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ABSTRACT

We present experimental observations in the wake of an oscillating circular cylinder at
low Reynolds numbers. The fluid system is one in which a limit cycle (corresponding
to the natural vortex shedding) is modulated at a second frequency (due to the cylinder
oscillation) generating in phase space a flow on a torus. At rational values of the
frequency ratio, the system displays Amold tongues due to phase locking, leading to a
behavior approximating the devil's staircase along the critical line. Associated with
quasiperiodic transition at the golden mean frequency ratio, spectral peaks appear at
various Fibonacci sequences. These as well as the 'singularity spectrum' of the
Poincare section of the attractor at the critical golden mean point are largely similar to
the universal characteristics of the sine circle map, the observed departures being
within experimental uncertainties.

NOMENCLATURE

a Cylinder oscillation amplitude

D Cylinder diameter

D,  Fractal dimension of the support
Dy Generalized dimensions

fe Cylinder oscillation frequency

fo Natural vortex shedding frequency

fo' Shifted vortex shedding frequency




f(ot)  Fractal dimension of iso-o surface

K Non-linearity parameter

Re Reynolds number

o Local probability scaling index

agam.O Scaling parameters for critical golden mean point

6 Radian measure on circle map

og  Dressed winding number at critical golden mean point
Q Bare winding number, fe/f

Dressed winding number, fo/fy'

1. Introduction

An outstanding problem in fluid mechanics is the understanding of the manner
in which a fluid flow changes its characteristics from a steady laminar state to a fully
turbulent one. By a careful combination of experiment and theory in several
prototypical flows, a reasonable picture of flow dynamics in the early stages of this
development is slowly emerging. Quite distinct in spirit are the attempts to hypothesize
and demonstrate some universality in these stages. Landau [1] argued that turbulence
is the asymptotic state of a flow that repeatedly undergoes a supercritical Hopf
bifucation, yielding a combination of increasingly higher order quasiperiodicities.
Recent work in nonlinear dynamics of systems with small degrees of freedom has
provided an alternative point of view according to which a complex state termed
'chaos’ (not necessarily turbulence) can evolve after a few bifurcations. Two specific
points of interest in the recent work are the demonstration that chaos, or temporal
complexity, does not require many degrees of freedom, and that there are some
'universal’ features accompanying such transition; the implication in this last notion is
primarily that there are some features of such transition that transcend the governing
equations of motion, but are controlled essentially by the topological structure of the
attractor in phase space.

In low-dimensional dynamical systems, detailed predictions have been made for
these 'universal' features of transition to chaos by the period-doubling [2,3], as well
as the quasiperiodic [4-7] routes. We are interested here especially in the quasiperiodic
route to chaos. Theoretical studies of transition from quasiperiodicity to chaos follow
the well-known Ruelle-Takens-Newhouse [8,9] route to chaos in which, first, a stable
flow undergoes a Hopf bifurcation to a limit cycle as some control parameter is
increased; loss of stability of this new state leads to quasiperiodic motion with two
incommensurate frequencies. The next bifurcation would yield a quasiperiodic motion
with three frequencies: it has been shown [9] that even a weak nonlinear coupling
among these three frequencies is likely to result in chaos. It is important to note that the
above scenario gives us no information on the possible universality properties of this
route to chaos, and indeed no universality has been noted in several physical systems
which follow this route, unlike those in which period-doubling occurs. This is



inherently due to the fact two control parameters are relevant to the quasiperiodic route.
As we shall see, there is in this case the additional possibility that mode-locked states
interrupt transition to chaos, and that, to observe universal behavior, it is necessary to
control both parameters in such a way as to avoid mode-locked states.

Before we describe the nature of this universality in quantitative terms, a brief
qualitative description is useful. We refer to a physical system containing two
competing non-linearly coupled oscillators, one of which is a natural oscillation of the
system at frequency f, (say), while the frequency (fg) and amplitude (K) of the second
oscillator is externally imposed on the system. The amplitude of the oscillation f, is
imposed naturally so that the amplitude of the second oscillator is analogous to the
non-linear coupling in the system. We expect that in the presence of the non-linear
coupling the natural system oscillation frequency will shift from its uncoupled value of
fo to some new frequency fg'. Following the terminclogy common jn the dynamical
systems literature, we define the ratios Q = fo/fy and @ = fo/fy as the bare and
dressed winding numbers respectively. When the amplitude of non-linear coupling
between the two oscillators is small we can expect two distinct possible states to
appear — the quasiperiodic state in which the ratio of the frequencies or dressed
winding number is an irrational, and the mode-locked state in which the dressed
winding number is a rational number p/q. Within a mode-locked state, if one adjusts Q
or K within a certain range, the second oscillator adjusts itself so that the winding
number @ remains at the rational number p/q. A convenient way of characterizing these
two states is in terms of the non-linear coupling amplitude vs bare winding number
plane (K vs Q) in which the mode-locked states appear as the so-called Arnold
tongues, whose width increases as K increases; an Amold tongue exists for every
rational number p/q. The width of each tongue at a fixed amplitude K rapidly decreases
as the denominator q increases. The tongues themselves are ordered through a Farey
composition which will be explained in more detail in later sections.

Because the Arnold tongues widen as K increases they eventually overlap at
some critical amplitude. Above this critical amplitude chaotic states are permissible,
Chaos arises simply because the system continuously shifts between one of several
mode-locked tongues. The transition to chaos is studied by fixing the dressed winding
number to some irrational value, and by increasing K towards and through the critical
amplitude line; universal predictions of this transition are observed when K is precisely
at the critical amplitude. It must be emphasized that since mode locking is expected to
occur for all rational values of the winding number, universal behavior will occur only
when K is increased along an irrational value of ®, the most important one being the
'golden mean' to be described below.

To study the K-Q space it is necessary to control the frequency and amplitude
of one oscillator independent of the second. This is in direct contrast to a system in
which the amplitude and frequency of both oscillators is allowed to shift, as in a
system where both frequencies are flow-generated. In this latter case, a variation in
amplitude of one of the oscillators may cause both frequencies to shift due to feedback
between the two oscillators. In a proper experiment, the coupling should be
one-directional, that is, the externally imposed oscillator should act on the internal one
but not vice versa; in particular, there should be no shift in the frequency of the second
oscillator as its amplitude is varied. It should be obvious that to explore the K- plane
one must externally control both parameters, K and €2, in contrast to the period
doubling and intermittency cases where only one contro! parameter characterizes the
transition scenario. This makes experimental studies of quasiperiodic transition
inherently more difficult.

