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The wake of an oscillating cylinder at low Reynolds numbers is a nonlinear system in which a limit cy-
cle due to natural vortex shedding is modulated, generating in phase space a flow on a torus. We experi-
mentally show that the system displays Arnol’d tongues for rational frequency ratios, and approximates
the devil’s staircase along the critical line. The “singularity spectrum” as well as spectral peaks at vari-
ous Fibonacci sequences accompanying quasiperiodic transition to chaos show’s that the system belongs

to the same universality class as the sine circle map.

PACS numbers: 47.15.Gf, 47.25.Gk

In low-dimensional dynamical systems, detailed pre-
dictions have been made for the “universal” features of
transition to chaos by period-doubling!? and quasi-
periodic®™® routes. Experiments in small-aspect-ratio
closed-flow systems’~® have gone a long way in establish-
ing the validity of these predictions to fluid flows. How-
ever, experiments in open-flow systems (those with im-
posed unidirectional main flow) with little or no confine-
ment have paid heed to these predictions only rarely. %13
The best case for showing some conformity with features
of nonlinear dynamics is the flow behind circular
cylinders.'®!3 Here, we study at low Reynolds numbers
the flow behind a circular cylinder oscillating transverse
to an oncoming stream, and show that it exhibits some
quantitative features of universality.

Briefly, with increasing Reynolds number, the flow
behind a stationary cylinder first undergoes a Hopf bifur-
cation'* from the steady state to a periodic state charac-
terized by the vortex-shedding mode at a frequency fo,
say. We have shown in Ref. 14 that the post-critical
state can be modeled by the Landau equation, and deter-
mined the Landau constants. For cylinder aspect ratio
(that is, the length to diameter ratio) exceeding about
60, details of this bifurcation are independent of the as-
pect ratio, and the critical Reynolds number (based on
the cylinder diameter D and the oncoming velocity) is
about 46. For the present measurements, the working
fluid was air, and the Reynolds number about 55. A
modulation was imposed by our causing the cylinder to
oscillate transverse to the main flow at a frequency f,,
the amplitude of oscillation being then a measure of the
nonlinear coupling between the two modes. The system
has two competing frequencies (fo and f,) yielding two
control parameters, f,/fo and the nondimensional ampli-
tude of oscillation, a/D. Once the external modulation is
imposed, we expect f to shift to fo, say. This is similar
in spirit to the convection experiments of Refs. 7 and 8§,
and the well-studied sine circle map.

0,+1=0,+ 9 —(K/27)sin(276,),

for which Q is the bare winding number (equal to the

average shift per iteration in the absence of nonlinear
coupling— analogous to f./fo), and K is the nonlinearity
parameter, comparable to a/D. The average shift per
iteration in the presence of nonlinear coupling is the
dressed winding number, ®, comparable to f./f¢. The
sine circle map has been studied in recent years as a
standard model for the transition from quasiperiodicity
to chaos in dynamical systems, and its properties are be-
lieved to be universal for any map with a cubic inflection
point. For K <1 (subcritical behavior), iterates of the
map lock on to rational @ values (in general different
from Q for nonzero amplitudes of oscillation) in the
Arnol’d tongues'> which increase in width as K in-
creases. At K =1, the critical line, a universal transition
to chaos occurs at a special value of the dressed winding
number, og=(~/5—1)/2, the inverse of the golden
mean. To observe the universal transition to chaos, it is
best to move without phase locking along the line w =o¢
up to the critical point, this choice being relevant be-
cause the irrational number o is least well approximat-
ed by rationals (containing only ones in the continued-
fraction representation). The universal behavior at the
critical golden-mean point is observed in the scaled
power spectrum and in the self-similar devil’s staircase
structure along the critical line,3>”’ and the so-called
f(a) curve. '

Our motivation for studying the oscillating cylinder
within this framework is twofold. First, there is evi-
dence'” of lock-in when f, is near fo (@ near 1). Our
search for additional phase-locked tongues at other ra-
tional @’s constitutes a generalization of this work within
the framework of dynamical systems. Second, analogies
can be drawn between our flow and other fluid systems
(most notably the forced Rayleigh-Bénard system)
which have exhibited quantitative experimental results
reminiscent of sine circle maps. Establishing this fact in
a different, and by all accounts more complex, fluid sys-
tem has broad implications transcending the immediate
measurements.

