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[Plate 1]

Some basic thoughts are set down on the relation between the fractal
dimension of various surfaces in turbulent flows, and the practically
important processes of mixing between two streams (reacting or
otherwise) separated by a convoluted surface, as well as of entrainment
of irrotational flow by a turbulent stream. An expression based on
heuristic arguments is derived for the flux of transportable properties
(such as mass, momentum, and energy) across surfaces, and a prediction
made on this basis for the fractal dimension of surfaces in fully turbulent
flows is shown to be in essential agreement with measurements. It is
further shown that this prediction remains robust when corrected for the
non-uniform effects along the surface. A related prediction concerning
the dependence of mixing on the Reynolds number and the fractal
dimension of the surface is substantiated, in the developing as well as the
fully developed states, by independent measurements of both the fractal
dimension and the amount of mixing between reactants in a temporally
evolving countercurrent shear flow.

1. INTRODUCTION

There are many types of surface in turbulent flows. Some examples are the
vorticity/no-vorticity interface, iso-velocity or iso-concentration surfaces, sur-
faces separating two reacting or non-reacting species, and iso-dissipation surfaces.
These surfaces are wrinkled over a wide range of scales in high Reynolds number
turbulent flows, and one of the general beliefs in turbulence is that the scales of
wrinkling are self-similar. This property, namely the existence of a wide range of
self-similar scales, is a hall-mark of fractals (Mandelbrot 1982). The expectation is
then natural that the surfaces of the type mentioned above are fractal-like. In a
previous paper (Sreenivasan & Meneveau 1986, subsequently referred to as I) we
showed by measurement on some of these surfaces that they are indeed fractal-
like, and obtained their fractal dimensions. But we did not say much about the
implications of this finding. The primary purpose of this paper is to demonstrate
beyond what was accomplished in I that the mathematical notion of the fractal
dimension (Mandelbrot 1982) is useful also in the context of (practically
important) physical processes in turbulent flows.

Table 1 summarizes our previous results on the fractal dimension of scalar and
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TABLE 1. SUMMARY OF THE FRACTAL DIMENSIONS OF SCALAR AND VORTICITY
INTERFACES IN SEVERAL CLASSICAL TURBULENT FLOWS (FROM I)

fractal dimension of interfaces (surface) by

two-dimensional one-dimensional
flow slicing slicing
boundary layer 2.38° 2.40°
axisymmetric jet 2.35° 2.35%
plane wake — 2.40°
mixing layer 2.33° 2.40¢

@ Single value at some typical location in the outer region.

® Average over a number of realizations (of the order 10) covering a streamwise extent of
5-30 diameters from the nozzle.

¢ Average over a number of realizations (of the order 10) covering approximately a streamwise
extent of two large structures.

¢ Many realizations, with and without the use of Taylor’s frozen flow hypothesis.

vorticity interfaces. Because the accuracy of these measurements is not refined
enough to attach significance to minor variations between one flow and another,
and one method of measurement and another, we conclude that these surfaces in
a variety of flows possess a fractal dimension of 2.351+0.05. The apparent
generality of this result, further substantiated in §4, must have a simple and basic
explanation, and a search for it and its usefulness in practical contexts is the
pervading theme here. We also discuss new results on the variation of the fractal
dimension in developing flows.

The paper is organized as follows. First, we provide a heuristic argument
relating the fractal dimension of surfaces to processes such as entrainment and
mixing in turbulent flows (§2). We then show in the same section that simple
considerations can lead to a prediction, consistent with measurements, of the
fractal dimension of surfaces in fully turbulent flows. In §3, we show that a
correction to this predicted value because of the highly intermittent nature of the
turbulent energy dissipation field is quite small. The necessary background for this
is provided in detail in Meneveau & Sreenivasan 1987 (subsequently referred to as
I1) where we showed experimentally that the dissipation field can be represented
by a multifractal, but the most important aspects are explained in §3 in a
reasonably self-contained way. Also in §3, we make a prediction on the behaviour
of the fractal dimension as a function of Reynolds number in developing flows. We
substantiate this prediction in §4, where we also present further measurements of
the fractal dimension of surfaces in order to illustrate as well as amplify the work
of I; the main point of §4, however, is the substantiation of the results of §§2 and 3
by the measurement of mixing between two reactants in a temporally developing
shear flow. We conclude the paper with some general remarks on the usefulness of
the present approach (§5).

In Appendix A we demonstrate that, for the limited purposes needed here, the
dissipation field in the vicinity of the interface is not different in any significant,
way from that elsewhere in the flow. From a combination of similarity arguments
and experimental data, we estimate in Appendix B the constant of proportionality
in the expression for mixing derived in §2.

Readers interested in a detailed discussion of how fractal dimensions may be
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measured are referred to I, although some relevant information will be provided
in §4. On the subject of fractals itself, the original account of Mandelbrot (1982)
is the most useful single source.

2. MIXING AND ENTRAINMENT
2.1. General

In this paper, we use the term ‘mixing’ to indicate molecular mixing. Similarly,
entrainment is identified with the acquisition of vorticity by an initially
irrotational fluid element. There is now considerable evidence (see, for example,
Roshko 1976) that the processes of entrainment and mixing are initiated by the
large structure. This stage essentially commits a fluid element to further
processing by the turbulence strain field and, eventually, by the diffusive action
at the molecular level. These later stages do not prescribe the amount of
entrainment or mixing, but adapt themselves, in a manner to be explained, to the
conditions set by the large scale features of the flow.

To understand mixing and entrainment, it is legitimate to begin by examining
the large-eddy end of the processes. One can alternatively concentrate on the
small-scale end. The former approach, largely driven by flow visualization
emphasizing large eddies in the flow, has yielded interesting results (Broadwell &
Breidenthal 1982), but it is useful to remark that the large-scale eddies in a flow
are, in some sense, the result of the flow instability and hence are highly
configuration-dependent. There is thus less probability in this approach of
arriving at conclusions that can be valid generally for all flows. On the other hand,
the latter approach emphasizing the later stages of the processes has a much better
likelihood of such success. The reason is simply that the small scale features of the
flow are, to a first approximation, independent of the configurational aspects of
the flow.

Motivated by this thinking, we concentrate on the last stages of the entrainment
and mixing processes. It is worth emphasizing that this picture neither implies
that the role of large eddies is minimal nor that ‘gradient transport’ as understood
in turbulence closure is necessary or correct. One might argue (Broadwell &
Breidenthal 1982) on the basis of the failure of previous diffusion models that the
present approach is doomed to fail also, but we note that the previous attempts
failed because they did not take into account the correct surface area across which
diffusion occurs. If one looks at the surface area at the resolution of the large
scales, such attempts will no doubt fail. The main point to recognize is that a
large increase in surface area results because of small-scale convolutions of
surfaces. Our contribution is in recognizing explicitly that these scales belong to a
hierarchy of self-similar structures that can be described by fractals, and in
working out the detailed consequences that follow from there. We picture that the
complex dynamics of turbulence manifests itself by way of imparting fractal
properties (in a manner to be discussed below) to the surfaces of interest, and that
the flux across those surfaces occurring by molecular action, follows the well-
established Fick’s law of diffusion. We show that the procedure can be formulated
successfully over the entire range of Schmidt numbers.

For illustrative purposes, imagine a surface separating two streams marked by
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passive scalars A and B. This surface can be defined in some operationally
convenient way, for example as an iso-concentration surface where the relative
concentration of A is, say, 0.5. This can be called the interface between A and B.
We will estimate fluxes across such interfaces. The precise process of setting up the
flux across such surfaces depends in detail on the Schmidt number. Where the
Schmidt number is of the order unity, straining due to turbulence and the diffusive
action occur simultaneously, whereas the two processes are separated when the
Schmidt number differs substantially from unity.

