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1. Introduction

If we regard any single realization of an unbounded turbulent flow as an object
of scientific interest, it is patural to inquire about ways of describing its geometric
features. We are especially interested in the geometry of various surfaces such as the
vorticity interface (that is, the conceptual surface separating domains of intense and
zero vorticity fluctuations), iso-concentration surfaces (in non-reacting as well as
reacting flows), iso-velocity surfaces, and iso-dissipation surfaces. A common
property of such surfaces is that they are highly convoluted on many scales, and
possess complex shapes. This complexity defeats atiempts to describe them by means
of classical geometry, and one naturally wonders whether the fracial geometry
developed by Mandelbrot (in many papers and his 1982 book) is appropriate for the
purpose. Mandelbrot had earlier speculated that the self-similarity expected to hold
in turbulence (according o the conventional wisdom succintly described by
Richardson's (1922) rhyme} permits surfaces of the type mentioned earlier to be
described by fractals. In this paper we substantiate this speculation, using the
particular case of scalar interfaces in turbulent jets as an example. We also show that
the experimentally obtained fractal dimension is consisient with deductions from the
principle of Reynolds number similarity (that is, negligible dependence on viscosity
of global properties such as the overall growth rates of turbulent flows). This paper
should be considered a condensed version of our earlier publications (Sreenivasan
& Meneveau 1986, Sreenivasan et al. 1987a,b — referred to respectively as I, I and
II below); moreover, we restrict ourselves only to turbulent jets here. Within these
constraints, however, some aspects are discussed here in somewhat better detail than
in the references cited above.

To sharpen our question somewhat, we show in figure 1 a thin longitudinal
slice along the axis of a turbulent jet of water emerging from a well-contoured
nozzle of circular cross-section into a tank of still water. The jet was made visible by
mixing a small amount (of the order of 10 parts per million) of a fluorescing dye
(sodium fluorescein) into the nozzle fluid, and exciting fluorescence by illuminating
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a thin section of the flow by a sheet of light. Care was taken to ensure that the
fluorescence was not saturated. The light source was a pulsed Nd:YAG laser which
has a pulse width of the order of 8 ns (which is small enough to freeze the motion),
and power density of up to 2x107 J.¢-1 per pulse; the light sheet had a thickness of
the order of 200-250 pum, which is on the order of the estimated Kolmogorov scale
(that is, the smallest dynamical scale in the flow). For this reason, it is legitimate to
consider the plane intersection 'mathematically thin'. The visualized region extends
from 8 to 24 nozzle diameters, and was captured on a solid state CCD camera with a
pixel array of 1300 (vertical) x 1000 (horizontal), yielding a resolution of 150 pm?.
The picture shows a number of geometrically interesting features, one of
which relates to the boundary that separates the nozzle fluid from the ambient tank
fluid. (Some other aspects are described in I and Meneveau & Sreenivasan 1987.)
The boundary is convoluted on a variety of scales, and appears to be disconnected at
many places. We recognise the possibility that some out-of-plane connections may
exist and that the boundary is indeed connected; clearly, to establish this aspect
properly, at least several simultaneous sections would be needed and, in their
absence, we shall refrain from further comments on it. In any case, one can imagine
in three dimensional space a surface that separates the nozzle fluid from the ambient
tank fluid, a surface whose section by a plane is seen in figure 1. This surface is of
interest to us for many reasons, the primary one being that its geometry (which
itself is a consequence of some dynamical constraints) will influence the amount of
mixing that occurs between the nozzle and tank fluids. For example, if the tank fluid
were slightly acidic and the jet fluid slightly alkaline, the surface geometry will
govern the amount of product formed as a result of reaction between the acid and
the base. (The validity of this argument should be obvious for diffusion limited
mixing and, as shown in II, is also applicable while considering convective effects.)
As mentioned earlier, our objective is to characterize this surface (and in
general all surfaces of interest in turbulent flows) by fractals; a primary property of
a fractal surface being its fractal dimension, we want to measure it. We shall obtain
the fractal dimension of the boundary seen in figure 1, and later examine the sense

in which it relates to the fractal dimension of the surface embedded in three
dimensions.

shown is a typical line intersection of the boundary; this

brightness (~ the concentration of the nozzle fluid). Also
will be discussed later in the text

Figure 2, The boundary of the jet crosssection given in
figure 1, determined by prescribing a threshold on

2. Experiments and Results

Figure 1. A thin axial section of the nozzle fluid marked
by a fluorescing dye. The jet Reynolds number (based on
the nozzle diameter and velocity) is about 4000. The
picture covers between 8 and 24 diameters from the

nozzle

a. Method of measurement of fractal dimension
The first step is to specify how the boundary can be defined for further
processing. Complex algorithms can be developed for the purpose, but we shall
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show that it is adequate to use simple criteria based on the brightness threshold in the
picture (which, in a digitized image, is directly proportional to the concentration
threshold on the nozzle fluid).

