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We explore some implications of the observed multifractal nature of the turbulent energy-
dissipation field and of velocity derivatives of increasing order on the near-singularities of the
Navier-Stokes equations and the singularities of Euler equations. Although these singularities
occur on fractal sets of dimension close to (and only marginally less than) 3, it is shown that most of
the energy dissipation is concentrated on a subset of fractal dimension about 2.87 and volume zero.
Similar statements can be made with respect to velocity derivatives. In particular, it is shown that
the higher the order of the velocity derivative, the less space filling the corresponding singularities

become.

I. INTRODUCTION

The subject of singularities of the equations of fluid
motion (that is, the Navier-Stokes and Euler equations)
has been studied along differing lines of research.!™’
Mandelbrot? conjectured that the set of singularities of
the Euler equation is not of the standard Euclidean type
but a fractal; he also conjectured that the singularities of
the Navier-Stokes equations are essentially those of the
Euler equations smoothed by viscosity. The importance
of singularities of the equations of fluid motion stems
from the realization® that a typical procedure for solving
the equations of mathematical physics is to set up a list of
all characteristic singularities, in the hope that they can
be used in appropriate combinations to obtain physical
insight about, and solutions to, particular problems.
Another reason for this interest is the possibility that
they are one of the sources of turbulence in high-
Reynolds-number flows.

Some specific results have been obtained by Scheffer®
regarding the singularities of the Navier-Stokes equations
(finite viscosity). In effect, his work shows that the Haus-
dorff dimension of the set of such singularities is less than
two in space time. Caffarelli et al.* present an even
stronger result for certain weak solutions of the Navier-
Stokes equations. Even if the Hausdorff dimension of the
singularities of the Navier-Stokes equations is no smaller
than Scheffer’s estimates, it is clear that their intersec-
tions by subspaces (that is, by one-dimensional spatial in-
tersections or cuts in time at one point in space) will be
empty. Thus, the experimental complement of these
mathematical results cannot be explored satisfactorily.
On the other hand, one can readily examine how the
singularities of the Euler equations manifest themselves
in the presence of small amounts of viscosity. This work
discusses some results in that direction, which follow log-
ically from our experiments reported earlier’ on the mul-
tifractal nature of the turbulent energy-dissipation rate.
We also present new results concerning the multifractal
nature of turbulent velocity derivatives up to order four.

We are discussing here spatial regions of a turbulent
flow field governed by the Navier-Stokes equations; the
boundaries are assumed to be far enough away that they
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do not control the dynamics of the flow (unlike, for exam-
ple, in the wall region of the turbulent boundary layer).
The only intrinsic scale for the problem is then the
Kolmogorov scale 7, defined as W /7{eN*, where
v is the kinematic viscosity of the fluid and ¢ is the rate
of energy dissipation per unit volume given by
(v/2)[(0u; /3x;)(3u; /08x;)1% u; and x; being the velocity
and spatial coordinate vectors, respectively. The quanti-
ties of interest here are ¢ itself, and the velocity gradients
of various orders.

Figure 1 shows a linear one-dimensional section of one
component of g, namely (du,/dx, )2, obtained via
Taylor’s hypothesis in the atmospheric boundary layer at
a height of several meters above the ground. (Here, u, is
the velocity component in the mean wind direction x,.)
From this representative component© it is clear that ¢ is
highly intermittent, with large magnitudes concentrated
in rather small regions. Since the energy dissipation is
merely the small-scale manifestation of the energy flux
cascading down the inertial range, the tendency of the en-
ergy flux to concentrate in small regions can be thought
of as related to the near-singular solutions of the Navier-
Stokes equations. Similarly, quantities such as
|du"/dx"|, n > 1, display regions of large activity inter-
spersed between those of relative quiet, and can be
thought of as representing the near-singular characteris-
tics of the governing equations. We are interested in ela-
borating on these features.

Let €, be the energy dissipation rate € over a box of
size r. Typically, €, obeys local scaling of the type

(u,/8x,)?