The diffusive flux is equal to the product of the surface area, the gradient
normal to the surface and the molecular diffusivity. We estimate in §2.2 the
surface area given the knowledge of the fractal dimension, and this type of
estimate is generalized to cases of non-unity Schmidt numbers in §2.3. In §2.4
some reasonable estimates for the gradients are developed. These are combined in
§2.5 to form estimates for fluxes. In §2.6 the equivalent estimates for fluxes due
to the convective action of the smallest eddies are presented. Subsequently, we
shall use this information to estimate fractal dimension of surfaces.

2.2. The fractal dimension of surfaces, and their area

A procedure for measuring the area of surfaces embedded in three-dimensional
space is to count the number N(r) of cubic boxes of size r required to cover the
surface. The area then is of the order of N(r)r?. If a surface is a classical one, the
above quantity quickly assymptotes to a constant independent of r, and this is
the true area of the surface. For a true fractal surface that is contorted with
squiggles of ever increasing fineness, the measured area estimates will increase
indefinitely with increasing resolution according to a power law (Mandelbrot 1982).
If D is the fractal dimension of such a surface, the number of boxes required to
cover the surface N(r) and the corresponding area S(r) increases with increasing
resolution (i.e. decreasing r) according to the relations

N~rD2 8 ~rD 2.1)

The situation is depicted in figure 1a. One of the important properties of the
fractal dimension is that it exceeds the topological dimension of the fractal object
(Mandelbrot 1982). Thus, D > 2 for fractal surfaces.

In all practical circumstances, the scale range over which power laws of the type
(2.1) hold is bounded by cut-offs on both ends. For surfaces in turbulent flows, the
outer cut-off is expected to occur at scales comparable to the integral scale, L, of
turbulence, while the inner cut-off occurs at the smallest dynamical scale. For
vorticity interfaces, the appropriate inner scale is the Kolmogorov scale
7 = (V¥/<{eD)i, where {e) is the average rate of the turbulent energy dissipation.
These aspects were demonstrated in I. Of immediate interest is the inner cut-off.
The existence of a finite inner cut-off means that, as the surface area gets measured
by covering it with increasingly finer elements, a point is reached at which
convolutions of even finer scales no longer exist, so that, thereafter, the area does
not increase with increasing fineness of resolution; instead, it will saturate
(abruptly in an ideal situation) at the maximum value corresponding essentially
to the inner cut-off (figure 1b). For surfaces considered in this work, the situation
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FioUurE 1. (@) The variation of the area S with the resolution # for a fractal surface with no
cut-offs. (b) The same variation for a fractal surface with the inner cut-off at r, and the
outer cut-off at r,. The true area S; of the surface corresponds to the saturation at 7,.

at the outer cut-off is typically as shown in figure 15, because these surfaces are
roughly two-dimensional f when viewed with scales far larger than L. (It is possible
to present examples that show other types of behaviour at the outer cut-off, but
these counter examples are irrelevant in the present context.) The experimental
situation will not be very different, although the transitions are gradual instead of
being abrupt as idealized in figure 15. We thus have an interesting situation in
which surfaces in turbulent flows look two-dimensional and classical at levels of
observation finer than the appropriate inner scale and coarser than the integral
scale, but display fractal properties in the intermediate range.

In sum, then, the true area Sy of a fractal surface with finite inner cut-off is given
(to within a constant) by the knowledge of the fractal dimension (which gives the
slope in the self-similar régime of the line in figure 1(b), and the inner cut-off r;,
which theoretically truncates the power-law behaviour. Thus,

Sy = Sy(r/L)*7P, (2.2)
where 8, is some normalizing area. As mentioned earlier, r; = 5 for the vorticity
interface. If the area levels off at L and beyond, S, becomes the surface area

measured with the resolution of L.

t A remark made by Professor Fred Gouldin of Cornell University clarified this situation.
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2.3. The area of surfaces in non-unity Schmidt number flows

For scalars with Schmidt number (Sc = v/D, where v is the kinematic viscosity
of the fluid and D is the mass diffusivity of the scalar) far greater than unity, the
scales at which diffusivity becomes important are comparable to the Batchelor
scale, 7, = 9Sc%, which is smaller than the Kolmogorov microscale. There is thus
a new scale range (7 > r > 7)) in which scale reduction occurs by the action of the
strain-rate due to the Kolmogorov-type eddies until scales are reached where the
diffusivity effects become directly important. The relevant question now concerns
the status of the power law in this range. In analogy with the inertial and viscous-
convective ranges in the power-spectral density of passive scalar fluctuations, it is
natural to assume that there are two power laws, one governing the range
(roughly) L > r >y, and another in the range » >r >y,. The two relevant
exponents will be called D (in the range L >r>1y) and D’ (in the range
7 > r > n,). For a fractal surface that exhibits this kind of behaviour, the relation
between area and resolution of measurement is shown schematically in figure 2a.
If 8, is the area measured with resolution L, S, the area measured with resolution
7, and Sy is the ‘true’ area measured with a resolution 7,, we can write

8, = So(’?/L)z_D’
and Sy = 8y(e/1)*™" = So(n/L)* Py /7)* """ (2.3)

For Schmidt numbers less than unity, the inner cut-off occurs (Corrsin 1964)
at 9, = Sc~#, which is larger than 5, and the only relevant exponent is D (see
figure 2b). The true area in this case is given by

Sy = So(ye/L)*>. (2.4)

2.4. Estimate for velocity and concentration gradients across surfaces

Let two streams of the same fluid with velocities U, and U, (figure 3) be doped
by two passive markers A and B. For temporary convenience, let us assume that
the species differ in color but possess the same mass diffusivity as the kinematic
viscosity of the carrier fluid (that is, Sc = 1). Extension to non-unity Schmidt
numbers is quite straightforward, and will indeed be done. It is clear that the
interface between the two fluid streams is initially of the order of a few mean free
paths in thickness, but grows with time like (vt)3, where t is the time since the two
streams came in contact with each other. Interfaces of this sort are dynamically
unstable (the Kelvin—Helmholtz instability), and roll up into vortex structures as
shown schematically in figure 4a. These structures bodily move the species A and
B from one side to another, but molecular mixing still occurs across the surface
area, which now is significantly larger compared to the situation in figure 3. A
horizontal line intersection of the type shown in figure 4a, taken by a ‘point’
probe moving sufficiently fast, gives a signal qualitatively similar to that given in
figure 4b. The interface thickness in figure 4a is still given by (vt)%, but the time
t is set by the balance between the thickening due to viscous diffusion and the
straining imposed by the flow eddies. The characteristic time is the inverse rate of
strain equal to 4/AU, where A is the scale of eddies deforming the interface. The
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F1cURE 2. (@) The variation of the area S with resolution # for a fractal surface with two different
power laws in the two different characteristic scale ranges when Sc > 1. The true area S,
corresponds to the saturation at #,. (b) The variation of the area § for Sc < 1. The true area
8, of the scalar surfaces corresponds to the saturation at 7,.

> U

U2¢——.