Figure 2 shows the computer-drawn boundary obtained by setting the
threshold at a brightness level that seems more OT less satisfactory. One can now
apply one of several techniques (described, for example, in Mandelbrot's book) to
determine the fractal dimension of the boundary so marked. We have used both the
box-counting and co-dimension methods. The co-dimension method was described
in detail in I In the box-counting methods, also briefly described in I, we cover the
whole plane of figure 2 with area elements of varying sizes, count only the fraction
of elements N containing the boundary, and plot log N(r) as a function of logarithm
of the 'box' size r; if the boundary is a fractal, we should expect an extensive
straight part in this log-log plot, whose negative slope is the fractal dimension. A
typical result (figure 3a) shows that this is indeed the case, the straight part
extending from the smallest scale resolved here to approximately a scale of the
order of the nozzle diameter, giving a fractal dimension of 1.35 for the boundary.
(It is worth remarking that the programs for computing fractal dimensions have
been checked extensively on several mathematically generated fractal sets of known
dimension.)

We appreciate that some minor ambiguities exist in defining the interface
merely by means of a threshold, and so measurements have been repeated for a
aumber of thresholds on several realizations of the jet. Figure 3b shows a plot of
some of these results. It is clear that there exists a wide range of threshold values
over which the fractal dimension of the boundary is essentially independent of the
threshold, and that the mean value is 1.35. The spread of the data around this mean
value is roughly in the range £ 0.05. Figure 3c shows that the range of scale
similarity (that is, the range of scales over which the log-log plot has a straight part)
varies somewhat with the threshold, but is generally about 1.5 to 2 decades.

We have shown in II that similar experiments in other prototypical turbulent
flows yield the same results. This will not be repeated here. We shall also not repeat
another result from IIT showing that flow glices taken in different orientations
possess approximately the same fractal dimension.

b. Fractal dimension from intersections
We may now ask how the fractal dimension from planar intersections is
related to the fractal dimension D of the surface itself — this being our major
concern. This general problem has been discussed in the literature, and specific
results are available for special cases (see Marstrand 1954, whose results have been
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Figure 3a. The log-log plot of the area elements ("boxes"”) of
size r containing the interface. The negative slope of the
straight part gives the fractal dimension of the boundary (=1.3%)
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Figure 3b. Fractal dimension of the interface as a function of
threshold chosen to generate the interface. The absclssa 1is in
units of the dynamic range of the camera (0-4096)
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generalized by Mattila 1975). The equivalent result in the present context, as stated
by Mandelbrot (1982, p. 366), relates to the additive properties of codimensions in
the intersection problems. Specifically, if S and S; are two independent sets
embedded in a space of dimension d, and if codimesion (S1) + codimension (Sp)<d,
the codimension of the intersection of Sy and Sy is equal to the sum of the
3 o codimensions of S1 and Sy. For a fractal set F embedded in three dimensional space

° and intersected by a plane, the above statement implies that the dimension of the
intersected set is one less than the dimension of F.

We have shown that the fractal dimension of the boundary in longitudinal (that
¢ 2 is, streamwise) sections of the jet is 1.35, and remarked that boundaries created by
orthogonal sections possess approximately the same fractal dimension. It then
© follows that the fractal dimension of the surface is one greater than 1.35, or D =
2.35.

It may be useful to expand briefly on the result that the fractal dimension of
intersections is independent of the orientation of the intersecting plane. Intuitively,
this result can be expected to be valid if the intersected object is fractally isotropic.
In general, flows considered here do have a preferential direction, and it is logical
to think that the interfaces are that way also. We should, however, emphasize two
points: First, the possible anisotropic properties of the interface will be confined
essentially to the largest scales in the flow, these being on the order of the jet width
(and larger). Secondly, the smaller scales for which fractal-like behavior has been
found are expected to be more or less isotropic, thus explaining our observation.
Although we have been unable to take simultaneous orthogonal sections,
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Figure 3c¢. Scaling range in decades for each threshold for a

aumber of realizations. For the Reynolds numbers typical of most

b d on the nozzle ! L ) ]
experiments in present series (about 5000 . ase le ratio is measurements with independent sections have shown that the anisotropy may affect
scale . . . . .
diameter and velocity), the typical outer/inmer the precise range of scale similarity in two orthogonal planes but not the fractal
about 100 ‘ dimension itself.

c¢. Off-axis jet sections

Figures 4 and 5 are two independent jet sections obtained one and two
diameters off-axis. A cursory examination of these figures in conjunction with
figure 1 suggests that our knowledge of the turbulent structure will remain
incomplete unless a scheme can be devised for three dimensional imaging of the
flow. Our limited purpose here is to point out that the fractal dimension of the
boundary in these pictures is also about 1.35, and is independent of the threshold '
(perhaps even more accurately than for the axial sections).

