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ABSTRACT

The three-dimensional turbulent field of a passive scalar has
been mapped quantitatively by obtaining, effectively
instantaneously, several closely-spaced parallel two-dimensional
images. The two-dimensional images themselves have been
obtained by the laser-induced fluorescence technique. Turbulent
jets and wakes in water at moderate Reynolds numbers are used
as examples. The spatial resolution of the measurements is about
two to three Kolmogorov scales. The first contribution of this
work concerns the three-dimensional nature of the boundary of
the scalar-marked regions (the 'scalar interface"). It is concluded
that interface regions detached from the main body are
exceptional occurrences (if at all), and that in spite of the large
structure, the randomness associated with small scale
convolutions of the interface are strong enough that any two
intersections of it by parallel planes are essentially uncorrelated
even if the separation distances are of the order of a few
Kolmogorov scales. The fractal dimension of the interface is
determined directly by box-counting in three dimensions, and
the value of 2.35 £ 0.04 is shown to be in agreement with that
previously inferred from two-dimensional sections. This
justifies the use of the method of intersections. The second
contribution involves the simultaneous measurement of all three
components of the quantity ", the appropriate approximation to
the scalar 'dissipation’.

1. INTRODUCTION

A capability to map quantitatively the turbulent velocity
and/or passive scalar fields in three-dimensional space would be
of immense value in understanding the dynamics as well as the
topology of spatial structures. The issues that can be settled by
such efforts are both basic and practical, and we assume that it is
not necessary to dwell on them at any great length. Some
examples are the three-dimensional nature of the interface
bounding the vortical or scalar-marked regions, the joint
statistics of the scalar concentration and its dissipation rate (of
interest in fast chemistry reactions), the scaling relations of
energy and scalar dissipation fields, issues relating to local
isotropy, coherent structures, etc. Here, we describe a technique
for mapping quantitatively the three-dimensional field of a
passive scalar, and present results concerning several aspects
associated with it.

The technique consists of obtaining several closely-spaced
parallel two-dimensional images essentially instantaneously, and
reconstructing the three-dimensional field on the computer using
appropriate reconstruction algorithms, Two-dimensional images
are obtained by the laser induced fluorescence (LIF) technique.
LIF involves doping the turbulent flow of interest by a
fluorescent dye, inducing fluorescence by illuminating it with a
thin sheet of laser light, and capturing the fluorescence radiation

on to a digital camera. Several such two-dimensional images are
obtained in rapid succession by sweeping the laser sheet through
the flow field. The succession of two-dimensional images is
captured quantitatively on an array of charge-coupled-devices
(CCD) using a framing camera capable of operating at the rate of
10 frames per second. The time lapse during the entire
sequence is small enough that effectively no fluid motion occurs
even on the smallest dynamical scale.

In the past, single 'point’ measurements of the three
components of the scalar dissipation have been measurements by
using a combination of cold wires (e.g., Sreenivasan, Antonia &
Danh 1977). In recent years, several research groups (Agui &
Hesselink 1987, Yip, Fourguette & Long 1986, Kychakoftf et
al. 1987) have taken advantage of the repeatability of the large
structure in externally driven flows, and have obtained similar
three-dimensional field of the scalar and flow fields. So far as
we are aware, the only previous successful effort similar in
scope to the present (namely the quantitative mapping of the
passive scalar field in naturally developing turbulent flows) is
due to Yip et al. (1987) and Yip (1988). These authors
essentially developed the present technique and used it in gas jets
seeded with Mie-scattering particles. We use the LIF technique
instead of Mie-scattering, and work at moderate Reynolds
numbers water jets. It is unfortunate that Yip's measurements
had difficulties in matching pixel positions in nearby parallel
images, which made it difficult to extract quantitative
information concerning the derivatives of the scalar field. In the
present measurements, this difficulty has been surmounted as
described in section 3.