FicurEe 3. The schematic of a countercurrent shear flow before the onset of instability.

characteristic velocity scale AU is merely the shear velocity U, — U, and it appears
plausible to interpret 4 to be of the order of the zero-crossing scale for the signal
in figure 4b. .
With increasing Reynolds number, small-scale three-dimensional turbulence
develops ; although the basic two-dimensional structure may still persist (as in this
present example), the geometry of surfaces separating the two species (for example
the surface on which the mixture fraction is 0.5) is no longer simple. It gets
convoluted by a wide range of scales, as shown in figure 5. The inverse rate of
strain is now of the order .
w/{e>): = A/, (2.5)

where {¢) is the average rate of dissipation of turbulent energy, A is the so-called
Taylor microscale, and »’ is the characteristic fluctuation velocity given by
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(b)

M uguiiJud

FIGURE 4. (2) Advanced stage of the Kelvin—-Helmholtz instability observed in an experiment,
and (b) the signal obtained (schematic) by taking the one-dimensional cut through the flow,
as shown in (a).

Ficure 5. Planar intersection of the surface with the mixture fraction 0.5 in a
fairly low Reynolds number turbulent mixing layer.

its root-mean-square. Therefore, the thicknesst of the surface is given by
(WA/w )i = A(w'A/v)"t = 5. Clearly, these arguments are valid for other flows such
as jets, wakes and boundary layers. The characteristic velocity gradient across
the interface is of the order U,/%, where U, is a characteristic velocity ; for example
the centreline defect velocity w, for the wakes, the centreline excess velocity U
for the jets, the velocity difference U, — U, between the two streams for the mixing
layer, and the friction velocity U, (equal in kinematic units to the square root of
the wall shear stress) for the boundary layer. It may be of interest to note the

t It is possible to justify this estimate by assuming (by analogy with the last statement of
the previous paragraph) that the interface is strained by eddies of size comparable to the zero-
crossing scale that, according to Sreenivasan, et al. (1983), is the Taylor microscale. Although
this may make the present estimate more appealing intuitively, a recourse to the existence of
an intermediate scale between L and 5 seems uncalled for and so we prefer the interpretation
given in the text. We leave to a later date detailed discussion of the proper place of A in the
hierarchy of scaling.
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similarity of the present estimates to those of Tennekes (1968) in a different context
of scales of dissipative regions.

Simple extension to high Schmidt number case shows that the characteristic
concentration gradient is of the order AC/7,, AC being a typical concentration
difference. For low Schmidt number cases, the appropriate gradient is of the order
AC/7,.

In the above arguments we have ignored the intermittent nature of the
dissipation rate €, whose effects can be seen to appear via (2.5). Furthermore, it is
understood that the expressions relating {e), A, 7 and ' are also applicable to
regions in the neighbourhood of the interface and that these quantities are
essentially the same near the interface as everywhere else in the fully turbulent
region. In Appendix A we show using experimental data that these assumptions
are justified. The correction due to the intermittent nature of ¢ will be discussed
in §3.

2.5. Diffusive flux across surfaces

Considering the momentum flux across surfaces, an expression can be written in

accordance with the discussion so far as

v8p(Us/m). (2.6)

Defining the characteristic Reynolds number Re = w’L/v, we may note that
n/L ~ Re™%, and use equation (2.2) for the interface area Sy to write

diffusive flux of momentum ~ 8, U%(u’'/U,) ReiP~. 2.7

Note that S,, U, and («’/U,) are all independent of Re. For high Schmidt number
cases, the corresponding result for the flux of a species with concentration
difference AC is given by

diffusive flux of contaminant ~ Sy(U, AC) (w'/U,) Rei®=9 Sc0-5@~= (2 8)

where (2.3) has been used for S;. For the low Schmidt number cases, using (2.4)
for S;, and noting that the characteristic gradient is AC/7,, the corresponding
result is:

diffusive flux of contaminant ~ S,(U, AC) (u'/U,) Re¥®d Sci®-d,  (2.9)

2.6. Convective flux across surfaces

We now estimate the flux across surfaces using an alternative view where the
transport can be thought of as occurring because of the convective action of the
smallest eddies. The characteristic scales of this ‘microscopic’ convective motion
of the convoluted interface with respect to itself can be estimated on dimensional
grounds. For example, Corrsin & Kistler (1955) estimated the propagation
velocity to be of the order of the Kolmogorov velocity v, = (v{e))i. This estimate
is not without its problems, at least partly because (again) one might debate about
the precise ¢ to be used, but it should be emphasized that we provide in §3 a-
different argument and show that the final conclusion does not depend on the
details of the Corrsin—Kistler model. The final results are therefore independent of
the model. /
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The flux of momentum given by the product of the surface area and the
propagation velocity is the product U, Sy, which, after some rearrangement and
the use of (2.2), can be written as

convective flux ~ S, U%(u’/U,) RetP~D. (2.10)

It is interesting and significant that both (2.7) and (2.10) have the same
dependence on the Reynolds number and the same prefactor. Therefore, in
further discussions we do not explicitly distinguish between the two points of
view. We can therefore write, without further qualification, that the

momentum flux = 88, U2 Rei P9, (2.11)

where £ is some constant. We shall provide estimates for # in §2.8.

Because of the equivalence between the convective and diffusive effects for the
unity Schmidt number, it may be useful to think of the equivalent convective
process even for the non-unity Schmidt numbers. If, in this case, we assume
that the characteristic propagation velocity of the scalar interface is given by
v, = 7,(v<€) /v)? (which is the ratio between the appropriate length and time scales
at the end of the viscous-convective subrange), the corresponding result for the
passive contaminant is given by '

contaminant flux = yS,(U, AC) Rei®~9 Sc0-50"=3, (2.12)

for Sc > 1. Here, y is another constant. For low Schmidt numbers, simple
calculations as before show that the Schmidt number term in (2.12) should be
replaced by SciP—d,

2.7. An estimate for the fractal dimension of surfaces

It is well known that all fluxes (mass, momentum, energy) must be independent

“of Reynolds number in fully turbulent flows: the so-called Reynolds number

similarity. (This is merely a statement of the observed fact that the growth rates
of turbulent flows of a given configuration are independent of fluid viscosity.)
According to (2.11) and (2.12) the Reynolds number similarity requires that

D=1 (2.13)

for both the vorticity and scalar interfaces, in rough agreement with experiments
(table 1). Note that this result is independent of the Schmidt number.

The result (2.13) is one of the main conclusions of the paper. Because we have
not allowed for the possible spatial variations of normal ‘concentration’ gradients
along the interface, this estimate is to be treated as ‘typical’ at best. One possible
correction occurs because the interface thickness and the propagation velocity
vary from place to place along the interface. We shall show in the following section
that this aspect can be accounted for satisfactorily. Readers interested only in the
verification of (2.12) can skip most of §3; for their benefit, we note in advance that
the correction to the Z result is relatively small.

Along the same lines, because the total flux of the contaminant is expected to
be independent also of the Schmidt number for high Schmidt numbers, it is seen
from (2.12) that D’ = 3. This is another important conclusion. Figure 6 shows
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Y

o °
F1GURE 6. Schematic diagram of surface convoluted according to different power-laws in two
distinct scale ranges. In the range L > r > 7, the convolutions are self-similar and the

surface has a dimension of about 3. The self-similar convolutions of sizes between % and
7, have a dimension 3, practically filling the space.

schematically the convolutions of the interface according to different scales in the
large Schmidt number case. The convolutions in the range between L and 7 are
self-similar with a fractal dimension of Z, but those of sizes between 7 and 7, are
much more pronounced ; having a fractal dimension of 3, they practically fill the
space. Therefore, the effective thickness of the interface appears to be of the order
of 9 even for high Schmidt numbers.