X1
FIG. 1. One-dimensional section through the field of dissipa-
tion of turbulent kinetic energy € in the atmospheric surface lay-
er (for experimental details see Ref. 9).
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g, ~¢e (r/L) ! (1)

Here, ¢; is the average of € over boxes of size L —some
"large-eddy " scale invoked entirely for the convenience
of normalizing r. The result (1) follows from very general
considerations based on the invariance of the solutions of
the Navier-Stokes equations under simple transforma-
tions (see, for example, Refs. 9 and 11). The total dissipa-
tion E, in a d-dimensional box of size r (volume r9) will
therefore obey the local scaling

E,~E;(r/L)*" %4 )

Because of the large variability in €, or E, for small r, it
is to be expected that a is a function of the spatial coordi-
nate x, say, of the center of the box. Let N,(a) be the
number of boxes of size r which a takes on a certain
value between a and a+da. Typically for multifrac-
tals,”!"12 one has that N, (a) follows a power law with r:

N,(a)~(r/L) /@, (3)

where f(a) is usually interpreted as the fractal dimension
of iso-a sets. The entire dissipation field can be thought
of as being constituted of a superposition of interwoven
iso-a sets with a varying between an a;, and an a,,,,, f
being a function of a. The curve of f versus a will then
describe the multifractal distribution of the dissipation
field.

It is seen from Eq. (1) that as r—0, ¢,— o for all
a <1, which thus represents the singularities related to
the dissipation field in the limit of zero viscosity (infinite
Reynolds number). Conversely, dissipation occurring in
regions with a> 1 is regular in that it not only remains
bounded but also tends to zero as the averaging volume
shrinks to zero. For the Navier-Stokes equations, it is
clear that the smallest scale of dynamical importance is
1, and fluctuations on smaller scales are smoothed out by
viscosity; the singular behavior in a strict mathematical
sense does not therefore obtain. Even so, for a <1, large
values of s,,~s,_(n({L )i",_l exist, with the largest €, being
given by g,(n/L) ™ . The picture, then, is that the
near-singularities observed in the finite-viscosity case are
the singularities smoothed out by viscosity. One of the
tacit implications here is that the viscosity effects are
essentially benign. We shall return to this statement in
Sec. IV.

II. EXPERIMENTAL RESULTS

A. The dissipation field

We have obtained in Ref. 9 the f(a) curve for one-
dimensional sections of the energy-dissipation field in a
number of turbulent flows. Details of measurement as
well as assessment of their accuracy can be found in that
reference, where it has also been shown that the f(a)
curve is universal for a variety of fully turbulent flows.
That is, the precise value of the Reynolds number and the
details of the flow are irrelevant as long as turbulence is
fully developed. Figure 2 shows the mean curve drawn
through the experimental f(a) curve.

Before proceeding further, we must remark on the va-
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FIG. 2. Universal f vs a curve of one-dimensional sections of
€ in fully developed turbulence and experimental variability
(Ref. 9). This curve was obtained by first measuring the general-
ized dimensions (Refs. 13 and 14) D, for 13 values of g between
—6 and 6. By linear interpolation of the D, curve, a total of 36
points was generated, which was then used to obtain a and f(a)
by center differencing. The inset shows the magnification of the
curve in the neighborhood of a=1.

lidity as well as the limitation of the method of one-
dimensional intersections used to obtain the f(a) curve.
The general expectation is that the linear intersections of
the dissipation field in three dimensions posses fractal di-
mensions which are 2 less than that of the dissipation
field itself. Such additive rules are expected to hold for
isotropic fractals, which are such that the resulting di-
mension is independent of the orientation of the intersect-
ing plane or line (see Ref. 8, and references cited on p.
366). It is generally believed'™!® that the dissipation
structures in turbulence are spatially isotropic in a statis-
tical sense, so that any one-dimensional spatial cut can be
expected to be independent of the multifractal itself. By
comparing results from one- and two-dimensional sec-
tions, we have previously shown that the additive law
holds for scalar interfaces,!” as well as for the multifractal
description of the scalar dissipation field.'®