Several experiments in closed flow, small aspect ratio, Rayleigh Benard
convection systems [10-15] have gone a long way in establishing the validity of these
predictions to continuous flow systems. However, experiments in open flow systems
(those with imposed unidirectional main flow) with little or no confinement have been



quite rare [16-20], and inconclusive on occasion [17]. The best case showing evidence
of universal features of nonlinear dynamics is the flow behind circular cylinders [16).
Here, we seek to experimentally study the universal transition from quasiperiodicity to
chaos in the flow behind an oscillating cylinder at low Reynolds numbers and show
that the system exhibits many quantitative features of universality.

Specifically, in the wake of an oscillating cylinder, the internal oscillator is the
natural vortex shedding mode characterized by the well known Karman vortex street,
while the second oscillator is externally imposed by forcing the cylinder in its
fundamental resonant mode transverse to the flow at some desired frequency and
amplitude. One then studies the coupled wake response as a functieg of these two
parameters by placing a hot wire probe some distance downstream of the cylinder and
measuring the streamwise velocity fluctuations. The experimental data is analyzed by
obtaining power spectra, phase plots and Poincare sections of the dynamical trajectory.

The model dynamical system for which the theory is well-developed is the
so-called circle map, which is a map of the circle on to itself. The relevance of this map
to the system described above can be cast in the following language. A system with
two competing frequencies describes in phase space a trajectory on a torus. If this
torus is cut by a Poincare plane, the trajectory intersects the plane in points
topologically equivalent to a circle. As discussed previously, two behaviors are
possible in a system with two competing frequencies, namely mode-locking and
quasiperiodicity. In a mode-locked state, the orbit on the torus is a closed
one-dimensional curve. If quasiperiodicity exists the orbit does not close, and the
surface of the torus is filled completely resulting in a surface. Much work has been
done, utilizing both mimerical studies and renormalization group techniques, towards
the theoretical understanding of circle maps [4-7]. We review these features in Section
2, while in Section 3 we provide a rationale for expecting them to be relevant to low
Reynolds number flow past circular cylinders. We describe the experimental set-up in
Section 4, and the results in Section 5, where a comparison with circle map predictions
is made. Some conclusions are presented in Section 6. We note that this manuscript
represents an expansion of work presented previously in Ref, 20. Figures 3,5,6,12,15
and 20 are taken from this work.

2. THE THEORY OF QUASIPERIODIC TRANSITION TO CHAOS

Before proceeding further, it is useful to review briefly the concepts of flow in
phase space and Poincare sections. To construct an N-dimensional phase space flow
diagram one plots, with time t as the parameter, N independent variables u;(t),i=1,
2,...,N, where uj(t) represent any N dynamic variables, for example velocity traces at
N different points in the wake. For example, for N=3 one would plot uj(t) vs up(t) vs
u3(t) for all t. Obviously measurement of N independent variables is a difficult if not
hopeless task, but embedding theorems like those of Takens [21] (see also Eckmann &
Ruelle [22]) justify the use of a single measured variable. From one measured local
velocity component u(t), for example, one constructs a d-dimensional diagram from
the vectors [u(tj), u(tj + 7),......, u(tj+(d-1)7)], i = 1......, N(large). The time delay ©
must be so chosen that each of the components of the vector so constructed are
independent, but its precise value in a certain wide range seems to be immaterial.
According to embedding theorems, phase diagrams constructed in this way will have
essentially the same properties as the one with N independent variables, if d > 2N + 1.
A flow with a single periodicity will trace out a closed one-dimensional curve in phase
space. Upon bifurcation to a quasiperiodic state, the phase diagram will undergo
transition to a two-torus in phase space which is simply the product of the phase
spaces of each the two oscillators in the system. Transition to chaos results in a
deformation of this torus, and the phase portrait becomes a strange attractor. Thus one



studies the dynamical behavior of a quasiperiodic flow by considering different types
of orbits on the torus.

The dimension of the problem can be reduced by one via the Poincare section of
the attractor, with this operation preserving the essential dynamics. The Poincare
section is merely a cross-section of the torus formed by cutting it with a plane. The
intersection of the orbits on the two-torus and the Poincare plane is then topologically
equivalent to a circle. If the orbit on the torus is mode-locked with dressed winding
number p/q, the Poincare section will take the form of a set of g discrete points on a
circle. If the flow is quasiperiodic (irrational dressed winding number) the Poincare
section will be densely filled, and look topologically equivalent to a continuous circle.
Experiemntally, one forms a Poincare section by sampling the continuous time trace
which winds the torus at the frequency of either of the two dominant frequencies in the
flow. The dynamics of the system is then reduced to a study of its Poincare section.

The next concept of interest is the circle map which is a functional relationship
between the angular coordinate at the n-th crossing 8, and the (n+1)-th crossing 841
of the Poincare section. The map which has most often been studied is the sine circle
map which takes the form

Op+1 =0p+Q — (K2m)sin(2nby), (1)

where 0 is the angular coordinate on the Poincare section, Q is the bare winding
number and K is a non-linearity parameter as previously discussed. We shall see later
that the specific form of this map within a certain wider class is unimportant. The map
is utilized by setting 0 < Q < 1 and K > 0 and obtaining the iterates 6. From our
previous discussion we see that ®, the dressed winding number, is not obtainable
from a casual study of the map. The dressed winding number is defined as

w= limn_)oo [(en - 90)/n]. (2)

When K=0, we see that Q =, but Q # o for K > 0. The dressed winding number
represents the average shift per iteration in the sine circle map in the presence of
non-linear coupling.