d. Line intersections
The principle of additive codimensions in the context of line intersections




Figure 5, A thin section of the nozzle
fluid marked by the fluorescing dye,

rwo diameters off axis

Figure 4, A thin section of the nozzle

fluid marked by the fluorescing dye,

one diameter off-axis
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implies that the fractal dimension of line intersections is two less than that of the
surface. By using box counting methods as before, one can compute the fractal
dimension of the set of discrete points corresponding to the intersection of the
interface by a given line (see figure 2 for examples). Figure 6 shows the measured
fractal dimension of line intersections (passing through a fixed point) as a function
of the orientation of the intersecting line. The mean values is about 0.37 (giving D =
2.37). The figure also shows that line cuts passing through other points also yield the
same result.

€. Summary

We should emphasise that, within the uncertainty of measurement, we do not
attach too much significance to the differences of the fractal dimension estimated
from one and two dimensional cuts. It then follows that the fractal dimension of
scalar interfaces in fully developed regions of the turbulent jet is 2.35 + 0.05.
Results given in I and IIT show that this conclusion is valid for other prototypical
flows also. The result is thus a general one, and demands an interpretation based on
broad considerations. This is attempted in section 3. However, before we do that, we
digress briefly on an independent aspect concerning the fractal dimension in the
developing regions of the jet.

f. Fractal dimension in the developing regions

At least at low Reynolds numbers, the jet is circular in crosssectional shape as
it emerges from the nozzle, and the geometry of the surface is a simple conical
section; common experience tells us that the interface dimension will be 2. Far
enough downstream of the nozzle, however, the jet becomes turbulent and, as we
have shown, the interface there attains a fractal dimension of about 2.36. It is of
some interest to ascertain the variation of the fractal dimension with axial distance.
Without remarking on the significance of the result, we merely present the
experimental results in figure 7. Similar results for the countercurrent mixing layer
can be found in IL

3. Mixing and Reynolds number similarity

a. Diffusive transport
Let us consider transport by diffusion across interfaces of the type discussed so
far. Here, we shall completely ignore convective aspects due to the relative motion
of the interface, the chief justification being that their inclusion has been shown in II
to have no effect on the conclusions. The following argument holds equally well for
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Figure 6. (a)Typical result

as a function of the orientation of the intersecting line; different symbols ¢

to line cuts passing through different points. Figure 6(b) indicates the observed
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Fig}lre 7, The‘ fractal dimension as a function of the axial distance in the developing
leglon‘of the jet. The Reynolds number is about 2000. The nearly discontinuous jump
occurring at about 4.5 diameters coincides with the visibly sudden change i}x the

smoothness of the scalar surface
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jets as well as other flows.
The diffusive flux is given by the product of the surface area, the

concentration gradient normal to the surface and the molecular diffusivity. For
fractals, the surface area S increases with the resolution of measurement r

according to the relation (Mandelbrot 1982)

S~z D, M

In all practical circumstances, the scale range over which (1) holds is bounded

by cut-offs on both ends. For surfaces in turbulent flows, the outer cut-off is
expected to occur at scales comparable to the integral scale, L, of turbulence, while
the inner cut-off occurs at the smallest dynamical scale. For the vorticity interface,
the appropriate inner scale is the Kolmogorov scale N = (V3/<£>)1/ 4 where <&> is
the average rate of the turbulent energy dissipation. This was shown to be the case in
IL For scalars with Schmidt number (= v/D, where v is the kinematic viscosity of
the fluid and D is the mass diffusivity of the scalar) greater than unity, the relevant
inner cut-off occurs at the Batchelor scale, Ny = T\Sc”ll 2. The existence of a finite
inner cut-off means that, as the surface area gets measured by covering it with
increasingly finer area elements, a point is reached at which convolutions of even
finer scales no longer exist, so that, thereafter, the area does not increase with
increasing fineness of resolution; instead, it will saturate (abruptly in an ideal
situation) at the maximum value corresponding essentially to the inner cut-off. The
true surface area St of a fractal surface with finite inner cut-off is thus given (to
within a constant) by the knowledge of the fractal dimension, and the inner cut-off

r; which theoretically truncates the power-law behaviour. Thus,

S1 =S, LY )

where S, is some normalizing area. If the area levels off at L and beyond, Sq

becomes the surface area measured with the resolution equal to L..