The present measurements have been made in round jets
and wakes behind circular cylinders, both generated at
moderately large Reynolds numbers; the working fluid is water.
A quantity of interest is the three-dimensional nature of the
boundary marking the scalar-marked regions. Another quantity
concerns (an approximation to) the dissipation field of the scalar
concentration. Historically, such flow properties have been
measured using point probes. When the Schmidt number Sc is
unity or smaller (the Schmidt number being the ratio of the

_kinematic viscosity to the mass diffusivity of the scalar), the

temporal characteristics of these measurements is excellent (good
resolution, large record lengths) but the spatial information they
yield is limited. Two dimensional LIF images in the recent past
have provided useful information in a plane. By the present
technique, on the other hand, we obtain information in
three-dimensional space.

The best spatial resolution attained in the present
experiments is about 31, where the Kolmogorov scale M
represents the smallest dynamically relevant scale. For passive
scalars with Sc >> 1, the appropriate smallest scale is the
Batchelor scale 1, = nSc™V2 (Batchelor 1959). The fluorescing
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dye (sodium fluorescein) has a Schmidt number of about 1900
(see Ware et al. 1983), and so the Batchelor scale is much
smaller than the best resolution attained here. The essential point
is that, in spite of this limitation, the present measurements will
enable us to assess the scaling properties of the scalar dissipation
structure in the inertial-convective range. we can also make
qualitative statements about aspects such as the connectivity in
three dimensions of the scalar-marked regions or the contiguity
or otherwise of the interface. (We must make the obvious
cautionary note that the scalar-marked regions do not necessarily
correspond to regions containing turbulent vorticity.) We can
further obtain the fractal dimension of the interface directly by
box-counting in three dimensions without invoking the additive
laws (see Sreenivasan & Meneveau 1986, Sreenivasan, et al.
1989) that one should use to interpret measurements in lower
dimensional subspaces.

By experimental techniques such as the present, or by direct
numerical solution on a massive computer of the governing
equations, it is now relatively easy to generate large amounts of
data in a short time. One of the pertinent questions in turbulence
research today is to sort out the data in a way that can be
comprehended relatively easily. We have already addressed this
issue in the context of two-dimensional images, for which we
obtained the so-called generalized dimensions and the singularity
spectra. The significance of these quantities, without going into
too many details here, is the following. In statistical mechanics,
first order information is carried by the thermodynamic
quantities such as temperature, internal energy, entropy, free
energy, etc. If we treat a given turbulent field as a statistical
mechanical system (in the sense explained in Chhabra, Jensen &
Sreenivasan, 1989), the generalized dimensions and the
singularity spectra correspond to such thermodynamic
quantities. Using the three-dimensional images we have
computed such singularity spectra. For lack of space here, we
report details elsewhere (Prasad & Sreenivasan, 1989a).

2. FLOW FACILITIES

Two fully developed turbulent flows were studied. The
wake behind a circular cylinder was produced by lowering a
tank of water past a rigidly mounted cylinder. The cylinder used
was 1 cm in diameter and had an aspect ratio of 58. The tank
was lowered at a constant speed of 15 cm/s by means of a
hydraulic lift. The reason that the tank, rather than the cylinder,
was moved is that the water-filled tank, being much more
massive than the cylinder, vibrates far less. The fluorescent dye
(sodium fluorescein) that seeped into the wake from a narrow
channel cut along the length of the cylinder — either at the front
or the back stagnation regions — was mixed by the turbulence in
the wake. These dye-marked regions were imaged and analyzed.

The axisymmetric jet was produced by allowing water to
flow from a settling chamber through a nozzle of circular
cross-section into a tank of still water at a constant speed of
about 35 cm/s. The nozzle (diameter 1.2 ¢m) was contoured
according a fifth order polynomial to have zero slopes and
curvature at the entrance and the exit. The contraction ratio was
about 10. It was established by running separate air experiments
that there were no internal separations in the nozzle. The water
that issued from the nozzle was dyed with the fluorescent dye.
Again, the flow regions marked by the dye were imaged.