The essential conclusion for three dimensions is that
fHa)=f(a)+2 for 2= f*(a) =<3, where the superscript
asterisk denotes quantities relevant to three-dimensional
space. In Fig. 3, we schematically compare f(a) with
f*(a). The top part of the curve in the range
2 < f*(a)<3 is identical in both cases, whereas the part
f*(a)<2 is largely inaccessible in line-intersection
methods because such intersections will in general be null
sets. It is then clear that a};, < a;, and that o}, = Q..
Noting that the bottom part of the curve should intersect
the line f*(a)=0 perpendicularly, the differences in the
maximum and minimum values of a in the two cases will
be relatively small. The fact that we can determine by in-
tersection methods only those singularities whose fractal
dimension exceeds 2 turns out to be no serious restriction
because, as we shall see, the important case corresponds
to f*(a)>2.

If S is the union of all (disjoint) regions corresponding
to a<1, then S can be regarded as the support of the
singularities of the dissipation field—singularities mean-
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FIG. 3. Schematic of the f(a) curves in three dimensions
compared with that obtained by line intersections.

ing that €,— o in the double limit r —0 and v—0. The

number of boxes N, of size 7 needed to cover S is given
by

N"(S)=fa<1N,7(a)da~fa (/L) /"o . (@4

<1

For small values of /L (large Reynolds number), the
integral is dominated by the term for which f(a) is max-
imum in the range a <1, and since the f versus a curve
increases monotonically in that range, the dominant term
is clearly (y/L)~/V. Therefore

N, ($)~(n/L)~ /", (5)

and we can conclude that the fractal dimension of the set
of singularities of the dissipation field is f(1). From Fig.
2, (1) is about 0.96.

As we shall see later, the important point is that
f(1)<1, not its precise numerical value. To show that
f(1) is definitely less than unity, we first comment on the
experimental accuracy and then note other reasons for
expecting this result. Figure 2 shows that the error bars
on the f(a) curve are of different magnitudes at different
values of a and are quite small near a=1. This can be
seen better by returning to the generalized dimen-
sions'>'* D, from which the f(a) curve was computed in
Ref. 9. The error bar for ¢ =0 is essentially zero, con-
sistent with the expectation that Dy =1 (that is, there is
some dissipation everywhere). The error bar is finite but
small in the neighborhood of ¢ =0, as the inset to Fig. 2
shows. It is clear that the conclusion that f(1) <1 holds
outside of experimental uncertainties.

Alternatively, expanding the f(a) curve around the
maximum of f, which occurs at a=a* > 1 (see Fig. 2), we
have

[,r)*/L ] d-f (o)

FIG. 4. Variation of (n* /L)?~/'® (fractional volume occu-
pied by sets with a specific value of a) as functions of @ and R
(Reynolds number based on the Taylor microscale). In this
figure as well as Fig. 5, the areas under the different curves are
normalized to unity.

fla)=fla*)+(df /da) __sa—a*)

+(d f/da?)_ sla—a*V/2+ -+ .
Since (df /da)___«=0, and (d*f/da®) __«<0 by the
concavity of the f(a) curve—see, for example, Ref. 12,
p. 1142)—we have the result that f(a) must be less than
1 in the vicinity of a*. As an aside, we note that the con-
cavity condition on the f(a) curve is related to the ther-
modynamic stability of the pseudostatistical mechanical
system that generates the f(a) curve.

Finally, the physical result that the turbulent energy
dissipation rate in a finite volume must be finite also con-
strains f(1) to be less than unity. The set corresponding
to some « slightly less than unity has a dissipation rate
given by e~r®"!, which tends to infinity as r—0. If
such a set were space filling, the energy dissipation would

[777L ] a-1+d-f (a)

FIG. 5. Variation of (*/L)*~!*47/'@ (the dissipation con-
tained in regions with a specific value of a), as functions of «
and R;.
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be infinite. This unphysical result can be avoided only by
stipulating that the value of f corresponding to this a
must be less than unity. Since this argument can be ex-
tended to all a’s approaching unity from below, we con-
clude that f(1) must be less than 1.

From the previous discussion on the additive rules for
intersection,® we conclude that the fractal dimension of
the set of singularities of € is definitely (though only mar-
ginally) less than 3; its approximate value is about 2.96.