Analogies between the circle map and the Poincare sections in a system with
two competing frequencies must now be obvious. A circle map models the Poincare
section of a two frequency quasiperiodic flow in phase space before, during and at the
transition to chaos. The circle map is mode-locked when @ is a rational p/q in which
case there will only be q distinct 6y in the iteration; that is, Op4q = 0p+p. In a
quasiperiodic case where o is irrational, the 6, will never repeat itself and the Poincare
section will be densely filled. Studying the global properties of the K-Q plane for the
circle map yield the picture described in Section 1. Amold tongues occurring at all
rational p/q increase in width as K increases, so that for small K the mode-locked
behavior is rare and quasiperiodicity predominant. This behavior is reversed at larger
K. The overlap of various mode-locked tongues occurring at K=1 represents transition
to chaos. The Amnold tongues are ordered through the Farey composition constructed
according to the following procedure. Given two parent tongues corresponding to the
rationals p,/q, and p,/q,, one defines their daughter corresponding to
(p1+p2)/(q1+q2). The daughter's p/q lies between the two respective parents and has
the smallest denominator of any rational p/q between the two parents. As mentioned
previously, the widths of the tongues decrease rapidly with increasing q, and so the
daughter tongue is always smaller in width than those of its two parents.



H v
We now turn to the behavior of the map at K=1 where transition to chaos
occurs. Along the critical line the set of all mode-locked €2 form a Cantor-like set. Its
complement has a fractal dimension D, which has been calculated numerically to be
0.87. (In general, the fractal dimension contains scaling information on the number N
of d-dimensional boxes sized r required to cover an object embedded in the
d-dimensional space and is defined by

N ~ Do, (3)

The fractal dimension is integer for Euclidean objects, but in general a fraction for
fractal objects.) These mode-locked 2 also form a devil's staircase structure when
plotted in the form @ vs Q. (A precise discussion of the staircase structure will be
delayed until Section 5.) The fractal dimension of the staircase structure on the critical
line is a universal property of all circle maps with the only restriction being that the
non-linear one-dimensional map has a cubic inflection point. We need not therefore
study the sine circle map specifically, any map in this wider class being adequate.
Thus a different circle map may yield a staircase structure different in detail from the
sine circle map, but the global properties such as the fractal dimension will be the
same. Experimentally, universality implies that various universal properties of the
quasipericdic route to chaos may be found in a wide range of different physical
systems. This universality is important as this gives a clue to the map representative of
the experimental system, As remarked already, universal properties in various systems
undergoing transition to chaos via the quasiperiodic route are less commonly
observed, and this work is aimed at filling some of this gap. _

Returning now to the universal properties in the transition to chaos at some
irrational w as K approaches the critical line, we note that an irrational @ can never be
attained to infinite precision. However, an irrational ® can be approximated by a
sequence of rational numbers to which it converges. We do this by truncating the
continued fraction representation of an irrational

W= 1
— I @

denoted by [n,n,,n,,...]. We focus on the golden mean represented by @ = o5 =
(1,1,1,1,..] = (N5 —=1)/2, also represented using a Fibonacci sequence defined as
F;,» = F; + F;,; where Fy= 0 and F,=1; F,; /F,,, approaches o for large i. The
critical golden mean point (® = 0g, K=1) has been studied most extensively because
O is the irrational number Ieast well approximated by rationals (since the continued
fraction representation is made up of 1's converges the slowest), the implication being
that the transition point K=1 in the circle map is the farthest away from any
mode-locked tongues at the critical line. Experimentally this means that it should be the
easiest point at which to realize universal transition to chaos can be realized while
avoiding mode-locking. The importance of this condition has been discussed
previously.

Universality in the transition from quasiperiodicity to chaos at the critical golden
mean point in circle maps is best observed in a scaled power spectrum. Following
Rand et al. [7] we introduce a time dependence into the iterates of the map with the
following construction

ut) = 6 - jog.  j=1,2,3,., 00 )




and take a Fourier spectrum of u(tj). The circle map predicts a self-similar scaled
power spectrum when power is scafed by frequency squared (P(f)/f2) plotted versus
log of the frequency f. The power spectrum is divided into bands by peaks at all
powers of 0. Due to the mathematical nature of the golden mean these are nothing
more than the principal difference frequencies f/fy'= Imog-nl, where | | denotes
absolute value and the integers m and n are such that m>n. These peaks are commonly
designated as generation 1 peaks and are at constant amplitude for all powers of 6.
We also see that this generation can be created using from a Fibonacci sequence
0,1,1,2,3,5,8,13,...) where the values in this sequence are used as m and n in the
above difference equation; for example, m=2,n =1 results in 0'G3. Other generations
are produced using different Fibonacci seeds, for example generation 2 by the
sequence (0,2,2,4,6,10,...), generation 3 by (1,3,4, 7,11,...), etc. Peaks within each
generation are of constant peak amplitude, but this amplitude is different from
generation 1o generation.

4 i imensi he Singul

The iterates Oy, for the sine circle map at the critical golden mean point are
non-uniformly distributed on the set 0 < 6,< 1. There are regions where the iterates
are highly concentrated just as there are highly rarefied regions. In situations such as
this, one is often interested in how often a given region of the attractor (or the Poincare
section) is visited. In general, one can describe such events by dividing the attractor
into pieces with an index i (1 to N), the size of each piece being given by r. The
frequency Nj with which the i'® piece is visited can be defined by p; =
limB]__)oo(Ni/N). One describes this probability by defining a local index a(i) via p;=
(1), Typically for small r, ci(i) takes on continuous values in the range Omip and
Omax- We now use the fact that the fractal attractor can in general be described as an
interwoven set of homogeneous fractals [23-25).

Let f(cr) be the fractal dimension of the homogeneous fractal set corresponding
to a given c. (For convenience, we have eliminated the index i on o.) This means that
for an attractor divided into pieces of size r, the number of times n(ct,r) that o takes a
value between o and o+da is given by n(a,r) = dop(or—(®), Here, p() is some
density. The intuitive meaning of 0ty iy is that it describes the most concentrated
regions of the set, while oy describes the most rarefied regions. Typically f(oymax)
= f(0tmin) =0, and f(a) is such that 0 < f(ax) < Dy, where Dy, is the fractal dimension
of the support of the original set (in this case the attractor or its Poincare section). The
function f(c), also called the multifractal spectrum, is a universal property of the
trajectory of the iterates at the critical golden mean point for circle maps. One first
determines the quantity I'(q,r) = X p;d taking the summation over all boxes or pieces i
of length r. This quantity scales as I'{(q,r) = r(Q'l)Dq where the D are the so called
generalized dimensions [22,23]. For q=0 the above formulation%'ields simply the
fractal dimension Dg. One can then determine the Dy's over a range of q values to
yield a Dy vs q curve which summarizes the scaling properties of cumulants of the
probability distribution on the set. In practice one divides the attractor into boxes of
equal size r and then plots log(I'(q,r))/(q-1) vs log(r) for various sizes r whose linear
slope yields Dq. The D vs q curve for the critical golden mean point is also universal.
Using the Legéndre tragsformation it is possible to directly convert the Dgq vs q curve
into the f(cr) vs o curve via the pair of formulas {23]

o =d/dg ((q—l)Dq) (6)
f(0) =qo - (g-1)Dg ' (7)

Thus by determining the Dg's we can easily obtain the f(a) vs o curve. Both this and
the Dq curve will be presen&:d in Section 5 along with experimental results.