3. EXPERIMENTAL TECHNIQUES

Since the basic experimental technique involves obtaining
several parallel two-dimensional sections, details described in
another paper (Prasad & Sreenivasan 1989b) are relevant, and
the reader is referred to it. Here, only a brief summary of those
aspects are provided. Additional details involved in three
dimensional imaging are described here.

In both flows the dye concentration was mapped

quantitatively using the LIF technique. Fluorescence was excited
in the dye by illuminating the flow with a pulsed sheet of laser
radiation. When the fluorescence is not saturated, the
fluorescence intensity is directly proportional to the
concentration of fluorescent dye. Care was taken to ensure that
this was indeed the case in the present experiments, When
fluorescence radiation from a single laser pulse (pulse duration
shorter in duration than any of the characteristic time scales in
the flow) is imaged on to a digital camera, a quantitative map of
the instantaneous concentration of the dye in a plane is obtained.
If, however, instead of using a pulsed laser, a continuous sheet
of laser radiation sweeping through the flow is used in
conjunction with a camera having fast enough shutter speed and
high enough repetition rate, several parallel instantaneous
two-dimensional maps of the concentration field could be
simultaneously obtained. If these planes are sufficiently close to
each other one can reconstruct the three-dimensional field on a
computer.

A schematic of the experimental arrangement is shown in
figure 1. The beam from an Argon ion laser was guided to the
flow field using the two mirrors labeled M and RM. The circular
beam from the laser was converted to a sheet approximately 200
pm thick by a combination of two lenses L, one cylindrical
(focal length = 25.4 mm) and another spherical (focal length =
1000 mm). The fluorescence excited by the laser radiation was
imaged by the framing camera FC, capable of acquiring a
sequence of up to 16 frames at a rate of 10% frames/sec. The
images captured by the framing camera are then digitized and
stored by the CCD camera (labeled CCD in the figure). The
CCD camera has a large format CCD chip with an array of 1320
X 1035 pixels. The digital data were then transferred to a
VAXstation II/GPX computer on which all further processing
was done.

The flow seeded with the fluorescent dye was created in the
tank; the figure shows the cylinder C used for the wake
experiments. The sheet of laser radiation was swept through the
flow field using the rotating mirror RM. At different discrete
times, the sheet of light produces LIF in different planes. The
goal is to capture the LIF in these planes successively at a fast
enough rate. Given the framing rate of the camera, the speed of
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Figure 1: Schematic of the experimental apparatus used for
three-dimensional imaging. Shown is the orientation of the
cylinder whose wake is the object of imaging here. The
continuous Argon laser has an output of 6 Watts.
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the rotating mirror was adjusted to yield an interplane distance of
500 um. The rotating mirror was 140 cm away from the region
of the flow field imaged. This distance is very large compared to
the interplane distance so that any two adjacent sheets of laser
radiation can be regarded as parallel.

While in essense the scheme is simple, the technique is
made possible only because of the speed at which the framing
camera can acquire images. The exposure time for each image is
20 s (which is negligbly small compared to all relevant time
scales in the flow) and the interframe period is 80 ps. Thus the
overall time required to capture the sequence of § parallel
two-dimensional images is 800 ps. This time is also tolerably
small compared to the time scales of interest in the flow,
enabling an effectively instantaneous measure to be obtained of
the concentration field in three dimensions.

It is important to comment a little more on the details of the
image acquisition procedure. The framing camera writes, in
sequence, each of the images it acquires on a phosphor screen.
This phosphor screen, which contains all the images acquired by
the framing camera, is then imaged by the CCD camera. Thus a
single frame of the CCD camera acquires all eight frames
captured by the framing camera. This imposes a limitation on the
spatial extent of each of the images. Also the resolution of the
images is limited to the resolution of the phosphor screen, which
was 7 line pairs per mm (i.e., the closest pair of lines that can be
distinguished are 75 pm apart on the phosphor screen). Since
the normal image reduction ratios used in the experiments are 6,
this limits the spatial resolution to 450 wm. This is also the
rationale for adjusting the speed of the rotating mirror to yield an
interframe separation of about 500 pm.

