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The Fractal Geometry of Interfaces and the Multifractal Distribution
of Dissipation in Fully Turbulent Flows

K. R. SREENIVASAN,' R. R. PrasaD,' C. MENEVEAU,' and R. RAMSHANKAR"?

Abstract—We describe scalar interfaces in turbulent flows vie elementary notions from fractal
geometry. It is shown by measurement that these interfaces possess a fractal dimension of 2.35 + 0.05 in
a variety of flows, and it is demonstrated that the uniqueness of this number is a consequence of the
physical principle of Reynolds number similarity. Also, the spatial distribution of scalar and energy
dissipation in physical space is shown to be multifractal. We compare the f(a) curves obtained from one-
and two-dimensional cuts in several flows, and examine their value in describing features of turbulence
in the three-dimensional physical space.
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1. Introduction

One can define a variety of surfaces in turbulent flows. Some examples are the
vorticity interface (that is, the conceptual surface separating domains of intense and
zero vorticity fluctuations), iso-concentration surfaces (in reacting or nonreacting
flows), iso-velocity surfaces, and iso-dissipation surfaces. A common property of
these surfaces is that they are highly convoluted at many scales, and possess many
shapes. Their complexity defeats attempts to describe them by means of classical
geometry. MANDELBROT (in many papers and his 1982 book) has advanced the
necessary framework for describing the geometry of such complex shapes; he also
recognized that the self-similarity expected to hold in turbulence (according to the
conventional wisdom succinctly described by RICHARDSON’s (1922) rhyme) could
permit fractal description of such surfaces. In Section 2 we demonstrate, using as an
example the particular case of scalar surfaces (that is, surfaces marking the
boundary of the scalar-marked regions in a turbulent flow), that the expéctation is
indeed valid. We also show in Section 3 that the experimentally measured value
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of the fractal dimension can be deduced from the principle of Reynolds number
similarity (that is, negligible dependence on viscosity of global properties such as
the overall growth rates of turbulent flows). In Section 4, we summarize our earlier
results regarding the multifractal distribution of dissipation, and interpret these
results in the light of the more general multifractal formalism recently proposed by
MANDELBROT (1988).

This paper overlaps with our earlier work (SREENIVASAN and MENEVEAU,
1986; MENEVEAU and SREENIVASAN, 1987a; SREENIVASAN et al., 1989; PRASAD et
al., 1988—referred to respectively as I, II, Il and IV below), but differs from those
publications in two respects. First, some aspects related to different orientations of
the intersecting planes used to measure fractal dimensions, dependence on
thresholds, scaling ranges, etc., are described more fully here; some additional data
on turbulent wakes are also provided. A second feature is that we revisit the
interpretation of the observed multifractal features of turbulence obtained by low-
dimensional intersections,

2. Experiments and Results on the Geometry of Interfaces

Figure 1 shows a thin longitudinal slice along the axis of a turbulent jet of water
emerging from a well-contoured nozzle of circular cross-section into a tank of still
water. The jet was made visible by mixing a small amount (of the order of 10 parts
per million) of a fluorescing dye (sodium fluorescein) into the nozzle fluid, and
exciting fluorescence by illuminating a thin section of the flow by a sheet of light.
Care was taken to ensure that the fluorescence was not saturated. The light source
was a pulsed Nd:YAG laser with a pulse width of about 8 ns (small enough to
freeze the motion), and power density of up to 2 x 107 Js—' per pulse; the light sheet
had a thickness of the order of 200-250 um, which is on the order of the estimated
Kolmogorov scale (that is, the smallest dynamical scale in the flow). Not resolved
here are even smaller scales in the dye concentration fluctuations, expected to occur
because of the large Schmidt number, Se, of the dye. (Schmidt number is the ratio
of the kinematic viscosity v of the fluid to the mass diffusivity of the scalar; in the
present experiments its value is of the order of 10*) It is legitimate to consider the
plane intersection “mathematically thin” with respect to scales of the order of the
Kolmogorov scale and larger. The visualized region, extending from 8 to 24 nozzle
diameters downstream of the nozzle, was imaged on to a CCD camera with a 1300
(vertical) x 1000 (horizontal) pixel array, yielding a pixel resolution on the order of
150 um?. Further processing was done on a VAX station II/GPX.