Some secondary quantities, related to how fast in Rey-
nolds number the Euler limit is achieved, can be deter-
mined from this analysis. First, using Eq. (4), we see that
the fraction of volume occupied by the singular set S is

Vi)~ [ (g/L)¥ ' %da . (6)

a<l

In writing Eq. (6) it has been assumed that the preex-
ponential factor in (3) is a constant. At present, there is
no experimental information on this point, and we have
invoked it merely for simplicity.

Similarly, the fraction of the total dissipation within
the singular regions is given by integrating (1) for all
a <1, that is,

ES)~ [

a<l

(n/L)a—l-*—d—f(a)da . 7

To determine the variation of V(S) and E(S) with
respect to Reynolds number, one can approximate the lo-
cal Kolmogorov scale 77 in Egs. (6) and (7) by its represen-
tative average 7* given by (v*/(e)!/*), and use the rela-
tion® (9* /L)~R; */%,R, being the microscale Reynolds
number. The effect of this approximation, made here for
convenience, will be shown later in this section to be
negligible.

In Figs. 4 and 5 we have plotted the quantities
(p*/L)* /@ and (9* /L)% 1+47/1@) a5 functions of a
for four different Reynolds numbers R, of 10, 10%, 10%,
and 10%. In both figures, the areas are normalized to be
the same for all four Reynolds numbers. The fractional
area for a <1 in each of the four curves in Fig. 4 gives the
quantity expressed in Eq. (6) above—which, as remarked
already, is the volume occupied by the near-singular re-
gions of the dissipation field. Similar fractional areas for
a <1 in Fig. 5 represent the quantity (7), which is the
amount of dissipation concentrated in regions of near-
singularity.

In Fig. 6 variations of V(S) and E(S) with R, are
shown by a solid line; the dashed lines will be explained
below. As expected on intuitive grounds, the volume of
the near-singular regions V(S) goes down to zero as
R, — =, while the entire dissipation tends to concentrate
in these regions of diminishing volume.

As remarked already, one can redo these calculations
by taking the local value of 7 instead of *. Noting that
n/m* ~({e) /e)/%, and that e~ (e)(n/L)*"!, we have
the result that

(n/L)~(q*/L)¥ a3 (8)

Thus replacing 17/L in Egs. (6) and (7) by the right-hand
side of Eq. (8), we get the dashed curves in Fig. 6 instead
of the continuous curve. There is very little difference be-
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FIG. 6. Fraction of volume occupied by the near-singular re-
gions of the dissipation field V(S) as function of R, (lower
curve), and fraction of total dissipation occurring in the near-
singular regions E(S) as function of R, (upper curve). If the

effects of spatial fluctuations in 7 are included, one obtains the
dashed lines (see text).

tween them.

The results of Figs. 4—6 are easy to understand. Small
a implies large intensity of dissipation [see Eq. (1)], but
such sets occupy small volume because f is close to zero
[see Fig. 2 and Eq. (6)]. On the other hand, sets corre-
sponding to larger a occupy larger volumes but possess
low-intensity dissipation; the largest  sets have low dissi-
pation as well as occupy small volumes, and are therefore
unimportant. It is clear that the largest contribution to
the total amount of dissipation occurs for some inter-
mediate a minimizing the exponent in Eq. (7). This
yields the condition f'=9f/3da=1. Noting that f'=1
occurs at f =a [this being a property of all f(a) curves],
it is seen from Fig. 2 that the integrand of (7) must peak
at a=0.87. Figure 5 is consistent with this expectation.

