtain this re-
sult was from r /=35 to 10*.

As before, the computation of the sums is performed
for a total of 172 pairs of (g,p) values ranging from —4 to
+4, equally spaced at intervals of Ag=0.5. This is re-
peated for 24 values of different box-sizes from r/n=10
to 10*. We then obtain the exponents a, a’, f, and 7 from
the appropriate plots. Figures 21(a)-21(d) show a
representative sample of such plots. The slopes of the
solid lines (least-square error fits in a range r/%7=35 to
10%) correspond to alq,p), a'(q,p), f(q,p), and 7(q,p).
The power-law behavior extends unambiguously over 2.5
decades.

C. Results

Next we obtain f(a,a’) as an explicit function of «
and a’ by again interpolating the f values on an equally
spaced mesh in a and a’. The resulting contour plot is
shown in Fig. 22. This figure is the main result of this
section and represents the positive (manifest) part of
f(a,a’) for one-dimensional intersections through the
joint field of € and 2. Figures 23(a) and 23(b) show
f(a,a’) resulting from the use of the other scaling ranges
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FIG. 23. Analysis of the sensitivity of f(a,a’) on the scaling
range used. (a) shows the contour plots of f(a,a’) (same levels
as in Fig. 22) using a range from r/7=40 to 10*. (b) shows the
contour plots using a range of /7=25 to 8 000. The sensitivity
is large only for ¢ <0.
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FIG. 24. Comparison of f(a,a’) with previous results on
f(a) of the single multifractal distribution of €’. Circles and er-
ror bars correspond to the mean and uncertainty of the results
of Ref. 9. Squares are the maximum of f(a,a’) over a' which is
the dimension of iso-a sets, for any a’ value. The dashed lines
represent the sensitivity on the scaling range.

r/n=251t0 8X10* and r /7="50 to 10 respectively. The
same iso-f contour lines as in Fig. 22 are shown. Togeth-
er, these figures give an estimate of uncertainty associated
with the choice of the precise scaling range. Due to the
large scaling range, the uncertainty of the results is small
in much of the contour plots. The error is large for the
regions of high a, where ¢’ is low. The scatter of points
in the regression plots is high for large negative values of
g, probably due to noise and insufficient sampling length.
However, the main features of the joint multifractal dis-
tribution of €’ and w2 are clearly visible in the results of
Fig. 22.

Next we can apply again Egs. (79) and (80) to obtain
the single f(a) curves. The single f(a) of €' is given in
Fig. 24, where it is again compared to the previous results
of Ref. 9. Both measurements agree within experimental
scatter. Figure 25 is the f'(a’) of w2, which is quite
asymmetric with a;, =0.5 and a,,, ~2.

Figure 26 shows 7(q,p) for the joint distribution of ¢’
and wi. As in Sec. V, the uncertainty associated with the
scaling range is represented by bundles of iso-7 lines. It is
seen that the uncertainty is large when ¢ <0.
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FIG. 25. f'(a’) curve of the single distribution of w2 ob-
tained from f(a,a’). The dashed lines represent the sensitivity
on the scaling range.
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T(q.p)

FIG. 26. Contour plots of 7(g,p) measured from slopes of
plots like Figs. 21. The bundles of contour lines correspond to
7=-—10, —5, —2,0.01, 1, 2, 3, and 4. The curves in the middle
of each bundle correspond to using a scaling range r/7=35 to
10* the other two correspond to r /7=25 to 8000 and r/7=150
to 10000.

In order to quantify the intermittency and correlation
exponents, we evaluate again the second-order derivatives
of 7(q,p) using centered differences. The results are
shown in Fig. 27. From the values at ¢ =p =0, we infer

£=0.231+0.01,

©'=0.401+0.02 ,
and

p=0.340.03 .

The degree of correlation between ¢’ and 2 is thus con-
siderably higher than between €’ and y’.
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FIG. 27. Second-order derivatives of 7(q,p) along the g and p
directions at ¢ =0 and p =0, obtained from centered differences
of the result of Fig. 26. The values of these curves at the origin
correspond to (from the upper left corner clockwise) i, ', and
p. The dashed lines correspond to the use of the scaling ranges
r/m=25 to 8000 and 50 to 10*.

VII. CONCLUSIONS

The multifractal formalism has been extended to mul-
tivariate measures. It was shown that such an extension
is natural and useful for describing joint intermittent dis-
tributions, such as joint log-normal and joint binomial
ones. It was also shown that second-order statistics of
the local scaling exponents a'” could be described by a
conveniently defined covariance matrix p;;. For the spe-
cial case of bivariate distribution, we have defined inter-
mittency exponents u, p', and a correlation exponent p.
This formalism is then used to analyze measurements in
fully developed turbulent flows.

In relation to the joint distribution of the “streamwise
terms” €’ and Y’ of the dissipations of kinetic energy and
passive scalar fluctuations, we can conclude that they
form a joint multifractal distribution. Their degree of
correlation is relatively low, and can be quantified by
p=0.13 (it must be stressed that such a result need not
necessarily be the same as for the lateral and cross terms
of the dissipation). The joint distribution of ¢’ and }' can
be related to the scaling exponents of temperature struc-
ture functions, and the results agree well with results of
Ref. 34 for moments up to order 5. It was also shown
that joint binomial distributions can model the observa-
tions much better than joint log-normal or B models.
However, some important differences between such a
modeling and the measurements are still visible and may
point to dynamically important features.

A similar multifractal analysis of ¢’ and w2 has been
presented from atmospheric data at high Reynolds num-
ber. The degree of correlation between these quantities is
substantially higher (p=0.3) than that between €’ and y'.
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FIG. 28. Log-log plots obtained from the measurements from
one realization plots of the short-term averaging procedure (see
Sec. 1V). Starting clockwise from the plot in the upper-left
corner, the slopes of the linear fits (using a scaling range of
r/m=20 to 400; solid lines) correspond to alq,p), a'(q,p),
7(g,p)/[q +p —1], and f(a,a’). Different symbols correspond
to different choices of ¢ and p. Triangles correspond to
(g,p)=(4,0); circles=(0,4); squares=(0.5,2); crosses=(0,0)
and inverted triangles =(0, —1).
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APPENDIX

In this appendix, we present some typical results from
the method of using relatively short data sets to compute

the scaling exponents. The experimental details and the
data processing techniques were described in Sec. IV.
Here we limit ourselves to a presentation of a representa-
tive sample of plots from which the exponents of Sec. IV
are obtained. The results for five different choices of ¢
and p are shown, namely (q,p)=(4,0), (0,4), (0.5,2), (0,0),
and (0,—1). This is repeated for three segments of data,
from Figs. 28-30. The solid lines are the linear least-
square error fits using the points in a range r /7=25 to
400. The resulting slopes vary somewhat from one data
segment to another, but these fluctuations occur around a
representative mean value.
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