The image shows a number of geometrically interesting features, one of which
relates to the boundary that separates the nozzle fluid from the ambient tank fluid.
The boundary is convoluted on a variety of scales, and appears to be disconnected
at many places. It is possible that some out-of-plane connections may exist and that
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Figure 1
A thin axial section of the nozzle fluid in an axisymmetric turbulent jet marked by a fluorescing dye. The
nozzle Reynolds number is 4000.

the boundary is indeed connected; to establish this aspect properly, at least several
simultangous sections would be needed. Such measurements have now been com-
pleted and will be reported separately. In any case, one can imagine in three-
dimensional space a surface that separates the nozzle fluid from the ambient tank
fluid, a surface whose section by a plane is seen in Figure 1. This surface is of
interest to us for many reasons, the primary one being that its geometry (which
itself is a consequence of some dynamical constraints) will bear some relation to the
amount and nature of mixing that occurs between the nozzle and tank fluids. For
example, if the tank fluid were slightly acidic and the jet fluid slightly alkaline, the
surface geometry will govern the amount and distribution of the product formed as
a result of the reaction between the acid and the base.

As mentioned earlier, our objective is to characterize this surface (and in general
all surfaces of interest in turbulent flows) by fractals; a primary property of a fractal
surface being its fractal dimension, we want to measure it. We shall obtain the
fractal dimension of the boundary seen in Figure I, and later examine the sense
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in which it relates to the fractal dimension of the surface embedded in three
dimensions.

The first step is to specify how the boundary can be defined for further
processing. Complex algorithms can be developed for the purpose, but we have
shown elsewhere (see I and, PRASAD and SREENIVASAN, 1989) that it is adequate
to use simple criteria based on the brightness threshold in the image (which is
directly proportional to the concentration threshold on the nozzle fluid). Figure 2
shows the computer-drawn boundary obtained by setting the threshold at a
brightness level that seems more or less satisfactory. One can now apply one of
several techniques (described, for example, in Mandelbrot’s book) to determine the
fractal dimension of the boundary so marked. We have used both the box-counting
and codimension methods. The codimension method was described in detail in I. In
the box-counting methods, also briefly described in I, we cover the whole plane of

Figure 2
The boundary of the jet cross-section given in Figure [, determined by prescribing a threshold on
brightness (proportional to the concentration of the nozzle fluid). Also shown are typical (horizontal
(a — a) and vertical (b — b)) line intersections through the boundary; these will be discussed later in the
text.
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Figure 2 with square area elements of varying sizes, and count only the fraction
N(r) of elements containing the boundary, and plot log N(r) as a function of
logarithm of the ‘box’ size r; if the boundary is a fractal, we should expect an
extensive straight part in this log-log plot, whose negative slope is the fractal
dimension. A typical result (Figure 3a) shows that this is indeed the case, the
straight part extending from the smallest scale resolved here to approximately a
scale of the order of the nozzle diameter, giving a fractal dimension of 1.35 for the
boundary. (It is worth mentioning that the computer programs for obtaining fractal
dimensions have been checked extensively on several mathematically generated
fractal sets of known dimension.)

Some minor ambiguities exist in defining the interface merely by means of a
threshold, and so measurements have been repeated for several thresholds on a
number of realizations of the jet. Figure 3b shows a plot of these results. It is clear
that there exists a wide range of threshold values over which the fractal dimension
of the boundary is essentially independent of the threshold, and that the mean value
is 1.35. The spread of the data around this mean value is roughly in the range
+0.05. Figure 3c shows that the range of scale of similarity (that is, the range of
scales over which the log-log plot has a straight part) varies somewhat with
threshold, but is generally about 1.5 to 2 decades. This is approximately the ratio
of the large scale L to the Kolmogorov scale n in the flow.