Three further points need amplification. First, in the
limit R, — «, the peak in the figure can be expected to
become increasingly sharper, approaching a delta func-
tion centered around a=0.87. It then follows that most
of the dissipation is concentrated (in one-dimensional sec-
tions) on a fractal set of dimension 0.87 and volume zero.
We conclude that the fractal dimension of this set is
about 2.87 in three-dimensional space. Second, from the
Legendre transform between the pairs of variables (f,a)
and (D,,q ), it is clear that the condition that f =a and
df /da=1 corresponds to the set whose dimension is the
information dimension D,. Thus, a statement that all the
dissipation is concentrated near f=a is equivalent to
saying that it occurs on a set of dimension D,. The
specific meaning?® of the information dimension is that it
represents the amount of information necessary to specify
the state of the system to within the resolution employed.
Equivalently, for canonical systems in statistical mechan-
ics, the distribution of the probability measure on a set of
dimension D; maximizes the amount of disorder under
the constraint of the observed values of internal energy.
The interpretation becomes clear if we recognize?!?? that
measuring the f(a) or the D, curve corresponds to
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measuring the thermodynamic quantities of the pseudo-
statistical mechanical system being analyzed. The impli-
cation therefore is that the turbulent energy dissipation is
distributed in such a way that disorder is maximized sub-
ject to the constraints of the observed distribution of a.
Finally, we note that the modeling of the dissipation field
by singularities of strength @=0.87 lying on a set of frac-
tal dimension 2.87 yields the B model®® for fractally
homogeneous turbulence.

B. Velocity derivatives

Here, we wish to examine the singularities of the spa-
tial derivatives of the velocity field u (x). Mandelbrot?
conjectured that the singularities of velocity derivatives
of increasing order lie on sets which become increasingly
less space filling. To examine this, we have analyzed ex-
perimentally the one-dimensional sections of [8"u, /dx |,
the absolute value of the nth-order "streamwise" deriva-
tive of the streamwise turbulent velocity. For conveni-
ence of representation, we subsequently replace u, by u
and x,; by x. A few words are in order on the first deriva-
tive |0u /0x|. Since it is proportional to eln/ 2 it can be
shown (for details see Appendix A) that the f versus «a
curves of € and |du /dx| are related for one-dimensional
sections by

au=(a+D1/2)/2 ’ (9)
fu(au)':f(zau_Dl/z) ’ (10)

where the subscript u refers to |du /3x|, and the unsub-
scripted quantities refer to €. Figure 7 shows a compar-
ison between the experimental f versus a curve obtained
directly for |du /3x| (dashed line), and Egs. (9) and (10)
applied to the average experimental f versus a curve of €
(continuous line). The agreement is good within experi-

1.0

0.5

FIG. 7. Comparison between measured f vs a curve for
|0u /0x| (dashed line) and transformations [Egs. (9) and (10)]
applied to the f vs a curve of € in Fig. 2 (continuous line). The
error bars show typical experimental variability.
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fla)

0.0

FIG. 8. f vs a curves of velocity derivatives |3"u /9x"| for
n=1-4. Typical experimental variability is as shown with er-
ror bars in Fig. 7.

mental scatter. Thus the first derivative of the velocity is
a multifractal, and its f versus a curve can be related to
that of €. Higher-order derivatives, however, contain ad-
ditional information. We verified that one-dimensional
sections through |3"u /8x"| can be treated as multifractal
measures and obtained their f versus a curves for
different values of n up to 4. Details of the experimental
procedure, as well as an assessment of the accuracy in
evaluating the derivatives, are given in Appendix B.

Figure 8 shows the f versus a curves of |8"u /dx"| for
n from 1 to 4. For larger n, a,,;, decreases (Fig. 9), show-
ing that the strength of the largest singularity increases
with the order of the derivative. One may note that the f
versus a curve of |3"u /9x"| for n =0 (just the absolute
value of u) is a single point at a=1 and f(a)=1; that is,
one does not observe any singularlike behavior in u itself.
The quantity a,;, for n =0 is therefore unity and is in-
cluded in Fig. 9 for completeness.

With respect to the fractal dimension f(1)=f(a=1)
of the set supporting the near-singularities of |3"u /3x"|,
we note that the f versus a curves in Fig. 8 intersect at
some intermediate value of a between a,,;, and a=1; as a

1.1
1o}
0.91
o . 0.8
0.7 1
0.6
0.51

0.4 T T T T
0 1 2 3 4 5

FIG. 9. Variation of minimum scaling exponent a,,;, (corre-
sponding to the strongest singularities) with the order n of the
derivative.
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FIG. 10. Variation of the fractal dimension f (1) of the set of
near-singularities of |3"u /3x"| with the order n of the deriva-
tive.

result, f(1) decreases with increasing n, as made explicit
in Fig. 10. The conclusion therefore is that the singulari-
ties, observed in the multifractal measures of |3"u /9x "
at least for n up to 4, reside on sets whose fractal dimen-
sion is a decreasing function of n, substantiating
Mandelbrot’s conjecture. Again, it is worth noting that
the decrease of f(1) with n is extremely slow and that
f(1) is very close to the dimension of the embedding
space for the values of n treated here.