2.8. Entrainment velocity

It is useful to discuss explicitly the entrainment of non-turbulent fluid at the
convoluted vorticity interface of a turbulent flow. As a result of the entrainment,
the flow grows with downstream distance (or with time, in a temporally growing
flow). If the projected area on the z— plane (in the usual notation; see figure 7)
has an area S, then the so-called entrainment velocity, defined by the identity

momentum flux entrained by the turbulent flow = S, V. U, (2.14)

can be estimated by equating this to equation (2.11). Because the ratio of S, to
S, can be thought of as a constant for a given flow, a little algebra and some trivial
redefinitions lead, for free shear flows, to the expression

Ve/U, = B, (2.15a)

where the constant g is different for different flows. For the turbulent boundary
layer, the corresponding expression can be written as

Ve/ Uy = B(Ux/ Gy), (2.15b)

where U, is the free-stream velocity. The constants § in (2.15a, b) are not known
a priori, but can be estimated from other considerations. Although they could
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i

boundary layerthickness’

FicuRE 7. Schematic of the vorticity interface in a turbulent boundary layer with x and y axes
as defined, the z-axis being the spanwise coordinate. The broken line is a ‘control surface’
across which momentum balance is made, as described towards the end of §2.8. The
projection of the interface on the x—z plane is S,.

have been estimated in the process of deriving equations (2.11) if we had taken
recourse to some level of empiricism, it was felt that, to the extent that some
empiricism is unavoidable anyway, the issue should be addressed separately in
some unified manner. This is done in Appendix B, but the constants £ as well as
the characteristic velocities are listed in table 2.

TABLE 2. SUMMARY OF CONSTANTS f IN EQUATION (2.15a, b)

flow U,
plane wake wy 0.46
plane jet 0, 0.10
axisymmetric jet U, 0.23
mixing layer AU 0.15
boundary layer U, 9

Finally, defining the control volume as shown by the broken line in figure 7 for
the turbulent boundary layers, the application of the momentum theorem shows
that, to within a constant, the right hand side of (2.11) is also the wall shear force.
This, of course, is true as an identity: 7, = U} (in kinematic units).

3. FLUCTUATIONS IN THE INTERFACE THICKNESS AND PROPAGATION
VELOCITY, AND THE RESULTING CORRECTION TO THE
FRACTAL DIMENSION

The correction to be considered here arises from the fact that the energy
dissipation fluctuates intermittently in space (Batchelor & Townsend 1949), which
in turn induces fluctuations in the rate of strain, as well as both  and v»,. For
future reference, we may note that 7, v, as well as the square root of the rate of
strain all depend on quarter powers of the dissipation rate, e. The procedure for
correction is simply to replace the average 5 in (2.6) by the local fluctuating 7, and
average the gradient estimate U,/ over the entire domain of the surface; similar
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strategy holds also for v in §2.6. Alternatively, one can consider fluctuations in the
rate of strain in a similar fashion.

Consider briefly the nature of fluctuations of ¢; we will use concepts and
experimental results described in detail in II. To illustrate the main point of
intermittency effects, we have chosen the turbulent wake of a circular cylinder,
but the arguments and conclusions hold for the other flows as well. Figure 8 shows
a time series of (Ou/0t)* obtained from a velocity signal () measured in the wake.
(The experimental setup is rather standard, and is described in II. As in II, we
argue that (Ou/0t)? can be considered as a reasonable approximation for the rate
of dissipation €¢.) We see from figure 8 that a clustering phenomenon is present,
that is, regions where € is almost zero are followed by clusters of high levels of ¢.
These clusters in turn consist of subclusters that are interspersed between regions
of low dissipation. The self-similarity of such clusters will induce a series of power
laws as will be exemplified below, this being the compelling reason for expecting
the fractal behaviour. (That this self-similarity is not global is the reason for
expecting the multifractal behaviour described very briefly below ; see Mandelbrot
1974, Frisch & Parisi 1985, and II.)

(Ou/0x)?

or

(Ou/0t)?

t or xz

Ficure 8. A segment of (0u/0t)? measured in the turbulent wake of a circular cylinder. This
signal can be considered as representative of ¢, the rate of dissipation of turbulent kinetic
energy. Invoking Taylor’s frozen-flow hypothesis, this can be viewed as a spatial one-
dimensional cut in the coordinate x through the flow-field. The z-axis is divided into equal
segments of size r, and ¢ is averaged in each of these boxes, giving €,. This procedure
is repeated for different sizes r to obtain the generalized dimensions D, (see text and
equation (3.1)).

Let us now divide the abscissa in figure 8 into contiguous boxes of size r and focus
on ¢,, which is the rate of dissipation ¢ averaged over boxes of size r. Clearly, ¢
varies from one box to the other. If the boxes are very small, say of size 7, ¢, will
approximate very well the actual dissipation rate ¢, and so ¢, fluctuates greatly
from one box to another. On the other hand, if we average ¢ over boxes that are
as large as (say) the 1ntegral length scale L, we get e, ~ {e). Interesting
phenomena appear if we consider boxes of sizes lying between » and L. It is clear
that as r gets smaller, the variance of ¢, gets larger.

We next consider the question of how the moments of ¢, depend on r. In general,
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the experiments (discussed in greater detail in II) are consistent with power laws

that can be written as (e8> = €4 (r/L)a-D DD, (3.1)

where we have made use of the so-called ‘generalized dimension’ D, of linear
intersections of the dissipation field. These dimensions are in general a function of
g (¢ can be any real number) and play an important and general role in
characterizing the multifractal measures (see Mandelbrot 1974, Hentschel &
Procaccia 1983, and II). This method of writing the moments of ¢, can be thought
of as a generalization of the familiar special case for the second moment of €,

(Kolmogorov 1962) Ce2> = e (r/L)* (3.2)

where u is the well-known intermittency exponent. We immediately recognise that
u = 1—D,. It also follows from the above discussion that the dimension D, (for
g = 0) represents the fractal dimension of the set of points where dissipation occurs
in the linear section. The fact that a power law holds means that there is no
preferred length scale within the scale-similar range, and thus the variance
increases continuously and monotonically as the scale r becomes smaller.

One can use equation (3.1) or its variants to measure this set of exponents D,
from a time series of ¢ like figure 8 by averaging powers of €, using boxes of
different sizes r and by identifying the slopes of linear regions in plots of lg {e?)
against lg r. This was done in II, and the behaviour of the function D, with ¢ was
shown to be a universal property of dissipation in fully turbulent flows,
independent of the type of flow as well as the Reynolds number (as long as it is
sufficiently high). Figure 9 shows the resulting mean D, curve obtained in II.

PR N TN N TN T S N ST SN SN S N Y S W

FicUrE 9. The generalized dimensions for one-dimensional sections through the dissipation field
in several fully developed turbulent flows (grid turbulence, wake of a circular cylinder,
boundary layer, atmospheric turbulence). The experimental details are standard, and can
be found in II. The symbols and the continuous curve correspond to the experimental mean,
(which is independent of the type of flow within experimental accuracy), and the error bars
(also independent, of the type of flow) correspond to the variability of the D, observed at
different regions of the time series (these regions being several tens of the integral length
scale L) and/or in different realizations of the experiments.
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As already mentioned, our interest is in estimating the fluxes allowing for the
variability in the Kolmogorov thickness and velocity. That is, instead of using the
average 9 in equation (2.6), and the average v, in the convection flux estimates,
we take the spatial average of the flux after inserting the local unaveraged value
of 9 and v,. (Because both 7 and v, depend on the same quarter power of the
dissipation rate, the correction for both quantities is the same.) This operation
reduces to replacing {e)i by {eiy. Noting from (3.2) that, for ¢ = 1,

ety ~ (&) = € (n/L)i4PY, (3.3)
it is straightforward to write, instead of (2.11), that the
momentum flux = BS,(AU)2ReiP-5-30-DY1, (3.4)

If we use the Reynolds number similarity as before, we get
D =i+}(1-Dy). (3.5)

From our measurements in II (see figure 9) we know that D ~ 0.97, and therefore
D = 2.356, which does not change much the uncorrected value of Z. It is worth
emphasizing that the reason for the relatively small correction is that the interface
thickness and the propagation velocity depend on the quarter power of the
dissipation, and so the strong variabilities in ¢ do not result in comparable
variations in 7 and v,.