Similar experiments in various other flows have been conducted, and Figure 4
shows an axial section of the turbulent wake of a circular cylinder. The scalar
boundary in each case was marked in a similar way, and fractal dimension was
computed as before. The principal results are summarized in Table 1. All measure-
ments were made by slicing flows with the plane of light sheet along the preferred
direction of ecach flow. Without attaching significance to minor variations from one
flow to another, we may conclude that a mean value is about 1.35. It would be
useful, for later discussion, to take flow slices in different orientations. A typical
result from such measurements is given in Figure 5 for the mixing layer between two
streams of equal and opposite directions (RAMSHANKAR, 1988). It is seen that the
boundaries of the flow in two orthogonal intersections possess the same fractal
dimension. This conclusion also holds for all other flows investigated here.

We may now ask how the fractal dimension from planar intersections is related
to the fractal dimension D of the surface itself—this being our major concern. This
general problem has been discussed in the literature, and some specific results are
available for special cases (see MARSTRAND, 1954, whose results have been
generalized by MATTILA, 1975). The equivalent result in the present context, as
stated by MANDELBROT (1982, p. 366), relates to the additive properties of
codimensions of intersections. Specifically, if S, and S, are two independent sets
embedded in a space of dimension d, and if codimension (S,) + codimension
(S,) < d, the codimension of S, N S, is equal to the sum of the codimensions of S,
and S,. For a fractal set F embedded in three-dimensional space and intersected by
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(a) The log-log plot of the number N(r) of the area elements (‘boxes’) of size r containing the interface.
The negative slope of the straight part gives the fractal dimension of the boundary (=1.35). The abscissa
ranging from 0 to 4096 in (b) is the dynamic range of the digital camera. Over a good fraction of this
dynamic range, the measured fractal dimension is essentially independent of the threshold. Figure 3c
shows the scaling range in decades for each threshold. For the Reynolds numbers typical of most
experiments in present series (about 5000 based on the nozzle diameter and velocity), the typical
large/small scale ratio is about 100. Different symbols in (b) and (¢) correspond to different realizations.

a plane, the above statement implies that the dimension of the intersected set is one
less than the dimension of F.

The results so far have shown that the fractal dimension of the boundary in
longitudinal (that is, streamwise) as well as orthogonal sections of prototypical fluid
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Figure 4
A thin axial section of the scalar-marked region in the wake of a circular cylinder. The cylinder Reynolds
number is about 1500.

flows is 1.35. 1t then follows that the fractal dimension of the surface is one greater
than 1.35, or D =2.35.

It may be useful to expand briefly on the result that the fractal dimension of
intersections is independent of the orientation of the intersecting plane. While this
result can be expected intuitively to be valid for fractally isotropic objects, flows
considered here do have a preferential direction. We should, however, emphasize
two points: First, the possible anisotropic properties of the interface will be confined
essentially to the largest scales in the flow, these being on the order of the flow
width (and larger). Secondly, the smaller scales for which fractal-like behaviour has
been found are expected to be more or less isotropic, thus explaining our- observa-
tion. Although we have been unable to take simultaneous orthogonal sections,
experiments with independent sections have shown that the anisotropy effect may
determine the precise range of scale similarity in two orthogonal planes but not the
fractal dimension itself.

The principle of additive codimensions also implies that the fractal dimension of
line intersections is two less than that of the surface; again, we have an opportunity
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Figure S
Results from the application of box counting methods to two orthogonal sections of a fully developed
countercurrent mixing layer at a moderate Reynolds number; (a) plan view; (b) side view. For both of
these sections, the slope of the straight lines is nominally the same, giving the fractal dimension of the
boundaries to be 1.34.

Table 1

Table summarizing the fractal dimension measurements of scalar interfaces in four classical turbulent flows.

There are marginal differences among the results in these flows, but the variability from one realization to

another does not warrant any significance to be attached to these differences. We may conclude that the
mean value is about 1.35

Flow Fractal dimension of plane intersection of interfaces
axisymmetric jet 1.36*
boundary layer [.36**
mixing layer 1.347
plane wake 1.35"

*Average over a number of realizations (of the order 20) covering a streamwise extent of 5 to 30
diameters from the nozzle.