III. RESULTS FROM THE p MODEL

It has been shown elsewhere?* that the multifractal dis-
sipation field can be modeled quite satisfactorily by a
two-scale Cantor measure, and we invoke this model (the
p model) to provide expressions for f versus a that are
easy to manipulate analytically. Briefly, the model de-
scribes a low-order approximation to the real cascading
process of energy in the inertial range, whose thermo-
dynamic or macroscopic description?""?? is given by the
measured f versus a curve or, equivalently, by the gen-
eralized dimensions D,. Excellent agreement (at this
thermodynamic level of description) between the model
and the measurements is obtained by assuming that, at
each stage of the cascade, half of the newly generated,
equal-sized eddies receive a fraction p, =0.7 of the ener-
gy flux, while the other half receives the remaining frac-
tion p,=0.3. The q dependence of D, for one-
dimensional sections with the p model is given by

D,=log,(p{+p§)/(1—q), a1
where D, is defined by

1)D,

S\(E,/E, Yi~(r/L)* "Pa (12)

and the sum is taken over all boxes of size r.

Using the typical Legendre transformation'? which re-
lates the pairs (¢,D,) and [a, f (a)], we see that the con-
dition a < 1 is equivalent in the p model to

_log,[log,(2p,) ™! /log,(2p,)]
log,(p, /p3)

Using p;=1—p,=0.7, we get Q =0.493. In addition,
f (1) for linear intersections can be written as

q9>0Q (13)
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fla=1)=ga—(g—1)D,

=Q —(Q —1)D,=0.969 , (14)

which agrees with measurement [see discussion immedi-
ately following Eq. (5)].

The value of Q has an interesting interpretation. For
q>0, (8?,) is determined largely by dissipation occur-
ring on the set S, the singular part of dissipation. For
g <Q, however, this average is dominated by regions in
which the dissipation is regular. Noting that
|0u /3x | ~ (e, /v)!"%, we argue that the global average of
the absolute value of the velocity gradient is dominated
by the region where energy dissipation is singular, simply
because Q < 1.

For the p model it is also clear that f'=1 occurs at

f=a=—(p,log,p, +p,log,p,) , (15)

which gives 0.88 for p, =1—p,=0.7, very close to the
measured value of 0.87.

The generalization of the p model to three dimensions
implies that each one of the 23 subeddies receives either a
fraction p, /4 or p, /4 of the energy flux received by their
predecessor. The f*(a) curve of such a process would be
like Fig. 3, with a}, =a.;, and ah,,=a,,,. In order to
include some singularities with f*(a) <2, one can slight-
ly perturb the ratios of energy fluxes around p,/4 and
p,/4 for each of the 23 new subeddies (these perturba-
tions being subject to the conservation of energy flux),
and obtain f*(a) curves with a};, <apni, and ap,, > ...
The magnitude of such perturbations is expected to be
small if the limiting a values of the f(a) and f*(a)
curves do not differ very much.

IV. CONCLUSIONS

We have used the experimental results of Ref. 9 to
quantify some aspects of the singularities of the equations
of motion. On the basis of the mathematical results of
Refs. 3 and 4 on the dimension estimates of the singulari-
ties of the Navier-Stokes equations, it is clear that one
cannot determine them efficiently by line-intersection
methods. It follows that the present results must refer to
Euler equations, the fluid viscosity serving the sole func-
tion of smoothing out the singularities by setting a suit-
able cutoff. It is also clear that line-intersection methods
are not useful for detecting the extremely rare and intense
singularities of the Euler equations, but we have shown
that their rareness makes them unimportant, though not
uninteresting, in practice. To detect them, one has to
search the entire three-dimensional space. It is plausible
that such a search can also detect the singularities of the
Navier-Stokes equations discussed in Refs. 3 and 4, where
the role of viscosity will be dynamic. Efforts in this direc-
tion are continuing.