Other universal properties in the transition to chaos at the critical golden mean
point can be obtained by looking at scaling indices analogous to those found in the
period doubling route. Strong evidence for scaling in the circle map has been shown
by several groups. For some value of K, denote by Q;(K) the value of Q for which a
cycle with dressed winding number ®; passes through 8=0. Then & is defined as a
scaling index for the convergence of the Q;(K). In general, following Jensen et al.
[26], the Q; (K) are interpreted as the width of the various mode-locked tongues at
some K for each j in the Fibonacci sequence converging to the ® under study. That
is,

8= lim jyoo[(Qj41 - Q) / (24 - Qj.1)] (3)

The value for & for K=1 and @ = 6 is equal to —2.83362.. A second scaling index is
defined by :

oy = lim jye0 [difdj41] 9)

where d; represents the distance between 6=0 and the closest element on the g; cycle

closest to it. This says that the distances around 0=0 in the circle map scale down by a
universal factor ogp, when the iterations on the trajectory is truncated at two
consecutive Fibonacet numbers. The value of o), at the critical golden mean point is
equal to 1,28857.... More will be said in Section 5 concerning the experimental
determination of these indices.

3. VORTEX SHEDDING BEHIND CIRCULAR CYLINDERS

We now turn to a review of the relevant features of low Reynolds number flow
behind circular cylinders. Briefly, with increasing Reynolds number, the flow behind
a stationary circular cylinder in a low turbulence wind tunnel first undergoes a Hopf
bifurcation [27] from the steady state to a periodic state corresponding to the familiar
vortex shedding mode. The flow in this state is characterized by the natural vortex
shedding frequency fy. We have shown in [27] that the post-critical state can be
modelled by the Landau equation, and determined the Landau constants. For cylinder
aspect ratio (that is, the length to diameter ratio) exceeding about 60, details appear
independent of the aspect ratio, and the critical Reynolds number Recritica] (based on
the cylinder diameter D, the oncoming free stream velocity, and the kinematic viscosity
of the working fluid, namely air) is about 46. The relevant measurements were of the
transient type.

As shown by Sreenivasan [16], with further increase in Reynolds number, the
stability of this state is lost in favor of quasiperiodic state with two incommensurate
frequencies in the Reynolds number range, 18 < (Re — Recritical) < 30. Further
increase in the Reynolds number leads to a chaotic state. These transitions seem to
follow the well known quasiperiodic route to chaos. As the Reynolds number is
further increased, reordering to a state with three incommensurate frequencies was
observed on occasions, and so deviations from this scenario appear to exist. The
relevance of these facts to our present discussion is obvious given that we seek to
study the universal transition from quasiperiodicity to chaos, although we will have no
occasion to use them directly. Van Atta & Gharib [28] have argued that the observed
quasiperiodic and chaotic states are due to cylinder vibrations, and are not a part of the
dynamics of the wake behind the stationary cylinder. We delay discussion of this at
this time (because it is not directly relevant to us here), but do note that Van Atta &
Gharib seem to have observed lock-in states. In fig. 4 of their paper we note a p/q =
1/5 lock-in state in which the vortex shedding frequency and natural cylinder
oscillation frequency are in a rational ratio. However, we note that they use a freely



vibrating cylinder and did not control cylinder oscillation amplitude independently. The
freely vibrating cylinder allows for vibration in higher order modes, the 5th harmonic
in the case of the example just cited. In the present experiments, it was always ensured
that the cylinder vibrated in the fundamental mode. The lock-in observed by Van Atta
& Gharib occurs because the wake forces the cylinder to oscillate in the 5th harmonic
mode and then locks on to the frequency associated with this mode. In our study, we
monitor and accurately control the amplitude, mode shape and the frequency of
oscillation, this being the key to the success of the experiment.

Before presenting the experimental results, we briefly discuss additional
motivation for believing that the oscillating cylinder wake is an excellent system to
study. Since Koopman [29] it has been widely known that cylinder oscillations can
have a dramatic effect on the wake structure behind a circular cylinder. The most
dramatic of these effects correspond to the case when the natural vortex shedding
frequency "locks on" to the cylinder oscillation frequency; this occurs when the ratio
of the two frequencies is close to unity. From our previous discussions we note that
this is the 1/1 lock-in (p = q = 1) where Q is set near 1. This lock-in range increases in
width as the amplitude of the cylinder oscillation increases and hence is qualitatively
similar to Arnold tongues of the circle map. Our search for additional phase locked
tongues at other rational 's constitutes a generalization of this work within the
framework of dynamical systems. Additionally, work by Stansby [30] and Ongoren &
Rockwell [31] seems to show evidence of other p/q mode-lockings, but none of this
work makes a connection to dynamical systems. In particular, Ref. [31] notes a 1/1.5
lock-in which is similar to the 2/3 lock-in state we will demonstrate shortly. Finally,
analogies can be drawn between the present flow and other fluid systems (most
notably the Rayleigh-Benard convection cell) which have exhibited quantitative
experimental results reminiscent of circle maps. In the small aspect ratio cells with only
a few convection rolls present, the time averaged spatial structure of the flow is fixed,
yielding a time dependent dissipative non-linear system with only a few degrees of
freedom. Establishing similarities in a very different, and inherently more complex,
type of fluid system has significance beyond the immediate. It seems possible to do
this. For example, Sreenivasan et al. [27] have shown that many features of the
post-critical state of vortex shedding can be described by a purely temporal model, and
that only a few relevant degrees of freedom exist if one is not too far above the critical
Reynolds number. We recognize that our review of vortex shedding behind stationary
and oscillating cylinders has been limited to matters pertinent to the present discussion.
For more detailed information we refer the interested reader to the excellent review
articles available [32,33]. '