In a similar vein, one can also produce a simple alternative scheme for
estimating flux across fractal interfaces in a way that does not depend on the
details of the Corrsin—Kistler model. From dimensional considerations, one can
write the flux of a contaminant (for simplicity the case of unity Schmidt number)

bo be flux = Sp{Au,> AC, (3.6)

where Aw, is a characteristic velocity difference between two points at a distance
r across the interface and € = O((Aw,)®/r), where (roughly) # < r < L. Because the
interface thickness is of the order 3 (see §2.4),

B,y = {Bu,y = {(en)- (3.7)
But, from (3.1), we have
C(en)y ~ (g/Lyia-2p (3.8)
which allows us to rewrite (3.6), after some algebra, as
flux = S, U, AC(w’/ U) Re®P—$51-Dp], (3.9)

Again invoking Reynolds number similarity in (3.9), we have

D =3+3(1—-Dy). (3.10)
From measurement, D% ~ 0.96, so that D =~ 2.36, not very different from the
previous estimate.t

1 Although the estimates (3.5) and (3.10) are practically the same numerically, the two are
self-consistent only in the space-filling case, that is D, = 1 for all values of ¢. If, in (3.8), we take
into account the fluctuations in 7, we get the same result as equation (3.5).
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The corrected fractal dimension for the scalar interface is very close to the value
measured in I, the results from which are summarized in table 1. This is also close
to some new measurements to be presented (in the next section) for mixing layers
in the developing as-well as fully developed states.

A primary reason for deriving (3.10) in that particular form is to correlate it in
§4 with measurements on the Reynolds number variation of the fractal dimension.
This comparison is most conveniently made by noting that the inertial-type
arguments in turbulence imply that the structure function {JAu,|) varies like 7%.
It is shown in II that £ is given by the equation

§=1-3D,, (3.11)
which, with (3.10), can be written as
D=2+¢ (3.12)

The fractal dimension is thus intimately related to the scaling exponent of the
structure function. We shall verify this result by comparing our measurements of
D with those of Tong & Goldburg (1988) on the variation of £ with Reynolds
number for developing flows. Their measurements of £ with photon-correlation
spectroscopy showed that it is zero for low Reynolds numbers before the onset of
transition to turbulence, and that it asymptotes to a value near 1 at high Reynolds
number. This implies, from (3.12), that D = 2 for low Reynolds numbers (smooth
surfaces before transition), and that it should asymptote to a value near  at high
Re. We have already deduced and substantiated this last result, and present the
remaining results in the following section.

4. EXPERIMENTS IN MIXING LAYERS
4.1. General remarks

We showed above that the principle of Reynolds number similarity implies, in
agreement with direct measurements, that the fractal dimension of surfaces in
fully turbulent flows is about 2.36. Here, we describe some additional results on
the measurement of fractal dimensions (§4.2). We also test in a greater detail
(§4.3) the validity of equation (2.12) and (3.12) even as transition to turbulence
unfolds, and the characteristic flow Reynolds number increases in a developing
flow. To do this, we have chosen a temporally developing, countercurrent mixing
layer, created as described below. The advantage in the present context of a
temporally developing flow over a spatially developing one is that there is in the
former an average spatial homogeneity that renders the scale similarity concept
more genuine. This can be understood easily. In a spatially developing flow, the
scales grow with downstream distance, and so, if one considers a sizeable
streamwise cut of an interface, the similarity scale range as well as average inner
and outer cutoffs vary from upstream end of the interface section to its
downstream end. Even a cursory look at figure 7 will make this obvious. The
problem is non-existent in the case of temporally developing flows, thus making
it reasonable to expect fractal behaviour to hold there quite strictly.

The countercurrent shear flow was created in a tilting tube apparatus described
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by Ramshankar (1988), earlier used in some pioneering experiments by Thorpe
(1968); it works on the presence of slight stratification between two layers of fluid
in the tube. Briefly, the apparatus is a rectangular plexiglas tube of cross section
5 cm x 15 cm, and 2.4 m long. The ends of the tube are closed and provided with
valves for filling and draining the fluid. During filling the tube from the bottom,
the tube is tilted about 60° from the horizontal about its pivot, the light fluid (in
this case fresh water) is first introduced at a slow rate, and then the heavy fluid,
in this case brine of density 1.02 kg m™3; care is taken to avoid turbulence and
mixing during filling and subsequently tilting the tube back to horizontal. When
the small disturbances, unintentionally created during these operations, are
brought to rest, the apparatus is ready for the experiment. The density interface
formed during this entire procedure is typically 1 mm thick. The countercurrent
shear flow is now achieved by tilting the tube by a small angle, thus setting up
downward flow of the heavier fluid and upward flow of the lighter fluid (see
figure 10); the running time of the experiment is determined by the length of the
apparatus, and is typically about 10 s for the present experimental conditions.
Even though the flow is slightly stratified, the Richardson number at the onset of
instability is low enough (Ramshankar 1988) for it to be considered homogeneous
according to a criterion suggested by Koop & Browand (1979). If the tube is
maintained in its slightly inclined position, the flow speed (and thus the Reynolds
number) increases linearly with time, but the flow can be treated as quasi-steady
(Thorpe 1971). The increasing flow speed turns out to be an advantage in the sense
that we can have, in the same experimental run, developed mixing layers at
increasing Reynolds numbers.

Ficure 10. Schematic diagram of the flow after it is set up in the tilting tube apparatus. The flow
speeds and the total experimental time (for a finite length apparatus) are determined by the
tilting angle, which is small (less than 5°) in the present experiments. For the present
experiments, the duration of the experiment was about 10 s.

4.2. Measurement of fractal dimension

As mentioned in §4.1, the concepts of fractals are more easily identifiable with
flows that have no spatial asymmetry, such as in the countercurrent flow.
Figure 11 shows at moderate Reynolds numbers a section of the flow obtained by
using laser-induced fluorescence. Here one of the streams is mixed with a
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FieUure 11. Section of a countercurrent flow at a moderate Reynolds number, obtained by using
laser-induced fluorescence. Also shown as the white line is the interface drawn by setting
a suitable threshold to demarcate the bright regions from the dark.

fluorescing dye and fluorescence is excited by a thin sheet of laser light passing
through the mid span of the test section. The thickness of the sheet of laser light
is approximately equal to the Kolmogorov microscale . (This means that we
cannot say anything about scales smaller than 3.) The image is recorded on a cop
(charge-coupled device) array camera consisting of 1300 x 1100 pixels and is
digitized with a 12 bit digitizer.