One of our principal results on the singularities of € is
that they occur on a set S of fractal dimension 2.96. It
came as a surprise that these singularities are so close to
space filling. However, most of the dissipation is concen-
trated on a proper subset of S of fractal dimension 2.87
(but volume zero). From this result, it is difficult to ob-
tain unambiguously the true geometric nature of the dis-
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sipation field. Kuo and Corrsin?> examined this issue by

multiprobe measurements, and concluded that these
structures are more likely to be sheetlike than bloblike or
tubelike. If this is true, it appears that the dynamic pro-
cesses leading to fully developed turbulence consists in-
trinsically of stretching and folding the sheetlike struc-
tures in a manner qualitatively similar (in physical space)
to what happens in establishing (for example) a strange
attractor (in phase space). The essential ingredients re-
quired to augment this picture will then be the principal
rates of strain, which are analogous to the "Lyapunov
exponents " in phase space. Although some information
on these quantities is now available,?® it is not yet clear
how it can be incorporated in any quantitative way.
Another possibility consists of stretching of vortex fila-
ments, a subject that has been explored using analogies to
polymer chains.?’ %

The present results on the singularities of the velocity
derivatives of order n > 1 show that they too are concen-
trated on fractal sets of dimensions close to, but less than,
3. In particular, we have shown that these singularities
become increasingly less space filling as the order of the
velocity derivative increases.

We believe that these considerations are important in
the context of high-Reynolds-number mixing (of momen-
tum, species, heat, etc.).

ACKNOWLEDGMENTS

We thank A. Chhabra and M. Nelkin for some useful
discussions and the National Science Foundation and De-
fense Advanced Research Projects Agency for financial
assistance.

APPENDIX A

We address here the relationship between the f versus
a curves of € and |du /3x/|. Recalling that

e,,~v|au /0x |2 (A1)

and defining |du /0x |, as the integral of |du /3x| over a
box of size 7, it is easy to show that

|ou /x|, =K, 3 EL* . (A2)

Here K| is a constant that depends only on v and 7, E,, is
the dissipation contained in regions of size 7, and the
sum extends over all (r/7)? boxes contained within the
box of size r.

As in Eq. (2), if |du /8x | is a multifractal, we can write
locally that

1+d

|8u /3x |, ~r™ "%, (A3)

where a, is now the strength of singularities of |0u /3x]|.
Let us rewrite Eq. (A2) as

|du /3x|,~K E!"*3 (E,/E)"* . (A4)
In order to evaluate the sum of (E, /E,)'* within the

box of size r we have to make use of the definition of the
generalized dimensions as stated in Eq. (11). In addition,

we can use the self-similar properties of multifractals and
write Eq. (11) for ¢ =4, replacing r by 7, and L by r, pro-
vided that p <<r << L. That is,

S(E,/E) 2 ~(q/r) 2017 (A5)
Together, (A4) and (AS5) can be written as
|8u /x|, ~K,E}?rV/2(D1?) , (A6)

where K, is another constant. Since we know the r
dependence of E, from Eq. (2) (E,~r®" "9 where a is

. the local singularity strength of €), we conclude that

a,—1+d=(a—1+d)/2+D,,,/2 . (A7)
For one-dimensional sections we can write
au=(a+D1/2)/2 . (A8)

This means that wherever € has a singularity of strength
a, |du/dx| will have a singularity of strength
a,=(a+D,,)/2, and that the dimension of the corre-
sponding sets will be

fule,)=fQRa,—D,,) . (A9)

It should be pointed out that this result can easily be ex-
tended to powers other than 5. We can state that the kth
power of a multifractal is another multifractal and that
their f versus a curves (for one-dimensional sections) are
related by

ay=ka—(k —1)D, . (A10)
fila)=f(lay+(k —1)D,]/k) . (A11)