4. EXPERIMENTAL ARRANGEMENT

Figure 1 shows the experimental set-up employed in this study. For the present
measurements, the Reynolds number was held fixed at some value between 54 and 60,
equivalently 8 < (Re - Recritical) < 14. From previous discussion it is obvious that we
wish to create a system with two competing frequencies which we accomplish by
imposing a second external frequency. In section 3, the possibility of naturally
occurring two frequency quasiperiodicities was noted, and hence we choose to operate
in this Reynolds number range above Recritical - The wind tunnel used in this study is
of suction type with double contractions upstream of the 15 cm square test section.
Honeycomb and several damping screens are utilized to ensure a clean, laminar
freestream flow. The freestream turbulence level at flow velocities of interest in this
study is approximately 0.1%. The working fluid is air. Stainless steel wires 0.03 to
0.09 cm in diameter whose geometric uniformity was checked under a microscope
were used as cylinders. The cylinder was stretched through the test section using a
tensioning device placed outside the test section with which one could change the



resonant frequency of the cylinder. The active length of the cylinder was 15 cm
yielding aspect ratios (cylinder diameter/length) in the range 160 to 500. The actual
cylinder length between the tensioning supports was approximately 5 times the active
length. This ensured that when the cylinder vibrated the variation in cylinder oscillation
amplitude across the active length of the cylinder was small. This variation was
measured experimentally and found to be less than 3% of the cylinder diameter.

A modulation is imposed by externally oscillating the cylinder transversely at a
frequency f.. The cylinder oscillation at the desired frequency is accomplished by
passing a sinusoidally alternating current from a signal generator through the cylinder
placed in a properly aligned magnetic field. The signal generator is tuned very carefully
to the wire's resonant frequency obtained by simply adjusting the tension and plucking
the wire. This ensures that the oscillation of the cylinder is always in its first mode.
The alternating current passing through the wire may of course result in heating of the
wire, thus affecting the flow dynamics. This was thoroughly investigated; as shown in
figure 2, for currents required to generate sufficient oscillation amplitudes, there was
little effect on the power spectrum of a hot wire placed in the cylinder wake. The
natural vortex shedding frequency shifted by less than 0.5% when the current is
removed. Note that these two conditions represent the two extremes in cylinder
temperature that might be encountered during an experiment. We should note that the
amplitude of cylinder oscillations was controlled by the strength of the magnetic field
and not by varying the current amplitude, so that the cylinder current was constant
thronghout the experiment whether the cylinder was oscillating or stationary. We
recognize that this does not imply constant cylinder temperature as the heat transfer rate
from the cylinder will depend on the values of a/D, Q, and ®. These facts were also
reconfirmed by completely eliminating the current from the system, using a non-heated
cylinder which was mechanically plucked to achieve the oscillation. While the cylinder
oscillation amplitude is hard to control using this latter method, we did note identical
phenomenon (mode-locking, etc.) as with our standard method of oscillation.
Electromagnets of strength on the order of 10 Gauss were used to create the magnetic
field. The magnetic field could be varied to change cylinder oscillation amplitude or
turned off completely for the stationary cylinder case. It should be noted that when
studying the stationary case to obtain f, the cylinder was also damped with foam
rubber at either side of the test section to ensure that no residual magnetic field could
oscillate the cylinder.

The cylinder oscillation amplitude was measured using a MTI Fotonic Sensor,
placed at the tunnel test section wall outside the flow. This probe measures reflected
light off the cylinder, the intensity of the electric field of the reflected light being linear
with the distance of the probe from the cylinder. Thus an analog signal of the cylinder
oscillations is obtained. This probe has a resolution down to I microinch. A hot-wire
(5 pm dia., 0.6 mm long) placed approximately 15D downstream of the cylinder,
0.5D to one side of its resting position, monitored the wake velocity in the streamwise
direction. The hot wire was placed at the tunnel centerline unless otherwise noted. The
hot wire signal was amplified, digitized by a twelve-bit analog-to-digital converter and
stored in a computer (MASSCOMP 5500) for later analysis. A HP3561A spectrum
analyzer was used for real time analysis of Fourier spectrum. All power spectra
presented are averaged over at least ten spectral samples. Cylinder oscillation
frequency and amplitude were varied over a range of 26-100% of f, and 0-200% of
cylinder diameter. Both the vortex shedding and modulation frequencies were steady
to +2 parts in 104, This stability was noted by studying power spectra of the
appropriate time signals using the spectrum analyzer with frequency resolution on the
order of +1 part in 105 over time scales 2 order of magnitudes larger than those used
in obtaining spectral averages. For all power spectra presented the frequency
resolution of the spectrum analyzer was of the order of +1 part in 103. The cylinder
oscillation amplitude was measured by reading a peak-to-peak voltage of the fiber optic
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probe output from an oscilloscope screen. This amplitude could be read to £3% within
which the amplitude was steady over time scales much longer than those used for
spectral averaging.

The system considered here meets all previously discussed requirements of a
system with two competing frequencies. The nomenclature fg, fg, €2, and @ maintain
their previous meaning; note that f,' represents the frequency of the wake oscillations
in the presence of the cylinder oscillation. The normalized cylinder oscillation
amplitude (a/D) is analagous to the non-linearity parameter K in our previous
discussions. We wish to point out that our system does not have one-directional
coupling in its strictest sens¢ in that the wake can affect the amplitude, though not the
frequency, of the cylinder oscillations. For example, if the flow is completely turned
off the amplitude of the cylinder amplitude shifts from its value with flow on, that is,
there is some feedback from the wake, Other investigators [13] have utilized a very
strict definition of one-directional coupling implying that there can be no feedback
from the natural to the external oscillator. Our definition implies that feedback is
allowable as long as it does not compromise our ability to map the a/D vs Q2 plane or to
study an arbitrary irrational winding number. Since the cylinder oscillation amplitude
and frequency are imposed externally and controlled accurately, so that f. does not
shift as a/D varies, we meet this requirement completely satisfactorily. We see in the
next section that this is indeed the case.