The cylinder was placed in a wind tunnel of the suc-
tion type with double contractions, honeycomb, and
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FIG. 1. (a) Power spectral density for the case of natural
vortex shedding at fo=534 Hz. (b) The corresponding data
for the excitation source, measured with a photodiode; f. =308
Hz. (c) Frequency locking occurring as a result of excitation.
The natural shedding frequency disappears in favor of the new
peak at ¥ f.; peaks appear at other fractions of f.

several damping screens, and was made to oscillate at
the desired frequency by the passage of a sinusoidally al-
ternating current through it in the presence of a properly
aligned magnetic field. Both the vortex-shedding and
modulation frequencies were steady to = 2 parts in 10%.
A hot wire, 5 um in diameter and 0.6 mm in length,
placed approximately 15D downstream of the cylinder,
0.5D to one side of its mean position, monitored the flow
velocity. The hot-wire signal was amplified, digitized by
a twelve-bit analog-to-digital converter, and stored in a
computer (MASSCOMP 5500) for later analysis. A
HP3561A spectrum analyzer was used for real-time
analysis. The cylinder oscillation frequency and ampli-
tude were varied over a range of (26-100)% of fo and
(0-200)% of the cylinder diameter. The cylinder diame-
ter varied from 0.03 to 0.09 cm, and its active length was
15 cm; the actual length of the cylinder, stretching out-
side the wind tunnel, was about 3 times as long. The
cylinder always oscillated in its first mode.

Figure 1 highlights the effect of cylinder oscillations
on the wake-velocity power spectrum. We note the shift
of fo to f between Figs. 1(a) and 1(c), and the com-
plete suppression of fo in favor of f¢ in Fig. 1(c). All
the principal peaks in Fig. 1(c) (linear combinations of
fe and fg) are more than 5 orders of magnitude above
background noise levels. From several such spectra, one
can plot a “phase” diagram showing Arnol’d tongues
(Fig. 2). All symbols represent boundaries of the larger
tongues shown. The exception is the triangle symbol,
which represents the 3 lock-in shown in detail in Fig. 1.
The dressed winding numbers in these tongues corre-
spond to rationals constructed according to Farey arith-
metic although, because of limitations in experimental
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(bare winding number, without nonlinear coupling)

FIG. 2. Arnol'd tongues (that is, the locked-in regions) in
the wake of the oscillating cylinder. The ordinate is the ampli-
tude of oscillation normalized by the cylinder diameter. About
30 such tongues were noted, but only those with reasonable
width are shown. In each tongue, the natural shedding fre-
quency disappears in favor of a rational multiple of the excita-
tion frequency, and the appropriate multiplication factor is
shown in each tongue. The critical line (corresponding to the
K =1 line in the circle map), as determined by the expected
fractal dimension, is shown dashed.

control, no more than 30 such tongues have been
identified. (To avoid cluttering, not all of them are
shown.) In accordance with predictions for the circle
map, these tongues increase in width as a/D increases.
The 1/1 tongue is in close agreement with the previously
mentioned lock-in region near f. The dashed line repre-
sents the experimentally determined ‘““best fit” critical
line found by our determining, for various Q, the a/D
level at which the fractal dimension D¢ of the critical
line was equal to 0.87 appropriate to the circle map. The
dimension Dy was computed with

> (S;/S)Po=1,

where S is the distance between two parent tongues
around an irrational winding number and the S;’s
(i=1,2) are the distances between a daughter tongue,
constructed according to Farey arithmetic, and each of
its parents. All possible parent-daughter combinations
of tongues shown in Figs. 2 and 3 were used. A few
measurements on the onset of chaos at different Q yield-
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FIG. 3. The fine structure in a small region of the (a/D, Q)
plane of Fig. 2. Typical experimental uncertainties are shown.
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FIG. 4. The devil’s-staircase construction with the data of
Figs. 2 and 3 along the critical line. Although general pattern

is the same as for the circle map, there are some noticeable
departures.

ed essentially the same critical line. The nonconstant
level of a/D along the critical line for small Q is not un-
derstood, but not surprising considering similar findings
in Ref. 7. In Fig. 3 we highlight the fine structure of the
phase diagram in a region just below the  tongue.