**Single value in the outer region.

# Average over a number of realizations (of the order 10) covering approximately a streamwise extent of
two large structures.
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here for testing the independence of the fractal dimension on the orientation of the
intersecting line. By using box counting methods as before, one can compute the
fractal dimension of the set of discrete points corresponding to the intersection of
the interface by a given line (see Figure 2 for examples). Figure 6 shows the
measured fractal dimension of some representative intersections (horizontal as well
as vertical) as a function of the location of the section. Figure 7 shows that the
results from line-cuts of arbitrary orientation are also the same. The mean values of
D are not far from 2.35. (We have already made use of the additive principle.)
Equivalently, if one assumes that the flow is frozen (TAYLOR, 1938), one can
take line intersection by fixing a point probe in the Eulerian frame and letting the
flow convect past it. There is no reason to think that this will be accurate at all
scales, but the hypothesis has been known to work roughly in a variety of
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Typical results from one-dimensional cuts; (a) vertical and (b) horizontal, both referred to Figure 2. (c)

and (d) indicate typical variability of the inferred D and the scaling range (in figures such as (a) and (b))

as a function of the position of the one-dimensional cut. The vertical cuts in (c) range from three

diameters to the left of the axis to three diameters to the right. The horizontal cuts in (d) vary from 12
to 23 diameters downstream of the nozzle.
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Figure 7
(a) Typical results from one-dimensional cuts passing through a fixed point as a function of the
orientation of the intersecting line. Different symbols correspond to line cuts passing through different
points. Figure (b) indicates the observed scaling range.

circumstances. We have used this approach also, and obtained results (Figure 8) for
the nozzle fluid interface in a heated jet. Again, the inferred interface dimension has
a mean value of 2.35, with the standard deviation on either side of about 0.05.

The last set of results obtained by the use of Taylor’s frozen flow hypothesis are
important because they enable us to conclude that the fractal dimension of scalar
interfaces is independent of the mass diffusivity of the scalar: The dye and heat
diffuse at rates which differ by about three orders of magnitude. Furthermore, the
technique allows simple measurement of the fractal dimension of the vorticity
interface as well. This has been discussed in [, where it was shown that the fractal
dimension of this surface is also about 2.35.

We now have a very general result. To within the accuracy of measurement,
the fractal dimension of vorticity and scalar interfaces (considering only scales

Vol. 131, 1989 Fractal Geometry of Turbulent Flows 53
2.6 o) , . . .
3
G200 1 be by
§ ¥ % i T T T 1
S22 - -
L i 1
-2 1 0 1 2
(T-<T>) /0y
(b)
2.5 T T T T T i
o °
o o
©2.0 E
jod o 6 ©
o
5L ° o o o
o ©° 3
o :
L { i L i 3
105 -1 [} 1 2
(T-<T>} /0y
100 o) . . T . T
N 1
Q ]
8 50 - H | -
£ _
= JL }
|4
N e P
2.0 2.2 2.4 2.6

Dimension

Figure 8
Fractal dimensions obtained by one-dimensional cuts using Taylor’s frozen flow hypothesis in heated

jets. (a) iflustrates the constancy of the dimension with respect to the threshold, while (b) indicates the

scaling range. In both (a) and (b), {T") is the mean temperature at the location of the measuring probe
(a cold wire operated at 0.1 mA in the constant current mode), and ¢ is the root-mean-square
fluctuation. Figure (¢) is the histogram of D constructed using 390 realizations; the mean value is 2.35.

above 1) in a number of fully developed turbulent flows, obtained by plane and line
intersection techniques (whose validity we have established by a variety of measure-
ments), is about 2.35. Clearly, the generality of the result demands an interpretation
based on broad considerations. This is attempted in the next section.