5. EXPERIMENTAL RESULTS
(i i .

Figure 3 highlights the effect of cylinder oscillations on the wake by showing
the power spectra of streamwise velocity and cylinder oscillation. Figure 3a shows the
natural vortex shedding wake spectrum with no cylinder oscillation. Figure 3b is a
spectrum of the cylinder oscillations taken from the fiber optic probe output. In fig. 3c
we see the coupled wake spectrum in the presence of cylinder oscillations. We note the
shift Qf fo to fy' between figs. 3a and 3c, and the complete suppression of f; in favor
of fy' in fig. 3c. The sharpness (> 5 orders of magnitude above background noise
levels) of all the principal peaks in fig. 3c (linear combinations of f, and f,') is
remarkable. In this case Q = 0.577, while ® = 5/9 = 0.55555.., and a/D = 0.15.
Figure 4 shows the velocity power spectra for the 1/3 lock-in case, for convenience,
the cylinder oscillation spectrum is not shown here. From several such spectra one can
create the a/D vs Q2 plot showing Amold tongues (fig. 5) described earlier. Symbols
represent points on the plane where data have been stored; boundaries of the tongues
shown were determined from a larger set of points. The dressed winding numbers in
these tongues correspond to rationals constructed according to Farey arithmetic
although, due to limitations in experimental control, no more than 30 such tongues
have been identified. In accordance with predictions for the circle map, these tongues
increase in width as the non-linearity parameter (a/D) increases. The 1/1 tongue is in
close agreement with the previously mentioned 'lock-in' region near f, The dashed
line represents the experimentally determined ‘best fit" critical line found by
determining for various £ the a/D level at which the fractal dimension along the critical
line was equal to 0.87 appropriate to the circle map. It was also verified that transition
to chaos, as evidenced by spectral broadening, did indeed occur across the critical line.
The dimension D was computed using the relation[10]

% (Si/8)Do =1 (10)
1

where S is the distance between two parent tongues and the Sj's are the distances
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between a daughter tongue and each of its aren(ts. Ihis equation is derived simply
from the previously noted scaling law X pig =r Q‘])Dq for q=0, and can be shown
to be true for the Cantor-set construction. All possible parent-daughter combinations of
the tongues shown in figs. 5 and 6 were used. The upturn in the critical line near Q =
0.3 is not understood at present, but we note that this must be related to the receptivity
of the wake to external oscillations; other investigators [10] have found a non-constant
level of non-linearity parameter along their critical line. The symbol (£1) represents the
critical golden mean point for which observation were made of the scaled power
spectra shown later. The symbol (a) represents the 5/9 lock-in shown in detail in fig.
3. While the work described above is limited to a small Reynolds number range it
should be pointed out that we have conducted preliminary studies at higher Reynolds
numbers of approximately 80 and seen the same qualitative behavior in the a/D vs Q
plane

In fig. 6 we highlight the fine structure of the phase diagram in a region just
below the 1/3 tongue. Typical uncertainties in frequency and amplitude are shown on
the boundary of the 3/10 lock-in tongue. Again we note the increase in width as a/D
increases. The fine structure of the tongue was mapped by fixing Q at some
appropriate value and altering a/D over a small range during a time scale of
approximately one minute to avoid transient effects by slowly varying the magnetic
field strength. Both decaying and increasing amplitude time traces were used; no
hysteresis effects were found. Figure 7 shows several power spectra at various a/D
and constant  during this procedure. Figure 7a shows the natural shedding frequency
with no cylinder oscillation present. In figs. 7b, ¢ and d the cylinder oscillation
frequency fg is shown. We note that there is no shift in the cylinder oscillation
frequency as a/D varies, thus confirming our earlier assertions concerning interaction
between the two oscillators. We wish to highlight the dramatic changes in the power
spectra as a/D is varied. We see three different lock-in tongues, p/q =4/15, 3/11 and
2/1, all characterized by equally spaced dominant spectral peaks which vary in number
from spectra to spectra. These two facts will become important in our determination of
the appropriate p/q locked state associated with a particular spectra. However, we
interrupt this discussion briefly, and first present fig. 8 documenting the variation in
power spectra along the cylinder span when at a fixed Q and a/D within a locked-in
tongue. Here we choose the 3/10 tongue with Q =0.315 and a/D = 1.2. Two spectra,
100 cylinder diameters apart along the span (each 50 diameters on either side of the
tunnel centerline) are presented. We note the similarity between the spectra, both
showing equally spaced peaks suggesting a locked-in state. This spanwise correlation
is not surprising as it is well known that cylinder oscillations tend to correlate the wake
structure along its span, but we felt experimental confirmation of this fact was
important to eliminate questions of three dimensional effects from consideration as a
possible cause of mode-locking and chaos discussed here.

Let us now return to a discussion of the determination of the appropriate p/q
locked state corresponding to a power spectra by introducing fig. 9, which shows two
power spectra at the boundary of the 2/7 locked tongue. Figure 9a is a quasiperiodic
state while fig. 9b represents a mode-locked state. A mode-locked state is characterized
by a power spectrum with equally spaced dominant spectral peaks. The spectral peaks
not labeled f,, or f' in fig. 9b are simply the sum and difference peaks (mfa+ nf,) of
these two frequencies. Since fg/fy’ = p/q is a rational number, these difference peaks
must be equally spaced. Thus every peak is an integer multiple of fe/p or f5'/q. Also,
the number of dominant spectral peaks with frequency less than or equal to fg gives us
P in the rational ratio p/q. In the quasiperiodic case of fig. 9a, the equal spacing of the
peaks is lost. This is expected since  is irrational and the difference frequencies are
not ail integer values, thus we see side peaks surrounding the dominant spectral peaks
in the spectrum. The value of q cannot be unambiguously obtained solely from the
power spectrum; to do this, one requires a Poincare section or time trace of the system.
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It was noted earlier that a Poincare section will contain g discrete points for a
p/q locked state. In our experiments we found the creation of Poincare sections to be
difficult over long time scales due to the high oscillation frequencies and inherent noise
of the system. One creates a Poincare section by sampling the time trace at either of the
two dominant frequencies fe or f'. This has been accomplished in other fluid systems
such as the low aspect ratio Rayleigh-Benard convection cell where typical frequencies
are 3 orders of magnitude lower than in our system leading to much longer oscillation
time periods. This makes sampling at a fixed frequency inherently easier. In the
present system it is difficult to sample exactly at the appropriate frequency, because
each period is never exactly an integer multiple of the sampling frequency. This leads
to a less distinct demarcation between the Poincare sections of a locked and
quasiperiodic states than we have seen in power spectra. For this reason, we turn
instead to time traces of the system to determine q. In fig. 10 we show velocity time
traces from four different locked-in states. On each of them, the time periods Te = 1/fg
and Ty’ = 1/fy’ are shown. A physical definition of a p/q locked state in the present
system is that the cylinder goes through p oscillation cycles while the coupled wake
makes exactly q cycles. For example, in the 2/5 locked case in fig. 10 we see that the
repeating structure consists of five cycles suggesting that ¢ = 5, and that 2T, = 5T,
or ® = 2/5. Thus we can determine p/q locked states without resorting to a Poincare
section. We note that the difficulties mentioned above in obtaining Poincare sections
pertain to sampling over long time scales, and sampling over short time scales yields
distinct points as can easily be seen by studying the 2/5 locked time trace in fig. 10
where the dots represent points sampled at . We see that every fifth point repeats the
identical velocity magnitude level over short time scales.