To ensure high quality images with good signal to noise
ratios, each sequence of parallel planes was acquired using a
fresh tank of filtered water. Background noise due to dark noise
in the CCD camera is also subtracted from the images.
Non-uniformilities due to the laser sheet and optical components
in the system were also corrected for (see Prasad & Sreenivasan,
1989a for details).

The wake behind a circular cylinder was created at a
moderate Reynolds number of 1500 (based on the cylinder
diameter and the free stream relative speed). The smallest
dynamical scale, the Kolmogorov scale 1, was estimated to be
about 160 pm. Since the Schmidt number Sc of the dye is rather
high, scales down to the Batchelor scale 1 ~ NnSc 172 do exist.
However, it has been argued (Sreemvasan Ramshankar &
Meneveau, 1989) that the scaling properties in the scale range
above 7 can be considered without necessarily having to resolve
scales between M, and 1; more recent measurements to be
discussed in detalf elsewhere, confirm this conclusion. This
feature permits us to concentrate on the scale-similar properties
above the Kolmogorov scale. Each image of the wake extends
approximately from 70 to 80 diameters downstream of the
cylinder. As already remarked, each pixel has an area resolution
of about 500 um X 500 pm, and the distance between any two
parallel images was arranged (by adjusting the speed of the
rotating mirror) to be about 500 wm, so that quantitative data on
the concentration field is available on a three-dimensional grid of
500 um on the side. In dynamical terms, this resolution
translates to about 3 Kolmogorov scales. So far, we have
worked with eight parallel planes, each 175 pixels X 150 pixels
in extent, but we are currently in the process of doubling the
number of parallel planes.

A typical experimental run proceeds as follows. The tank is
filled with filtered water and raised using a hydraulic lift such
that the circular cylinder is close to the bottom of the tank. The
dye is then allowed to flow from the slit cut along the lower end
of the cylinder and the tank is lowered at the desired speed
producing the wake. As the tank drops the wake is illuminated
by the rotating laser beam. When the bottom of the tank receeds

to about 120 diameters downstream of the cylinder the shutters
of the framing camera and the CCD camera are opened. A
photodiode then detects the presence of the laser sheet in the
region being imaged and triggers the electronics in the framing
camera that acquires the images. Figure 2 shows the
concentration field on a typical set of eight paralle!l planes. Also
shown, in white, is the interface (to be discussed below).

The procedure followed to image the axisymmetric jet was
essentially the same as that used for the wakes. In the case of the
jet the Reynolds number based on nozzle diameter and velocity
(~4000) is somewhat higher, but still only moderately high. The
region imaged in the jet extended from 13 to 21 diameters

downstream of the nozzle. The pixel resolution as well as the

Figure 2: Concentration field of scalar-marked regions of a turbutent
wake behind a circular cylinder in a set of eight parallel planes. The
flow moves from left to right in each of the eight planes. The plane
farthest from the cameras is the plane in the bottom right corner of
the image. As one moves from right to left in the figure and then
from bottom to top the planes move closer to the cameras. Also
shown (in white) is the computer generated curve bounding the
scalar-marked regions in the wake.
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sheet thickness remain the same, and so quantitative data on the
concentration field is available (as before) on a grid 500 ym on
the side. This resolution is also about 2 or 3 Kolmogorov scales.
Again eight parallel planes are acquired as in the wake
experiments. Figure 3 shows a typical set of eight parallel
planes, each displaying the concentration of the scalar-marked
regions.