3. Mixing and Reynolds Number Similarity

Let us consider transport by diffusion across interfaces of the type discussed so
far. The flux is given by the product of the surface area, the concentration gradient
normal to the surface and the molecular diffusivity. For fractals, the surface area S
increases with the resolution of measurement r according to the relation (MANDEL-
BROT, 1982)

S~ ?, (n
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In all practical circumstances, the scale range over which (1) holds is bounded
by cut-offs on both ends. For surfaces in turbulent flows, the outer cut-off is
expected to occur at scales comparable to the integral scale, L, of turbulence, while
the inner cut-off occurs at the smallest dynamical scale. For vorticity interfaces, the
appropriate inner scale is the Kolmogorov scale n = (v3{& )4, where (&) is the
average rate of the turbulent energy dissipation. For with Schmidt number greater
than unity, the relevant inner cut-off occurs at the Batchelor scale, #, =n Sc /2
The existence of a finite inner cut-off means that, as the surface area gets measured
by covering it with increasingly finer area elements, a point is reached at which
convolutions of even finer scales no longer exist, so that, thereafter, the area does
not increase with increasing fineness of resolution; instead, it will saturate (abruptly
in an ideal situation) at the maximum value corresponding essentially to the inner
cut-off. The true area S, of a fractal surface with finite inner cut-off is thus given
(to within a constant) by the knowledge of the fractal dimension, and the inner
cut-off r, which theoretically truncates the power-law behaviour. Thus,

Sy = So(ri/L)* " (2)

where S, is some normalizing area. If the area levels off at L and beyond, S,
becomes the surface areca measured with the resolution equal to L. It was also
shown in HI that for the case of high Schmidt numbers, it is natural to assume (in
analogy with the inertial and viscous-convective ranges in the power-spectral density
of passive scalar fluctuations) that there are two scaling regimes for the area S. In
the range n < r < L, the relevant exponent is D, whereas in the range 5, <r <, the
relevant exponent will be designated D’ and equation (2) is modified accordingly
(see III).

It was shown in III that the characteristic velocity and concentration gradient
across interfaces are of the order U,/ and AC/y,, respectively. U, is a characteristic
velocity, for example the centerline defect velocity for the wakes, the centerline
excess velocity for the jets, the velocity difference between the two streams for the
mixing layer, and the friction velocity (equal in kinematic units to the square root
of the wall shear stress) for the boundary layer. AC is a characteristic concentration
difference.

From these considerations, an expression for the flux of momentum across the
interface can be written as

vSr(Uc/n). (3)

Defining the characteristic Reynolds number Re = u’L/v (14" being the root-mean-
square of the velocity fluctuations), we may note that n/L ~Re % and use
equation (2) for the interface area S, to write (after a little algebra) that the

flux of momentum ~ S,U?(u’/U,) Re3P ~ 7374, (4)
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Note that S, U, and (u’/U.) are all independent of Reynolds number. For nonunity
Schmidt numbers, the corresponding result for the flux of a species with concentra-
tion difference AC is given by

flux of contaminant ~ Sy(U, - AC)(u’/U,) ReXP ~ 73457, (5)

where y =0.5 (D' —3) for Sc > 1 and y =3 (D —7/3)/4 for Sc < 1.

Now, it is well-known that all fluxes (mass, momentum, energy) must be
independent of Reynolds number in fully turbulent flows—the so-called Reynolds
number similarity. (This is merely a statement of the observed fact that the growth
rates of turbulent flows of a given configuration are independent of fluid viscosity.)
According to (4) and (5) the Reynolds number similarity requires that

D =1/3, (6)

for both the vorticity and scalar interfaces, in rough agreement with experiments
(see Table 1). Since the fluxes are expected to be also independent of Sc¢ (the
so-called Schmidt number similarity), equation (5) implies that y =0, or D’ = 3.
This means that the convolutions of the interface on scales between #, and # are
essentially space-filling.

In the above arguments we have assumed that it is appropriate to use a common
characteristic velocity or concentration gradient everywhere along the interface.
This is not strictly true, at least because the interface thickness varies from place to
place because of the spatial intermittency of the dissipation rate ¢ (see Section 4).
Furthermore, it is implied above that the globally averaged dissipation rate is the
same as that averaged in the neighborhood of the interface alone. These two
limitations were addressed in detail in ITI, where it was shown that the intermittent
nature of the dissipation near the interface is statistically the same as that elsewhere,
and that the inclusion of the intermittency will alter D from 7/3 to 2.36. This latter
estimate is in excellent agreement with our experimentally determined mean value of
2.35. It is worth mentioning that the reason for the relatively small correction is that
the interface thickness depends on the quarter power of the dissipation, and so the
strong variabilities in ¢ do not translate to comparable variations in the interface
thickness.