i v

The experimentally determined devil's staircase along the critical line is shown
in figure 11 and compared to the theoretical predictions at K = 1. The symbols
represent the limits of the experimental steps while the solid lines represent theoretical
predictions. While agreement is not exact, the staircase structure is definitely obtained
in experiment. The inset enlarges the boxed region showing the limitation of the
agreement between the measured fine structure and that of the devil's staircase. It must
be remembered in interpreting these departures that they are of the same order of
magnitude as the uncertainty in flow parameters.

In fig. 12 we study the transition to chaos through the golden mean by
observing power spectra at a/D below, near, and above the experimentally determined
critical line. In fig. 12a we notice a low background turbulence level and no evidence
of the self-similiar structure. Near the critical line the background broadband
fluctuation level has risen, and additional peaks appear forming the self similiar
structure predicted by circle maps. At higher a/D above the critical line we note a
further increase in background turbulence level, but the peaks no lenger appear
self-similar, and the banded structure is partially lost. In fig. 13 we present the wake
velocity time trace at the best approximation to the critical golden mean point we have
been able to attain, with its scaled power spectrum presented in fig. 14. The dressed
winding number ® is within 0.1% of og. This spectrum is averaged over
approximately 65000 cycles of the cylinder osc1llat10n frequency. In fig, 14 the
principal peaks fall at é)owers of 6g down to 6g5. They are nearly of constant
amplitude except for 65> which falls off We note the generation 2 and 3 peaks fall as
predicted by the mixing coefficients within the resolution of our power spectrum. We
also see peaks from generations 2 and 3 with generation 2 peaks showing the constant
amplitude trend (within 0.5 dB), but the behavior degrades for generation 3 peaks.
Generation 2 and 3 peaks are not present at lower frequencies and higher order
generations are not observed at all. Some of these departures from universality occur
no doubt because @ could not be maintained to better than 0.1% of 6.
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From velocity time traces such as presented in fig. 13 we obtained Poincare
sections for the critical golden mean point. We have previously noted our difficulties
in obtaining Poincare sections by sampling the continuous time trace at time steps
separated by the period of forcing. As a result we utilized a slightly modified method
in which we sampled at extremum (minima) in the velocity time trace, obtaining, say,
u(1), u(2), u(3), u(4).... and embedded these points in three dimensions, the lowest
dimension in which the attractor was non-intersecting, by plotting u(n) vs u(n+1) vs
u(n+2). These sampled points were on the average separated by the period of forcing.
This procedure led to attractors which were much less "noisy" than using the standard
technique. Our motivation for this method lies in studies of computer-generated
two-frequency quasiperiodic time traces in which the above procedure yields an
attractor topologically equivalent to a circle as expected. Also, a three-frequency
quasiperiodicity time trace yields a two-torus. We note that the above embedding
scheme satisfies d22N+1 as the attractor is topologically equivalent to a limit cycle
with one degree of freedom, hence N=1.

We next divide the Poincare section into equal boxes of length r and determine
the slopes in the plots of log(I'(r,q))/(q-1) vs log r. This gives us Dg. Figure 15
shows typical plots for =2 and q=—2. We see that the linearity of the plot is excellent
over two decades. The noise level on the attractor is indicated on the figure and we see
that for q=-2 (more rarefied) the linearity degrades much more below the noise level
than in the q=2 (more concentrated) case. This corresponds with our observation that
the rarefied regions on the original attractor appear noisier. It is to be expected that
more error in the Dg vs g curve would occur for q < 0. In fig. 16 the experimental data
are shown with the $olid line representing the theoretical prediction. The experimental
data presented is the ‘average of Poincare sections representing our best three
approximations to the critical golden mean point all with dressed winding number
within 0.1% of the golden mean. The limited nature of this data reflects the difficulty
in maintaining the dressed winding number to such a close approximation to the
golden mean as well as the degradation in the Poincare sections obtained as one moves
away from the critical point. We see good agreement between experiment and theory
especially for q > 0 and also the expected degradation for q < Q. Typical error bars on
the data are also shown, representing variations between different realizations and
uncertainties in determining the linear slope from the log-log plots. In fig. 17 we
present the f(o) vs & curve derived from fig. 16 showing data points for the three
individual cases. Again the general similarities and small departures from the
theoretical are obvious. The right side of the curve (larger o) corresponds to the more
rarefied regions on the Poincare section and again the expected degradation is noted.

We are now in a position to calculate one of the scaling coefficients discussed in
Section 2 namely o) = 1.28857... which, for the circle map, determines the scaling
of iterates around 6=0. A general property of the f(o) vs o curve is that tipin = Dee,
while 0pax = D.oo. For the sine circle map [23], D.oo = 1.8980 and D, = 0.6326.
To calculate them, we iterate the circle map and truncate at some iterate given by some
large number in the Fibonacci sequence, say F17 = 2584. To determine the D,'s we
assign equal probability to each iterate so that p; = 1/2584 and study the distances
between iterates which are unequally spaced. In the most rarified portions of the map
near 0=0, the iterates scale as r ~ oG\, and pj ~ 1/F~ (6g)R. This leads to D_o =
In(og)/In(agy1) = 1.8980... Similarly, Do, = In(og)/In(agrs3) = 0.6326..., due to
the cubic inflection point at 6=0. Thus, from the experimental oy = 0.67 and oyax
= 1.75, we can obtain two estimates for oy We obtain oy = 1.27 and 1.317 using
C'min and oynax respectively, which are both within 3% of the value appropriate to the
circle map.