A critical element of quantitative data analysis is the integrity
of data. This is established here in two ways. First, a number of
a priori considerations were given to enhance the quality of data
acquisition. Second, comparisons were made as appropriate
with previous data of known accuracy. Some of these data are
obtained by standard point probes (such as cold wires in heated
flows), but some of the present data have no analogues in such
point measurements. In the latter cases, we have made

Figure 3: Concentration field of scalar-marked regions of a turbulent
axisymmetric jet in a set of eight parallel planes. The flow moves
from left to right in each of the eight planes. The plane farthest
from the cameras is the plane in the bottom right corner of the
image. As one moves from right to left in the figure and then from
bottom to top the planes move closer to the cameras.

comparisons with our own earlier data in which the entire CCD
array was used to acquire single images. The details of these
comparisons have been presented elsewhere (Prasad &
Sreenivasan, 1989a).

We now have several parallel two-dimensional images. To
obtain a composite three-dimensional image, it is necessary to
make a perfect pixel match between two parallel images. This
becomes especially important for obtaining concentration
gradients in the z-direction, i.e., the direction in which the laser
sheet rotates. To do this, a stationary object such a meter scale or
a stationary blob of dye in the plane of the visualization was
imaged using the framing and CCD camera setup. Each of the
eight images of the sequence was first roughly cut and overlayed
in pairs of two, taking the difference in intensity. The images
were then moved around with respect to each other to minimize
the difference in intensity. This minimum occurs only when the
successive images have a perfect pixel matching. Subsequent
sequences of parallel planes can then all be aligned correctly; the
difference in pixel intensity between two parallel planes gives a
correct measure of the z-gradient of the concentration
fluctuations.

4. THE GEOMETRY OF THE SCALAR INTERFACE

An interface of primary interest in the study of turbulence is
that separating regions of intense and zero vorticity; another
important interface is that separating the scalar-marked regions
of the flow from the remaining (the 'scalar interface"). From the
images acquired here, one can examine several features of the
scalar interface. Elsewhere (Prasad & Sreenivasan 1989¢) we
have discussed several methods of marking this interface, but
the simplest — and for the present purposes quite adequate —
procedure involves setting an appropriate threshold on pixel
intensity. Figure 2 shows the interface determined in each of the
planes in a three-dimensional sequence of wake images (marked
in white). It is obvious that the interface is highly convoluted
and three-dimensional. We now turn to its characterization,

One obvious manifestation of the interface, namely the
intermittency factor, has been measured by many workers
starting with Townsend (1948), Corrsin & Kistler (1955) and
Klebanoff (1955). As defined originally, the intermittency factor
defines the fraction of time that a point probe resides in the
turbulent region as the turbulent structures convect past it. From
two-dimensional images we can obtain a corresponding quantity
by scanning several lines perpendicular to the jet axis and
determining the number of pixels which are within the
scalar-mixed region. Details of these observations have been
presented elsewhere (Prasad & Sreenivasan, 1989a).

A two-dimensional section of the flow such as the bottom
right (farthest from the camera) frame in figure 3 show some
scalar-marked regions that are apparently detached from the main
body of the flow (for example the one marked D in the figure). It
is conceivable that this part is not really detached at all but is
contiguous with the main body through an out-of-plane
connection. The connection to the main jet is clearly established
in the fourth image in the sequence (second from the bottom in
the left column). The wake images have similar occurences also,
but cases seem to exist where one may imagine isolated regions
that appear and disappear within the sequence, leading to the
potential conclusion that isolated patches do occur. But our
informed judgement from the examination of several sequences
is that out-of-plane connections are plausible outside of the range
of the images. It appears safe to conclude that extensive
disconnected regions do not exist.

A glance at the sequence of images in figures 2 and 3 shows
that the large structure present in the interface persists from one
parallel plane to next. However, the small structure is different,
These small scale variations are in fact so prevalent that any two
neighboring sections of the interface have very little correlation
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on the average. This can be quantified by defining a statistical
correlation coefficient using a method based on the slope of the
interface as described in Prasad & Sreenivasan (1989a). Even in
adjacent frames, separated by no more than about three
Kolmogorov scales, the interfaces are essentially uncorrelated;
increase in the interframe distance monotonically reduces this
small correlation even further. Similar calculations can be done
to quantify interface correlations at larger scales by considering
boxes of size larger than 4 pixels considered here. Because this
operation amounts to coarse graining over small scales, it is
expected that the correlation improves with the box size.