Figure 11 also shows the boundary between the bright and dark regions
obtained by setting a suitable threshold on the intensity of the image. As can be
seen, the method of determining the boundary by setting the threshold is more or
less satisfactory; a more thorough investigation by Prasad & Sreenivasan (1988)
confirms this conclusion. To the boundary so determined, one can now apply a
box-counting algorithm to obtain its fractal dimension. The algorithm consists in
covering the whole plane with square boxes of size r and counting the number of
boxes N(r) in which the boundary is contained. Because for a fractal object one
expects N(r) and r to be related by a power law of the type N(r) ~ r 2, a plot of
lg N(r) against lgr (figure 12) gives us a linear region whose negative slope is the
fractal dimension of the boundary shown in figure 11. The result from this
realization is approximately 1.35. The number 1.35, however, is the dimension of
planar sections of the surface, and not of the surface itself. If we use the additive
properties of dimensions governing the intersection of fractals (Mandelbrot 1982,
p- 366, and references cited there), the fractal dimension of the surface will be
given by 1+ 1.35 = 2.35. The inset shows that this result is sensibly independent
of the threshold over a large fraction of the dynamic range of the signal. This
additive procedure, obvious for euclidean objects, is justified also for fractals when
the fractal dimension is independent of the orientation of the intersecting plane.
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Ficure 12. Logarithmic plot of N(r), the number of square elements of size r needed to cover the
interface shown in figure 11, as a function of r. The slope is —1.35. Orthogonal sections of
the flow yield the same result, and one may therefore conclude that the fractal dimension
of the surface is 2.35 (see text). The scaling range is slightly higher than a decade. It is
worth pointing out that the scaling range at higher Reynolds numbers is higher. The inset
shows the measured dimension as a function of the threshold set on the brightness of the
digital image. Here, 0 and 1 correspond to the darkest and brightest pixel intensity in the
image. An average value of D = 2.37 seems robust. For higher thresholds, the dimension
drops off rapidly.

We have made fractal dimension measurements for two orthogonal sections of the
flow and confirmed that the result was the same for both.

- We now turn to the Reynolds number variation of the fractal dimension of the
surface as it evolves from smooth to the fully turbulent state. The sequence of the
temporal development of the flow is shown in figure 13, plate 1. Similar procedure
as outlined in the previous paragraph was followed, and figure 14 shows the
variation of the fractal dimension of the surface with Reynolds number. Following
(3.12), we have also compared here the results of Tong & Goldburg (1988)
discussed in §3. Their mean curve has been translated to match the critical
Reynolds number in our flow; no other adjustable parameters exist in this
comparison. The agreement is reasonably good.

4.3. Measurements on mixing

The amount of molecular mixing that occurs between the two streams can be
measured at least by two ways. One is the passive scalar technique where an inert
scalar such as a dye, premixed with one of the streams, subsequently gets diluted
by mixing with the other stream ; the dye acts as a conserved scalar. Measuring the
local instantaneous concentration of the dye gives a measures of mixing. This
scheme, however, has the difficulty that the sampling volume is generally much
larger than the smallest scale of turbulence, which for passive mixing is the
Batchelor scale. Within the sampling volume it is not possible to determine
whether the two streams are mixed or not, and thus the lack of resolution results
in the overestimation of the amount of mixing.

4 Vol. 421. A

s
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Breidenthal (1978) suggested the use of a chemical reaction as an alternative
method; Konrad (1976) had earlier advocated the same idea, and used it in
gaseous phase. If we have a fast and irreversible reaction of the type A+ B —C, the
amount of the product C formed is equal to the amount of molecular mixing
between the dilute reactants A and B (at the reaction equivalence ratio) in the two
streams. Further, if the product C is visible, a suitable optical method can be used
to measure the extent of mixing in a non-intrusive manner. In contrast to the
passive scalar method, the finite size of the ‘probe’ does not cause over-estimation
of mixing because the amount of the mixed fluid in an irreversible reaction is
exactly equal to the amount of the product that is formed no matter how large the
probe volume. For this reason, we present results only for this latter method,
although both methods were used (Ramshankar 1988) during the course of this
investigation. We shall use as the measure of mixing the so-called ‘product
thickness’ d, defined as

+00

0, = I/Bwf Clx,y,2,t) dy, 4.1)
where B is the freestream concentration of the species B. The product thickness
represents the total amount of product formed when normalized by the freestream
concentration of the species involved, chosen arbitrarily as B in the definition
4.1).

@D 4.4. Chemical reaction experiments

A simple acid-base reaction was used here to mark the mixing during the flow.
A common pH indicator known as Cresol red, with the property that it is pale
yellow in acidic solution and turns deep red when the pH of the medium is raised
above 6, was used to indicate the reaction products. Optical techniques based on
the attenuation of light by the red product can be used to estimate the extent of
mixing. In practice, the reaction used is reversible, and so the extent of mixing
obtained by this method is a lower bound in high Schmidt number situations; but
this effect can be minimized by using a very large stoichiometric ratio of the
reactants.

As mentioned, experiments were conducted in the tilting tube apparatus.
Sulphuric acid (pH level of about 5) and the indicator Cresol red were added to the
light fluid, and the base (sodium hydroxide, pH level of about 11) to the brine. The
optical arrangement consisted of a beam of a- mercury vapour lamp that was
collimated and spread into a sheet (thickness about 0.5 mm, width exceeding one
primary wavelength of the flow instability) using a cylindrical lens. The sheet of
light was passed through the tube normal to the plane of the shear layer in the
mid-span of the tube. The light sheet was then focused back to a point using a
convex lens and a photomultiplier tube was placed at the focal point of the lens
(see figure 15). For a given concentration of the red product, the intensity X of the
attenuated beam is given by _

E=E e, 4.2)

where K|, is the incident light intensity, b is the absorption coefficient of the red
product (at the appropriate concentration) and d,, is the average thickness of the
red product in the path of the light. Thus, by recording the attenuation of the light
intensity due to the presence of the red product in the light path, and by
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FieurE 13. Visualization of a thin section of the countercurrent shear flow by lasci induced
fluorescence at different stages of its evolution. The numbers on these pictures correspond
to those on the product thickness curve of figure 17 to follow. Unlike in figure 11, the dye
was placed carefully in a thin sheet between the two fluids when filling the tube.

(Facing p. 98)
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Ficure 14: The fractal dimension for the dye interface in the countercurrent shear flow. As
expected, the fractal dimension increases from 2 in the initial stages (up to somewhere
between pictures 3 and 4 in figure 13) to about % in the fully. developed turbulent region.
The onset of three dimensionalities occurs somewhere between the fourth and fifth pictures.
The continuous line corresponds to the prediction of D as a function of £ according to
equation (3.12) using experimental data on £ obtained by Tong & Goldburg (1988). Their
mean curve has been translated to match the critical Reynolds number of the present
experiment.

to computer
photomultiplier
convex lens
U <« acid + indicator
base — U,

cylindrical lens
convex lens

mercury vapour lamp

Ficure 15. Schematic diagram of the apparatus used for measuring product thickness.
The scheme is based on Briedenthal’s work.
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determining via calibration (see below) the attenuation coefficient b, we can obtain
the average thickness of the product formed. Because the light sheet passes
through the entire cross section of the shear layer, the integration of the local
product concentration is already obtained and hence the product thickness
defined by equation (4.1) can be obtained. The light intensity at the
photomultiplier tube was recorded digitally with and without the red product in
the light path; to provide the base level of the product formed, the maximum
intensity at the photomultiplier tube was recorded for each run. The data were
processed to obtain the product thickness. The low diffusivity of the product
ensures that the product thickness measured this way essentially reflects the
mixing characteristics corresponding to local conditions alone.

One usual difficulty with the product-thickness measurements in spatially
developing mixing layers is the greater tendency of the high-speed fluid to be
entrained into the flow. This tendency implies that the amount of product formed
depends on whether the acid or base was contained in the high-speed fluid. It must
be noted that this difficulty does not exist in the present experiments because the
two streams have equal (but opposite) speeds. There is a small amount of
asymmetry due to non-unity density ratio (1.03 in most experiments), but this
effect was shown to be minimal by Ramshankar (1988) by the so-called ‘flip’
experiment proposed by Koochesfahani et al. (1984).