It should also be pointed out that if the multifractal
spectrum of any given quantity can be modeled in terms
of the p model with some p, and p,=1—p,, the kth
power of that quantity can be modeled by a nonconserva-
tive extension of the model, using instead of p, and p, the
values p| =p¥ and p, =p%. Now, of course, p| +p}+1,
meaning that the total measure changes at each cascade
step. When defining the generalized dimensions, one has
to normalize by the total measure available at the partic-
ular cascade step, and Eq. (11) is easily generalized to

D, =log,[(p\+p5")/(py+p3)]/(1—q) . (A12)

Using p|; =p¥ and p), =p¥% and the usual Legendre trans-
formations to obtain a; and fj(a,), Egs. (A10) and
(A11) are recovered.

APPENDIX B

For experiments on multifractal properties of the ve-
locity derivatives, the turbulent streamwise velocity u (¢)
was measured in air flow in the wake of a cylinder using
hot-wire anemometer. The diameter of the cylinder was
1.7 cm, and the free-stream velocity U was 5 m/s; mea-
surements were made at the centerline of the wake 100
diam downstream of the cylinder. The high-frequency
cutoff was about 5 kHz. (This was determined by
measuring many spectral densities of the unfiltered veloc-
ity signals and noting the frequency at which the energy



6294

ulx)

| 8%u/8%°|

18%/0x

FIG. 11. (a) Velocity signal obtained in the wake of a circular
cylinder. In the expanded version, the Kolmogorov microscale
7 of the flow is indicated. It is seen that the signal is smooth for
scales comparable to 7. (b) The absolute value of the second-
order derivative, and (c) the fourth-order derivative, both ob-
tained (see text) by differentiating the signal (a). The expanded
versions to the right correspond to the same expanded region
(a).

reaches the noise floor.) It was therefore thought that
low-pass filtering the signal at SkHz was adequate, but
the data was acquired at the high rate 20 kHz to ensure a
smooth signal for calculating derivatives of high order.
The temporal signal u(¢) obtained at a single location
was then interpreted as a streamwise spatial cut u(x)
through the flowfield at a single instant, using Taylor’s
frozen-flow hypothesis. An experimental substantiation
of this hypothesis in a similar context has been given by

K. R. SREENIVASAN AND C. MENEVEAU 38

Prasad et al.'® The signal was digitized using a 12-bit
analog-to-digital converter on a Masscomp 5500 comput-
er.
In order to smooth out the digitizer noise when obtain-
ing the derivatives 8"u /9x" for each point x; of the sig-
nal, a fourth-order polynomial was fitted locally to the
data:

4
Pi(x)= 3 ay(x —x;) ~u(x), (B1)
k=0

where the a; were obtained by minimizing the least-
square error using 25 points u (x; _;,) through u(x; ,)
around x;. The derivatives were then evaluated from (B1)
at x =x; according to

d"u /3x"|;=nla,, . (B2)
This procedure was repeated for every point of the signal.
Figure 11(a) shows a typical velocity signal u (x). Also
shown is an enlargement of the signal, where the Kolmo-
gorov length scale is indicated. It is clear that the data-
acquisition frequency is sufficiently high to produce a
smooth signal. Figures 11(b) and 11(c) show |3%u /3x?|
and |8*u /3x*|, as well as the expanded regions corre-
sponding to that shown in detail in Fig. 11(a). As n goes
up, stronger, and presumably less space filling, peaks are
visible. Also, the signal corresponding to the fourth
derivative of u is still smooth when viewed at scales
smaller than 7 but, as expected, more activity is seen at
these scales.

In order to obtain the f versus a curves of [8"u /3x ",
we processed these signals as described in detail in Ref. 9
for the dissipation signals. First, we obtain the general-
ized dimensions D, ; scaling of over 1.5 decades was ob-
served, thus justifying the treatment of the absolute value
of the derivatives as multifractal measures. Sixteen
different signals, each 50 L long, were used. The result-
ing D, curves were averaged. The variability of D, was
+0.035 at ¢ =8, +£0.002 at ¢ =2, and +0.055 at g=—8.
The f versus a curves were then computed using the
averaged D, curves for n =1-4.
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