It has been shown that the interface is a fractal-like surface
(Sreenivasan & Meneveau 1986); a quantity that characterizes a
fractal being its fractal dimension, its measurement is of interest.
The meaning of the fractal dimension and its usefulness in the
contexts of mixing and entrainment are discussed in
Sreenivasan, Ramshankar & Meneveau (1989). We must also
remark, in view of our evidence that the interface is largely
contiguous, that the fractal dimension is largely a measure of the
degree of convolutedness (and not of fragmentation).

The determination of the fractal dimension of the interface
(an object residing in three-dimensional space in a complex way)
by the direct procedure of covering them by boxes of varying
sizes is most often not practicable. We have shown elsewhere
(eg. Sreenivasan & Meneveau 1986) that one way of measuring
the fractal dimension of such surfaces is to measure the
dimension D, of the boundary of its intersection by a thin plane,
and use the so-called law of additive co-dimensions (Marstrand
1954, Mandelbrot 1982); according to this law, the fractal
dimension of the surface itself is given by D+1. The fractal
dimension of such two-dimensional intersections has been
measured and the results presented in Sreenivasan et al. (1989).
It is important to examine whether such estimates agree with that
measured from the full three dimensional data. Equivalently, we
want to assess directly the validity of the additive law; many
indirect, but essentially complete, set of arguments were
presented in Sreenivasan et al. (1989).

In our previous measurements from two-dimensional
intersections, the box-counting algorithm was used to determine
the fractal dimension. This algorithm (described, for example, in
Sreenivasan & Meneveau 1986) basically requires that the plane
of intersection (in which the boundary appears as a convoluted
curve) be covered with disjoint square area elements ('boxes’) of
varying size. The number of boxes N(r) required to cover the
interface is then counted as a function of the size r of the the
box. If the curve is a fractal, an extended straight portion would
be observed in log-log plots of N(r) vs 1, the negative slope of
the line being the fractal dimension D of the boundary in
intersection. Log-log plots from 2D images in the three
dimensional sequence show that a well-defined straight line
exits, and gives a D,s of 1.35 + 0.05. Using the additive law, the
dimension of the interface is 2.35 + 0.05. This is in good
agreement with the measured dimension of 2.36 from earlier
single frame images. (Since the resolution in the present images
is only about a third as good as in our earlier single frame ones,
and we have shown eclsewhere (Prasad 1989) that poorer
resolution in general yields smaller fractal dimension estimates, a
comment is useful on why the present agreement is so good.
This is easily explained by making reference to figure 6 of
Prasad (1989) which shows that the difference in fractal
dimensions obtained with resolutions of the order n and 37 is
quite negligible.)

As already remarked, we cannot access the entire interface
in three dimensional space, its extent in the z-direction being
limited to the range of approximately 31 to 24m. In this range it
is possible to use the direct method of covering the interface with
three dimensional boxes of varying sizes. The negative slope of
the straight part of the log-log plots of N(r) vs r would be the

fractal dimension of the surface. Figure 4 shows typical log-log
plots obtained by boxing the accessible portion of the surface.
The scaling in both jets and wakes extends over the entire range
available; the average fractal dimension is 2.35 + 0.04 for both
jets and wakes. This agrees rather well with earlier
measurements from one and two dimensional sections
(Sreenivasan & Meneveau 1986, Sreenivasan et al. 1989), and
the present two-dimensional intersections. In our view, this
conclusively establishes the fractal nature of the interface of
scalar-marked regions in turbulent flows. It also directly verifies
the applicability in this case of the method of intersections.
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Figure 4: Typical log-log plots of the number of boxes N(r) required to
cover the accessible part of the interface in three dimensional
space vs the size of the box r. (a) Data from the turbulent wake
behind a circular cylinder. (b) Data from the axisymmetric turbulent
jet. In both cases, the dimension, corresponding to the slope of
the line drawn, is about 2.35.