A few words should be said about the calibration procedure. The attenuation
coefficient and the stoichiometric ratio of the reactants were obtained by means
of a titration experiment. A known quantity of the acid and the indicator solution
is taken in a cuvette cell of known optical path length and the attenuation of the
light beam is recorded as the base is added to the cuvette cell. Initially the
attenuation is minimal because the red product is not formed but, as more and
more acid gets added, there is a sudden enhancement of attenuation, eventually

reaching a peak (see figure 16). This peak denotes the reaction stoichiometric ratio.

Further addition of the base merely dilutes the product and hence the attenuation
is again reduced. The transition of the attenuation as seen can be made very
sharp and the stoichiometric ratio can also be altered by simply changing the
concentration of the base in the brine solution. The attenuation constant b is then
obtained from the equation (4.2) based on the attenuation of the light at the
stoichiometric ratio.

4.5. Results

Figure 17 shows the product thickness as a function of flow Reynolds number
(which varies with the time measured since setting up the flow). The approximate
correspondence between the flow structure in figure 13 (from a different run but
under nominally the same circumstances) and the mixing data is also shown. It is
seen qualitatively that the rapid increase in mixing goes hand in hand with a fairly
sudden increase in the complexity of iso-concentration surfaces. Also marked by
A is the region of onset of three dimensionalities in the flow, as determined by
visual and photographic inspection of the plan view of the flow field. Detailed flow-
visualization studies (Ramshankar 1988) support the notion that rapid increase in
mixing does not occur until after the onset of three dimensionalities. The product
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FicURE 16. Attenuation of light due to the formation of the red product as a function of the base
volume fraction. A cuvette cell of known optical path is initially filled with the
acid-indicator solution. The attenuation of the light passing through the cuvette cell is
recorded’in a photomultiplier as the base volume fraction is increased. The attenuation rises
sharply to a maximum at the stoichiometric ratio (base volume fraction = v,/(v, +v,) =
0.08); at this point all of the indicator (Cresol red) is converted to the red product. Further
addition of base merely dilutes the red product and hence the attenuation decreases. The
attenuation coefficient of the red product at the stoichiometric ratio is then found by using
4.2).
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FreurE 17. The comparison between the measured ‘product thickness’ (see equation (4.1)) and
the prediction (2.12) given by the continuous line, both forced to agree at one point. Open
and filled symbols correspond to two different realizations of the flow. The length scale

8, in the abscissa Reynolds number (= AUS,/v) is the visual thickness of the

countercurrent shear flow. The numbers on the product thickness curve correspond
approximately to the sequence of pictures in figure 13.

thickness ratio saturates at about the time when the end-wall effects become
important.

Of specific interest here is the comparison between this observed behaviour of
mixing and the prediction from equation (2.12). For this purpose, we need to know
the dimension of the interface as a function of Reynolds number, and this was
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obtained in figure 14. With these data (and D’ = 3) we may now determine the
amount of mixing according to (2.12). In doing so, we replace «’L/v in (2.12) by
AUS /v, where 8, is the (measured) visual thickness of the flow. This redefinition
of Reynolds number is equivalent to replacing the relation /L = (w/L/v)™% by
/8,15 = (AUS,;,/v)~%. Measurements in spatially developing mixing layers support
the latter relation in the same way that the former is supported by grid turbulence
measurements. We determined AU from the theoretical analysis of Thorpe (1968,
1971), which gives AU = 2{gt sin 6, where { is the density difference ratio between
the two streams, and ¢ is the time since the tank gets tiled to an angle 6 to the
horizontal.

As emphasized earlier, equation (2.12) is expected to be valid once self-similarity
sets in; it is reasonable to think that this occurs, in general, not long after the onset
of three dimensionalities. This was definitely the case in our experiments. There is
therefore enough justification to use (2.12) in the region to the right of A in
figure 17. Because the constant £ in (2.12) is unknown (and will remain unknown
until the problem is solved in full), we cannot make comparison of absolute values.
The comparison with the product thickness, when both quantities are made to
agree at 0,/d,,,, of 0.5, appears to be quite reasonable up to the highest Reynolds
number for which the flow has not been significantly affected by the end walls of
the tilting tube apparatus. At this point, the experiments start to level off but the
theoretical estimates do not because the above estimate of AU ignores the end wall
effects, and continues to grow.

We believe that the physical content of the arguments of §2 has been
substantiated.

5. CONCLUSIONS
The main points of the paper can now be summarized. First, we have shown

“that the fractal dimension is a useful concept for estimating the area of complex

surfaces in turbulent flows, and that with this knowledge, specific arguments can
be produced to estimate to within a constant (which itself can be, and has been,
estimated separately) the fluxes of transportable quantities (such as mass,
momentum and energy) across such surfaces. Second, it follows from Reynolds
number similarity (ignoring intermittency effects) that the fractal dimension of
interfaces in turbulent flows is ; an interesting interpretation is that the turbulent
surfaces at the ‘microscopic’ level adjust themselves in such a way that the
‘macroscopic’ fluxes are independent of the fluid viscosity. The ? estimate is
modified only slightly upward (to about 2.36) if we allow in a reasonable fashion
for the fluctuations in the interface thickness and its propagation velocity. The
corrected estimate is in excellent agreement with our previous as well as present
experimental results. Third, we presented data as well as an analysis on the
Reynolds number variation of the fractal dimension in developing flows. Fourth,
we invoked the Schmidt number independence of mixing to show that the scale
convolutions in the range % > r > 7, are space filling. Finally, the prediction
concerning the variation of mixing with the flow Reynolds number has been
checked in some detail in a countercurrent shear flow.

We believe that the general procedure introduced in §2, which basically consists
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in relating turbulent mixing and entrainment to molecular diffusion across a (non-
static) fractal interface, is a self-consistent approach leading to an improved
understanding and modelling of turbulent transport processes. We should re-
emphasise our earlier statement in §2 that we do not either ignore or consider
negligible the importance of the large-scale structure in initiating the transport.
We have taken the view that one can examine a process as convincingly at the
stage of its consummation as at the stage of initiation. We claim that it is much
more tractable to understand and predict the process if we concentrate on the last
stages, and have provided a self-consistent framework that is independent of the
configurational details of the flow. It appears to us that many known features of
mixing and entrainment can be explained within this framework.

Finally, we note the similarity of purpose between the present effort and that
of Hentschel & Procaccia (1984) who, using an entirely different set of arguments,
attempt to explain Lovejoy’s (1982) result for the fractal dimension for cloud
boundaries.

We are grateful to B. T. Chu, Peter Bradshaw, Gene Broadwell, Martin Maxey,
and Ron Roy for commenting on the draft version of the manuscript, and to
R. Prasad for his help on several matters related to data processing. We were
helped in focusing our thoughts better by the comments of one of the referees. This
work was supported by grants from AFOSR and DARPA.

APPENDIX A

We recall that one of our assumptions leading to equations (2.11) and (2.12) was
that the dissipation rate averaged only over the interface region is equal to that
averaged globally. To examine this, we study here the behaviour of the dissipation
rate in the neighbourhood of the interface. For definiteness, let us divide the three
dimensional domain of the flow in equal cubes of size r. Let us call ¢, the
dissipation averaged in such a box. Clearly the global average of dissipation {e>
will be given by considering very large cubes. On the other hand, the average of
the dissipation along the interface {¢,>; can roughly be obtained by using very
small boxes of size comparable to the Kolmogorov scale #, and considering only
the boxes which contain any part of the interface in performing the average. If we
want to measure <e,;, the dissipation that occurs in a strip of thickness r along
the interface, we can use boxes of size r and again only consider those which
contain the interface.