Note that with the present experimental accuracies we are unable to determine
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the other scaling parameter & (defined in Section 2) as this requires obtaining the
widths of mode locked tongues around the critical golden point to very fine resolution.
At present we have been able to resolve these widths only up to the 8/13 tongue.

6. CONCLUSIONS

Even though some departures from the universality associated with the circle
map behavior exist in the flow behind a circular cylinder, we think that the extent of
observed similarity is remarkable. It is not obvious whether the departures are real, or
occur because the control of experimental parameters was not as fine-tuned as desired.
It is known, however, that very small departures from criticality can produce similar
behavior. As already noted, inherent difficulties in establishing a wind tunnel flow
with extremely fine control made it impossible to control 6 to better than 0.1%. The
departures observed in the devil's staircase construction are of the same order of
magnitude as the uncertainties in the flow parameters. Further, largest departures in the
f(at) curve occur for large o consistent with the relatively large influence of noise on
the most rarified regions of the Poincare section. Apropoes of this somewhat
unsatisfactory state of affairs, we reiterate that enormous care was exercised in the
experiments, and state our belief that the residual problems of fine control cannot be
eliminated without resorting to unconventional ways of generating such flows; some
thoughts on this are currently being investigated.

It remains for us to comment on the meaning of the word ‘universal’ given that
we had to exercise exquisite control on flow parameters to observe the behavior that
we did; in fact, as we have already remarked, approaching the golden mean by as close
as 0.1% was not enough to observe all aspects of 'universality'. It is often implied that
this type of ‘universality', occurring in a "zero measure volume' of parameter space, is
of no great significance to the physics of the problem. This, however, is not the
meaning of 'universality'. It is to be interpreted to mean the behavior which is
common to a broad class of physical systems independent of the dynamical equation
governing the system dynamics. To know that circle maps predict quantitatively
something of wakes is quite astounding!

Although we have experimentally demonstrated that the wake of an oscillating
cylinder behaves similar to a circle map in many respects, we have not yet shown that
circle map can be extracted from the Navier-Stokes equations in the proper
approximation. Work in this direction, although unfinished, seems promising.
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Figure 2: Power spectral density for the case of natural vortex shedding; (a) with cylinder
current on, f, = 404.9 Hz ; (b) with cylinder current off, fy =407.0 Hz.
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Figure 3: (a) Power spectral density of the hot wire wake velocity signal for natural vortex
shedding at fy = 534.0 Hz. (b) The corresponding data for the oscillating cylinder,
measured with the fiber optic probe; f, = 308.0 Hz. In (c), frequency locking occurring
due to excitation is seen. The natural shedding frequency disappears in favor of the
new peak at 9/5 f,; peaks appear at other fractions of fe.
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Figure 4: Power spectral densities for a'1/3 lock-in case: (a) Natural vortex shedding at
fo=443.75 Hz; (b) Coupled vortex wake at fo=403.13 Hz; f.=134.38 Hz.

o0



w=4/15 1
1ol 12| 3no
113, |
AID \\\ 25 3/5 23
0.5 [ Sy (2 3/4
T e AL s
594\ Og
0 i 1 ]
0.2 0.4 0.6 0.8 1.0

Q
(bare winding number, without nonlinear coupling)

Figure 5: Amold tongues (that is, the locked-in regions) in the wake of the oscillating
cylinder. The ordinate is the amplitude of oscillation normalized by the cylinder
diameter. About 30 such tongues were noted, but only those with reasonable width are
shown. In each tongue, the natural shedding frequency disappears in favor of a rational
p/q multiple of the excitation frequency, and the appropriate multiplication factor is
shown in each tongue. The critical line (corresponding to the K=1 line in the circle
map), as determined by the onset of chaos is shown dashed.
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Figure 6: The fine structure in a small region of the a/D-Q plane of fig. 5. Typical
experimental uncertainties are shown.
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Figure 7: Power spectral densities mapping the fine structure of the a/D-Q plane at a fixed
02=0.29, f, = 139.0 Hz, f,=479.7 Hz; (a) Natural vortex shedding at f; (b) 4/15
lock-in case, f,' = 521.2g Hz, a/D = 1.75; (c) 3/11 lock-in case, f5'=509.6 Hz,
a/D=1.6; (d) 2/T lock-in case, f,'=486.5 Hz, a/D = 0.9.
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Figure 8: Variation in power spectra in spanwise direction along cylinder span within the
3/10 lock-in tongue; (a) and (b) represent two spectra spaced 100 cylinder diameters
apart, both 50 diameters from tunnel centerline. Q =0.315 , a/D = 1.2, f.=131.25 Hy,
fo =415.63 Hz, and f,' = 437.5 Hz.
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oscillation frequency, f, =139.0 Hz, f,= 473.4 Hz.
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Figure 10: Hot wire velocity time traces from coupled cylinder wake with oscillation
present showing various p/q lock-in states. (a) 1/3 lock-in, (b) 2/5 lock-in, (c) 4/7
lock-in, and (d) 2/3 lock-in. Cylinder oscillation period T, and coupled wake oscillation
period T, are shown. Symbols (@) in (b) represent discrete points separated by the
coupled wake oscillation period T,".
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Figure 11: The devil's staircase structure using the data of figs. 5 and 6 along the
experimentally determined critical line. Although the general pattern is the same as for
the circle map, there are some noticeable departures.
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Figure 12: Scaled power spectra at dressed winding number ® = o5 showing
transition to chaos through critical golden mean. (a) below critical line, a/D = 0.06;
(b) near critical line, a/D = 0.22; and (c) above critical line, a/D = 0.33.
Here f, = 84.4 Hz, and f’ = 136.5 Hz.
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Figure 13: Hot wire wake velocity time trace at the nearest approximation to critical -
golden mean point (dressed winding number to within 0.1 % of o).
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Figure 14: Frequency scaled power spectrum for the excited wake at the critical golden
mean point.
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Figure 15: Scaling of the probability moments for two different q's from the experimental

Poincare section . Good linearity over approximately two decades is noted.
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Figure 16: The generalized dimensions, D, vs q curve derived from fig. 15 for q
between -5 and 10. Typical unccrtginties ar% shown by error bars.
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Figure 17: The f(c) curve obtained via Legendre transform of the measured generalized
dimensions. Levels of uncertainty are shown by error bars.
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