5. SCALAR 'DISSIPATION'

A quantity of practical interest, for example in the context of
turbulent mixing of reactants involving fast chemistry, is the
dissipation of passive scalar fluctuations y = 2I'(96/0x,)*, where
x; Tepresent spatial coordinates and 6 is a passive scalar (e.g.
concentration ¢ of a contaminant or temperature T), and I" the
corresponding molecular diffusivity; summation is implied on
the index i. This dissipation is analogous to the dissipation of
turbulent kinetic energy, &, but yet is different in that it does not
involve cross terms and contains only three positive definite

22.2.5




terms. All of them can in principle be obtained by the techniques
used here. Since the resolution here is between two and three
Kolmogorov scales, we obtain the quantity x*, where

x* = [(Ac)Ax;]2, 4.1)
and the difference concentration Ac can be obtained accurately
only on scales of the order of n. For convenience, we have
or*nitted the constant factor 2I" in (4.1), and shall refer below to
% as the 'dissipation’. It is found that the 'dissipation' field is
highly intermittent and the three components, while alike in the
overall sense, have some differences. The details of the
quantitative results concerning ", the probability densities and
moments of each of the 3 components of %" and the joint
probability density of * and ¢ have been presented elsewhere
(Prasad & Sreenivasan, 1989a).

A fundamental aspect of the dissipation field is its spatial
and temporal intermittency. It is clear that such highly
intermittent processes cannot be described efficiently by
conventional moment methods which are good for Central Limit
type processes; in particular, if the process is Gaussian, its mean
and variance describe the process completely, It has been
recognized (Mandelbrot 1974, Frisch & Parisi 1985, and Halsey
et al. 1986, Meneveau & Sreenivasan, 1987) that intermittent
measures arising in nonlinear systems lend themselves to be
characterized by what are called multifractals in the present
parlance of dynamical systems. In this picture, local singularities
of different strengths o are distributed on interwoven sets of
varying dimensionality f(a). Such a singularity spectrum has
been obtained and the results presented elsewhere (Prasad &
Sreenivasan, 1989a).

6. SUMMARY

We have measured the three dimensional field of a passive
scalar in fully turbulent flows. The technique consists in the
quantitative mapping, effectively instantaneously, of the
concentration field in several parallel planes. This is made
possible by combining the unique capabilities of the framing
camera with a relatively large CCD array. The measurements
allow us to examine several issues concerning the three
dimensional structure of the passive scalar field. First, several
aspects of the scalar interface have been studied. We showed
that the scalar-marked regions do not generally detach
themselves from the main body. We then devised a simple
scheme for correlating the interface shape from one parallel plane
to another. Its application showed that in spite of the large
structure, the randomness associated with small scale
convolutions of the interface are strong enough that any two
intersections of it by parallel planes are essentially uncorrelated
even if the separation distances are of the order of a few
Kolmogorov scales. The fractal dimension of the interface was
determined directly by box-counting in three dimensions, and
the value of 2.35 * 0.04 is shown to be in agreement with that
previously inferred from two-dimensional sections. This
Justifies the use of the method of intersections.

We have also established the quality of the data by making,
where possible, comparisons with previous measurements.
Although the resolution in the present measurements is on the
order of three Kolmogorov scales, it is believed that most of the
conclusions are generally sound qualitatively. In particular, the
scaling properties in the appropriate scaling range are believed to
be correct.

Another contribution has been the measurement,
simultaneously, of all three components of the scalar
'dissipation’ field. The quantitative information that is obtained
as a result of these measurements is presented elsewhere.
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