4. The Multifractal Distributions of Dissipation Rates of Turbulent Kinetic Energy
and Passive Scalar Fluctations

There has been an explosive interest in recent years in the characterization of
measures created by multiplicative processes. Starting with MANDELBROT (1974),
several formalisms have been introduced (HENTSCHEL and PROCACCIA, 1983;
FriscH and PARist, 1985; HALSEY et al., 1986; MANDELBROT, 1988). In turbulence,
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the transfer of kinetic energy from the large scales of motion to the smaller scales
can be thought of as arising from a multiplicative cascade process. Therefore, the
manifestation of this flux at the smallest scales, which is the dissipation e, is
expected to be a multifractal. The same can be said for the flux of the variance of
a passive scalar and its dissipation y. In such a description, the total dissipation of
kinetic energy E, that is contained in a box of size r obeys a local power law

E, ~r, (7

where « varies from point to point. A similar power-law is expected to hold for X,,
the amount of y in a box of size r. Since the values of « for the scalars need not be
the same as those for the energy, the notation in (7) is to be regarded as generic.
The number of boxes with « within in a band do is assumed to scale according to

N() dov ~ ¥/ da. (8)

As one covers the measure with boxes of decreasing size, the number of
occurrences of a certain o generally increases (that is, f(a) > 0), or remains constant
(that is, f(2) = 0). In such cases, f(«) is interpreted as the fractal dimension of iso-«
sets. (For a more detailed discussion of this point, sec CHHABRA et al., 1989.)
MANDELBROT (1988) has shown that cases exist for which f(«) is negative; we will
return to this point below.

A dual description of multifractals is given in terms of the g-moments of E, and
X,; in that case one measures the ‘generalized box dimensions’ (HENTSCHEL and
PrROCACCIA, 1983), D (¢) and D (x) of ¢ and y respectively, defined as

LE ~r@ D@ and  TX, ~plt— DPUD, (9)

The quantities f(«) and « are then obtained by the well-known Legendre transforms
(HALSEY et al., 1986)

o =d/dgl(¢ — 1)D,] and f(x) =qa — (¢ — DD, (10)

Although f(a) can be determined directly, MENEVEAU and SREENIVASAN (1989)
have shown that it is more practical to obtain them by first measuring the D,
exponents and using (10). This is due to second-order finite-size corrections to N(«)
that appear in (8), which are important in experimental situations at moderate
Reynolds numbers.

Measurements of the D, curve from one-dimensional cuts through ¢ were
reported in II, and the corresponding curves for the dissipation of passive scalar
fluctuations from one- and two-dimensional intersections were reported in IV. The
f(x) curves obtained by the use of (10) are shown in Figures 9a,b. (For readers
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S(&) curves of lower-dimensional sections through the dissipation fields. (a) Dissipation of passive scalar

fluctuations: The continuous line represents the mean results from two-dimensional measurements of

concentration (a passive scalar) in water jets (see 1V). Circles correspond to one-dimensional measure-

ments of temperature (also a passive scalar) in heated air jets. Since there are some experimental

difficulties associated with the determination of the D,’s for ¢ <0 in the one-dimensional sections (see

IV), only the left half of the curve is shown. (b) Dissipation of kinetic energy: The dashed line

corresponds to the average f(«) curve for one-dimensional sections in several fully developed turbulent
flows (see II). In both figures, bars show the variability in measurements.

familiar with our earlier work, it is useful to note a change of notation. In I and
IV, o was defined in terms of the average dissipation on a domain r according to
g, ~r*~ ! for any dimensionality of the box. Here, we use equation (7) as the basic
definition and therefore ¢, ~ r*~ ¢ where d is the dimensionality of the domain in
which the dissipation is embedded: d is 1 for one-dimensional cuts, 2 for planar
intersections and 3 for the case in three dimensions.)