The experimentally determined devil’s staircase along
the critical line is shown and compared to the predictions
for the circle map at K =1 in Fig. 4. The symbols repre-
sent the limits of the experimental steps, while the solid
lines with vertical limiting bars represent predictions.
Although a staircase structure is definitely obtained in
experiments, the limitation of the agreement between the
measured fine structure and the devil’s staircase is obvi-
ous especially from the inset enlarging the boxed region.

In Fig. 5 we show a typical scaled power spectrum of
the wake velocity at the critical golden-mean point
shown by the square symbol in Fig. 2. The dressed wind-
ing number o is within 0.1% of og, this being the best
control possible in our experiments. The spectrum is
averaged over approximately 65000 cycles of the cylin-
der oscillation frequency. The circle map predicts a
self-similar power spectrum (when power is scaled with
f?) divided into bands by the principal sum and
difference frequencies located at all powers of og. These
peaks are commonly designated as generation-1 peaks.
Other generations are created by positive-integer mixing
coefficients of various Fibonacci sequences, f=jo¢
— k | — generation 2 by the sequence (2,2,4,6,...), gen-
eration 3 by the sequence (1,3,4,7,...), etc; peaks
within each generation are of constant amplitude for the
circle map. In Fig. 5 we see that the principal peaks fall
at powers of o down to o&. They are nearly of constant
amplitude except for & which falls off. We note that
the generation-2 and -3 peaks fall as predicted by the
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FIG. 5. Frequency-scaled power spectrum for the excited
wake at the critical golden-mean point (to within 0.1%).

mixing coefficients within the resolution of our power
spectrum. We also see that generation-2 peaks show the
constant-amplitude trend, but generation-3 peaks and
beyond degrade considerably. Generation-2 and -3
peaks are not present at lower frequencies and higher
generations are observed rather rarely.

Finally, from the time series of velocity obtained at the
critical golden-mean point, we constructed a pseudo at-
tractor by the usual time-delay methods and obtained
Poincaré sections by sampling data at intervals separated
by the period of forcing. The resulting Poincaré section
was embedded in three dimensions (in which it was
nonintersecting in all three views), and a smoothed at-
tractor was obtained by performing averages locally.
The data were then used to compute the so-called gen-
eralized dimensions'® by using the standard box-count-
ing methods; in each of the appropriate log-log plots, the
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FIG. 6. The f(a) curve obtained via Legendre transform
(Ref. 16) of the measured generalized dimensions. Levels of
uncertainty are shown by error bars.
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scale similarity regime extended typically over two dec-
ades. The multifractal spectrum [or the f(a) curve']
was then obtained via a Legendre transform discussed in
Ref. 16. The result is compared in Fig. 6 with the
theoretical curve for the circle map.

Even though some departures from the circle-map be-
havior do exist, we think that the extent of the observed
similarity is remarkable. It is not obvious whether these
departures are real, or whether they occur because the
control of experimental parameters was not as fine tuned
as desired. It is known, however, that very small depar-
tures from criticality can produce similar behavior.!>%°
As already noted, inherent difficulties in the establish-
ment of the flow made it impossible to control o to
better than 0.1%. The departures observed in the
devil’s-staircase construction are of the same order of
magnitude as the uncertainties in the flow parameters.
Further, the largest departures in the f(a) occur for
large a, consistent with the relatively large influence of
noise on the most sparsely populated (that is, large a) re-
gions of the attractor. Apropos of this somewhat unsa-
tisfactory state of affairs, we reiterate that we exercised
enormous care in the experiments, and believe that the
residual problems of fine control cannot be eliminated
without our resorting to unconventional ways of generat-
ing such flows; some thoughts on this are currently being
investigated.
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