Because we do not know a priori where in three dimensions the interface resides,
we resort to the method of intersections used in I and described briefly in §4.2. In
the context of scalar interfaces in turbulent flows, the method reduces to taking
a slice of the flow (for example, by illuminating a dyed flow with a sheet of light
of thickness comparable to the Kolmogorov scale), and examining the cut of the
interface made by the light sheet. By working on the intersected plane, one
determines the properties of the surface in three dimensions using the addition
principle (see text).

We have so far not been able to obtain a two-dimensional cut of ¢ (because it


http://rspa.royalsocietypublishing.org/

PROCEEDINGS THE ROYAL

SOCIETY

OF

/<K
2
=]
-1
a

'ROCEEDINGS THE ROYAL

SOCIETY

OF

Downloaded from rspa.royalsocietypublishing.org on 20 February 2009

104 K. R. Sreenivasan, R. Ramshankar and C. Meneveau

has nine non-zero components), but have made progress with respect to y, the
scalar dissipation field of the dye concentration ¢, for example. Noting that

X = (de/dx)? + (de/dy)? + (dec/dz)?, (A1)

with x, y and z representing the cartesian coordinates, we can easily obtain the first
two terms of y, by centre differencing (for example) the concentration ¢ with
respect to both  and y in the plane of intersection. (The quantity c¢ itself is
available to us in the form of a digitized image on a ccp array of approximately
1300 x 110 pixels; note that the light intensity of the image is directly proportional
to the concentration of the dye.) We shall assume that the average behaviour
of the sum of the first two terms in (A 1) will adequately represent that of the
entire y. Prasad et al. (1988) have in fact tested this idea, and found it to be valid.
To put the matter in perspective, we note that the first term alone is quite often
used in the literature to represent the statistical behaviour of the sum of the three
terms.

We have plotted in figure A 1 the variation of {y,); (normalized by using the
global average) with respect to r/#. It is clear that the variation is not large. The
difference between the dissipation occurring in a strip -of thickness 5 along the
interface and the global average is not larger than 5%. The decrease of {y,»; with
respect to r for r/n < 30 is understandable if we realize that interfaces are regions
of marginally larger dissipation than the average nearby. But as one begins to
include larger areas of the flow field (that is, as one begins to include the fully
turbulent regions) the average goes up somewhat, and eventually converges to the
global mean.

10

10! y 102 103
r/y

F1cURE A 1. Averages of the dissipation of concentration fluctuations y, over regions of varying
thickness r along the interface. The continuous line corresponds to the global average.

The upper part of figure A 2 shows the dissipation rate y along a typical one-
dimensional cut of the flow, and the corresponding points where the interface
resides are shown in the lower part. It is seen that there is no clear correlation
between the magnitude of y and the interface. The main point then is that the use
of the global mean (,) in place of {¥,);, or {¢,) in place of {¢,),, is a reasonably
valid procedure.


http://rspa.royalsocietypublishing.org/

PROCEEDINGS THE ROYAL

SOCIETY

OF

'ROCEEDINGS THE ROYAL

SOCIETY

OF

Downloaded from rspa.royalsocietypublishing.org on 20 February 2009

Mixing in turbulent flows 105

| LI

FicurE A 2. Variation of the magnitude of y along a typical one-dimensional cut through the
flow-field. In the lower part, the points where the same cut intersects the interface are
shown by vertical spikes.

As shown in §3, quarter powers of ¢, are also of special interest. We have plotted
in figure A 3 the average of xi on boxes of varying size r. This was done along the
interface, as well as in the whole turbulent region. Again, both situations are quite
similar and (extrapolating to ¢) the use of (e%) instead of (e%)i appears to be a valid
procedure.
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Ficure A 3. Averages of Xé on boxes of size r. Open symbols correspond to averages taken only
using boxes along the interface, and closed symbols correspond to averages taken using
boxes in the whole turbulent region.
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AprrPENDIX B
Here, we estimate the constants f in equations (2.15q, b).

The mizing layer

We define, as usual, the entrainment velocity as

V, = (d/dx) r udy,
-5

with 28 as the thickness of the entire mixing layer, for example, the distance over
which 99.5% of the velocity variation occurs. It follows that

s
£ =(d/dx) J_B(u/AU) dy.

From the experimental data of Wygnanski & Fiedler (1970), corresponding to
R=U-0)/(U+0,) =1, U, and U, being the two free stream velocities, we
get f = 0.15. For non-unity R one can expect similar variation of the entrainment
velocity with the velocity difference AU. Thus the parameter f would be
independent of R.

The wake

Again defining the entrainment velocity as above, we get

V./Uy = d/da(28—8%),
where
()

s
o* = f w/Uydy = 0,8/ f w/w,d(y/8) = (wo/U) &1, say.
-5 -5

Here, U, is the free stream velocity, w is the defect velocity (w, being its
maximum) and d; is the half-wake thickness. From the evaluation of experimental
data, Sreenivasan & Narasimha (1982) concluded that 7, is a constant = 2.06, and
so we can write

V./U, = (d/da) (26— (wo/Ty) 8, 1,). B 1)
From many experiments, 2§ = 5d; approximately, so that

Ve/ Gy = (d/d2){03[5 — (wo/ Tp) L, - (B2

In the far-wake region, w,/Uj, is rather small, of the order of a few percent.
Neglecting the second term in (B 2), one gets after a little algebra, that

W, w, = 2.5(4/W),

where 4 = 8;/(20)*°, and W = (wy/{;) (x/0)"°. Here 0 is the wake momentum
thickness. Sreenivasan & Narasimha have shown that the quantities 4 and W are
constants in the far-wake region, equal to 0.3 and 1.63 respectively. Although it
is not entirely clear whether these numbers are universal in the far-wake region,
that they attain constant values in the far-wake region, and that these constant
values do not vary by more than 20 % from one flow to another, seems quite clear.
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Because we are not concerned here with too much precision, we may use the values
quoted above, and conclude that

V,/w, = 0.46,

yielding the constant g in (2.15a) to be about 0.46 for plane wakes. Similar
calculations, although not given here, are quite straightforward for the plane and
round jets, and the final results ean be found in table 2. The boundary-layer case,
being somewhat different, is presented below.

The turbulent boundary layer
Approximating the velocity distribution in a turbulent boundary layer by

U/G, = (y/o)'",
we may write the entrainment velocity V, as

Ve/ Uy = (d/de) [(2+n) 6],

where )

6 is the momentum thickness = Sf w/Uy(1 —u/U) d(y/9).
0

To a first approximation, n can be considered a constant, equal to about 7, so

that
Ve/ Uy = 9uy/ Gy

The constant £ in (2.15b) is thus of order 10, in excellent agreement with the
correlation based on experiment of Bradshaw et al. (1967).
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TGURE 11. Section of a countercurrent flow at a moderate Reynolds number, obtained by using
laser-induced fluorescence. Also shown as the white line is the interface drawn by setting
a suitable threshold to demarcate the bright regions from the dark.
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FiGURE 13. Visualization of a thin section of the countercurrent shear flow by lasci induced
fluorescence at different stages of its evolution. The numbers on these pictures correspond
to those on the product thickness curve of figure 17 to follow. Unlike in figure 11, the dye
was placed carefully in a thin sheet between the two fluids when filling the tube.
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