Several properties of the lower-dimensional intersections can now be discussed.
We shall assume here, and defer questions of exceptions to a later stage, that the
additive properties of fractal dimensions discussed in Section 2 hold also for f(«);
that is, /() in three-dimensional space can be obtained by adding 2 to that obtained
by linear cuts and by adding 1 to the results from planar cuts. Similar additive
properties hold for «, since lower-dimensional cuts measure densities that can be
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integrated over boxes of different dimensionalities (for details see MANDELBROT,
1988). Figure 10 shows the f(a) curves of ¢ and y obtained by translating according
to the above additive law the values of « and f(«) of Figure 9. It is apparent that
the f(a) curve for y is wider than that for ¢; as discussed in IV, this is consistent with
the well-known result that the dissipation of passive scalar is more intermittent than
the energy dissipation.

The f{x) curve of ¢ obtained for one-dimensional cuts was modeled in MENE-
VEAU and SREENIVASAN (1987b) by a two-scale Cantor measure (the p-model). In
order to reproduce the experimental observations, the following three-dimensional
cascade process was proposed: After every step of the cascade, each eddy splits into
2% smaller eddies. Half of them each receive a fraction p,/4 =0.7/4 of the energy
flux, while each of the others receive the remaining fraction p,/4 = 0.3/4. As pointed
out in SREENIVASAN and MENEVEAU (1988), this would imply that there are no
singularities with f(a) <2, but this can be corrected by perturbing the p-model
slightly and assuming that each eddy receives a fraction p,/4 + 6 or p,/4 + J, where

Figure 10
f{a) curves of lower-dimensional sections through the dissipation fields, translated in such a way as to
correspond to the situation in three-dimensional space. Symbols as in Figure 9. Where they overlap, the
passive scalar data obtained from one and two-dimensional sections agree well. The figure also shows
that the f{a) curve for the scalar dissipation curve is wider than that for the energy dissipation.
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o is different for each eddy (MENEVEAU, 1989). Obviously, these perturbations are
subject to the overall conservation of the energy flux.

We now discuss an issue raised by MANDELBROT (1988). By necessity, the
discussion here is very brief, and will be expanded elsewhere using appropriate
experimental evidence. The issue is the use of lower-dimensional cuts to obtain
information on very sparse sets of singularities, whose f(«) in three dimensions is
less than the co-dimension of the intersecting subspace. MANDELBROT (1988) has
shown that this is in principle a valid procedure, provided that averages are
performed over regions that are much larger than the integral scale of the flow. He
has further shown (see also MANDELBROT, 1974) that if the energy cascade
proceeds in such a way that a sub-eddy receives an amount of energy that is higher
than a certain fraction, the implication is that lower-dimensional cuts would show
negative values of « and D,’s for ¢ > g,,. It follows that a possible criticism of the
measurements reported above is that, since only the last step of the cascade is
accessible in measurements, negative values of « and D, (if they exist) are impossible
to detect, and therefore D,’s for ¢ > ¢, may have been biased.

If one extrapolates the curves of Figure 9a down to f(«) = 0, it appears that «
is always larger than 2 (especially for the energy dissipation), suggesting that no
negative o’s are present even in one-dimensional cuts. The question now concerns
the reliability of the f(a) curves in Figure 9 especially near the tails (which are
determined by high order D, ’s—both positive and negative), as well as the
extrapolation procedure. We point out that the positive part of the f(a) curve from
lower-dimensional cuts can be obtained more or less completely using values of ¢ up
to about 6. An indication that D,’s for ¢ values of that order are quite accurate
comes from the agreement of our results with those inferred from other experiments
(ANSELMET et al., 1984) in that range of ¢. From this and further evidence to be
reported in the near future, we conclude that D,’s at least up to order 6 are not
biased, and, therefore, that there are no negative «’s. If this is so, then the cascade
procceds without ever surpassing the limit on the fluxes mentioned above, this being
a very strong statement about the physics of the cascade. One can get an idea of this
limit by using the three-dimensional p-model, for which this limit is 1/4.

At any rate, the quantification of a multiplicative measure by f(«) is degenerate
at many levels (FEIGENBAUM, 1987; MANDELBROT, 1988; CHHABRA et al., 1989),
and it is not clear how much of the underlying physics can be extracted unambigu-
ously from such a description.
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