It was shown in II that the characteristic velocity and concentration gradient
across interfaces are of the order u'/n and c'/ny, respectively, u' and c¢' being the
root-mean-square velocity and concentration fluctuations. Combining this with (2),
an expression for the flux of momentum across the interface can be written as

v S(u'’/m). 3)

Defining the characteristic Reynolds number Re = u'L/v, we may note that n/L ~

217

Re—3/4, and use equation (2 i e ;
ot the q n (2) for the interface area ST to write (after a little algebra)

diffusive flux of momentum ~ Sy, U2 (u/U)? Re 3O-7/3)/4.. @

Note that' Sg» Ug and (u/U.) are all independent of Reynolds number; U is a
charact;enstia velocity, for example the centerline defect velocity for w;ikeg th

center'lu.le excess velocity for jets, the velocity difference between the two stre’amf
for mixing layers, and the friction velocity (equal in kinematic units to the s u L
root of the wall shear stress) for boundary layers. For non-unity Schmidt nurr?b:::

diffusive flux of contaminant ~ S, (U,.AC) (u'c/U;.AC) Re 3(D-1/3)/4 5.0.5(D-3) ()

where ¢/AC is another constant. It was shown in II that the only effect of

incorporating convective effects is to alter th :
e constants _
and (5). stants of proportionality in (4)

o b. The fractal dimension
' MNow, it 1s.we11 known that all fluxes (mass, momentum, energy) must be
independent of Reynolds number in fully turbulent flows — the s’o—caﬂg R S Idc‘
number similarity. This is merely a statement of the observed fact that theeyrr:)(\))vtg
rates of. turbulent ﬂows‘of a given configuration are independent of fluid visgcosit
According to (4) and (5) the Reynolds number similarity requires that g

D=7/3 ©)

for both the vorticity and scalar interfaces, in rough agreement with experi 3
(For preliminary experiments on vorticity interfaces, see 1.) periments
Charag:;?i?bove arguments we have “assumed'that it is appropriate to use a common
ra 1:3 ic velocity or concentration gradient everywhere along the interface
This is strictly not true, at least because the interface thickness varies from place ‘
Place? due to the intermittent nature of the dissipation rate €. Furtherm . ac'c t'O
IInPllcd that the globally averaged dissipation rate is the same as' that avera Orde,' lt‘ﬁs
I;lghbourhood of the interface alone (roughly the 'superlayer' of Cfrﬁrsilrrll lé’i
thlastﬂtc;r, 1'955). Th.ese two issues wers: zfddressed in detail in II, where it was shown
e intermittent nature of the dissipation near the interface is statistically the
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same as that elsewhere, and that the inclusion of the intermittency will alter the
interface dimension from 7/3 to about 2.36. This latter estimate is in excellent
agreement with our experimentally determined mean value. It is worth mentioning
that the reason for the relatively small correction is that the interface thickness
depends on the quarter power of the dissipation, and so the strong variabilities in €
do not translate to comparable variations in the interface thickness.

Acknowledgements
Discussions with C. Meneveau and R. Ramshankar have been very beneficial.

We are thankful for financial support to the Air Force Office of Scientific Research
and the Defence Advanced Research Projects Agency.

References

Corrsin, S. & Kistler, A.L. (1955) Free-stream boundaries of turbulent flows,
NACA Tech. Report 1244.

Mandelbrot, B.B. (1982) The Fractal Geometry of Nature. (Freeman, San
Francisco)

Marstrand, J.M. (1954) Some fundamental geometrical properties of plane sets of
fractal dimensions, Lond. Math. Soc. 3, 257.

Mattila, P. (1975) Hausdorff dimension, orthogonal projections and intersections
with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1, 227.

Meneveau, C.M. & Sreenivasan, K.R. (1987) The multifractal dissipation field in
turbulent flows, In Physics of Chaos and Systems Far from Equilibrium, (eds.
Minh-Doung Van & B. Nichols (North-Holland, Amsterdam).

Richardson, L.F. (1922) Weather Prediction by Numerical Process. (Cambridge
University Press)

Sreenivasan, K.R. & Meneveau, C. (1986) The fractal facets of turbulence J. Fluid
Mech. 173, 357.

Sreenivasan, K.R., Ramshankar, R. & Meneveau, C. (1987) Mixing, entrainment,
and fractal dimension of interfaces in turbulent flows, Submitted for
publication.

Sreenivasan, K.R., Prasad, R.R., Meneveau, C. & Ramshankar, R. (1987) The
geometry of scalar interfaces in fully turbulent flows, To appear in Fractals in
Geophys. (Special issue of J. Pure and Applied Geophys. eds. C. Scholz &
B.B. Mandelbrot, Birkhauser.)

219

Four more survey lectures were presented during the
Symposium:

H. Hornung "Sources of Vorticity",

5.J. Putterman "Universal Power Spectra for Turbulence and
Applications"”,

A.K. Rebrov "Transational Relation and Prcbhblems of Gasdynamics
Separation”,

A.M. Yaglom, B.A. Kader "Statistical Description of Turbulence in
Nonstratified and Unstably Stratified Boundary Layer”.

These papers, however, were not submitted for publication in this
volume.
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