“On the Hopf blfurcatxon and Landau-Stuart constants assocxated w1th vortex
y sheddmg behmd cxrcular cylmders |

"'K.R; SreeniVaS’;in, P.J. St’fyko'wski &DIJ. Olingér
"¢ ‘Mason Laboratory, Yale University, New Haven, CT.06520 ... ..

We show by means of transient experiments that the bifurcation .accompanying
vortex ‘shedding’ behind circular cylinders is of the Hopf type, and that the Landau-
Stuart equation describes the immediate post-critical behaviour quite well. We
determine the Landau-Stuart constants, several of which are shown to be
independent of the measurement position in the wake as well as the flow Reynolds
number. We examine the sense in which absolute instability is relevant to the
vortex 'shedding' problem, and argue that the wake dynamics in the neighbourhood
of the critical Reynolds number is best described in terms of the spatial instability in
the subcritical regime and of a global temporal instability in the supercritical
regime. o
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1. Introduction
One of the thrusts of research in the last few years has been the search for umversal'
routes accompanymg the evolution of a system to a complex state, and the exploration of

whether the ensuing complexny can be modelled by low-dimensional equations or maps. In the

~context of fluid flows, this approach has had remarkable success in highly confined flows,.the - ..

best example béing the Raylelgh Bénard convecdon in small aspect rat1o cells Two selected

. .,but representauve references are lechaber & Maurex (1981) and Jensen et'al: (1985) It is

: not a przon clear whcther this feature extends to the more general class of unconﬁned ﬂows

~ This questlon has been addressed by us in the context of wakes, and some results have been L

ot

g ‘~:.~_'reported m Sreemvasan (1985) Ohnger & Sreenwasan (1988a b), and Chhabra

4'.‘""- - ¢ —~' .»-

":Sreemvasan (1989) 'I‘lus wOrk takes a step back from our-earliér work and concentrates on T

the phenomenon of vortex sheddlng in the neighbourhood of the ‘critical’ Reynolds number.

It is well known that the flow behind circular cylinders is steady up to a certain critical
‘ Reynolds number Beyond the CI’lthB.l value the flow develops 1nto 2 pCI‘lOdlC state ‘
corres pondxng to the formatlon behmd the cylmder of two rows of staovered vortices of>
opposite sign — the so-called Kdrmén vortex 'street™*. Two specific points addressed here are
the following. l’irst, we establish by experiment the precise nature of the bifurcation occurrinz
at the critical Reynolds number; we shall show that the bifurcation is strictly of the Hopf type.
Landau (see, for example, Landau & Lifshitz 1959, pl03, Stuart 1958, 1960) proposed a
simple model equation to describe the post-critical state of a system undergoing supercritical
bifurcation of the Hopf type. Our second purpose here is to make measurements specifically
designed to answer the question of how well the Landau-Stuart equation describes the wake
dynamics in the it:nmediate post-critical state, and to determine the relevant Landau-Stuart

constants.

¥ No specific physical process is implied by the use of the word 'shedding’ which, for convenience, will be
used subsequently without quotes.

**The downstream distance up to which this 'street’ survives behind the cylinder depands on the Reynolds
number (Cimbala, Nagib & Roshko 1983). -
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On the basis of the results to be described here and in the companion paper (Strykowski
& Sreenivasan 1988 — to be referred to as Il below), as well as the previous work mentioned
above,‘it appears that the wake 'dynamics at low Reynolds numbers can be described rather
precisely by low- dimensional temporal models. Particular reference must be made to the fact
. 'that the dynamics of the wake behind an oscillating .cylinder at the so-called 'critical ‘golden-

"“mean point' can be described to a large medéure by the one-dimensional sine. circle map:

= (Ohnger & Sreemvasan 1988a,b Chhabra et al 1989) It is. not entlrely clear why thIS shourd‘

be s0, glven that there exists no deductive proof that such extrernely s1mp1e maps are rational . .

'apprommatlons to the Nawer—Stokes equations. The work to be descnbed here,. namely that -

- '-:";.'essentlally temporal equatlon.s- (§§4 6) glves some quahtatwe explananon for the success of R

such efforts. It has also been suggested (Huerre 1985, Sreenivasan & Ramshankar 1986) that
an a priori condition for éxpecting some such scenario to hold is that the nature of the flow
instability- must be of the absolute type. ‘The t}}ird objective of this work is to determine _tvhe ,
sense in which the present measurements support the notion that the vortex Shedaing ereces'.é |
in wakes is governed by absolute instability.

While the supercritical dynamics is governed by temporal characteristics, it appears that
the subcritical dynamics is of the spatial type. A fourth purpose of this paper is to consolidate
these views in some unified way. For this, the material in IT forms a useful complement.

In §2, we briefly describe Hopf bifurcation and discuss the nature of measurements
required to quantify it; although no direct inferences on Hopf bifurcation will be made until §5.6,
its introduction in the t_;eginning motivates the measurements reported in §4. The experimental
set-up and instrumentation are described in §3. Section 5 describes the determination of the
Landau constants. It has Lbeen known for a while that vortex shedding is accempanied by large
amplitude pure-frequency oscillation; this was demonstrated perhaps most directly by

Sreenivasan (1985) one of whose figures, reproduced here as figure 1, shows the sharpness of

the spikes as well as their relative strength compared to the background. It has been

"."'1_"the local dynamlcs of the f[ow above the crmcal Reynolds number czm be descnbed by

‘sugéested (Koch 1985, Huerre ‘& Moiikéwitz 1985, Monkewitz & Nguven ‘1986, Strkowski =~

-
2
-



1986, Hannemann & Oertel 1988, Sreenivasan, Raghu & Kyle 1989) that such pure frequency
'oscﬂlanons are charactersitic of absolute instability. We address in §6 thc qucsnon of the
relevance of absolute 1nstab1hty to the wake problem in the supercrmcal rcglmc and close
with §7 summarizing the chief conclusions.

Thlswork has‘ !carlic;r,boen, prgson_tcd by one of us (KRS) at an invited talk in the 1986»

. "mtcmauonal meetmg on Phasc Space Dynarmcs organised at the Umversny of Maryand and

TR wmtcn up m a prehrmnary versmn 1n Sreemvasan Strykowskl & Olmger (1987) Smce .

".completmo part Of thrs WOfk in Sprmg Of 1985 and most oflt by spnng of 1986 we have come '.‘ R

L 1987) whose contents overlap srgmﬁcantly wrth those reported here However, on: matters of‘

h":':"‘!emsmmcntatlon emphaszs and tifies: Be mqurry, ﬂns WOrk i dlfferent and detarled etrough that:';'f'fl‘;”-" kS

an mdcpcndcnt publication appcared appropriate; it also seemed desirable to provide a
reinforcement where there was an overlap with previous work, and point out differences where
they surfaced. A dctaﬂed companson with this prcv1ous work is glven in §5 7 The thesrs of
V'Stl'kaWSkl (1986) to whrch Provansal et al (1987) make rcference is in fact surnmarxzed m‘ |

this paper and in II.

2. Hopf bifurcation

We consider a disturbance superimposed on the steady basic state of a system. We first
ignore all aspects of spatial dependence and consider only the temporal development of the
disturbance; we shall review in §§5 and 6 the sense in which this is appropriate to the wake.
We consider the case where the disturbance grows to reach a saturation amplitude when the
basic system becomes unstable. The phase representation of this latter state is a limit cycle.

Let u; and u; be tho real and imaginary parts of the perturbation velocity imposed on the
steady state wake. If we plot the evolution of u; and up against the Reynolds number Re, all
perturbations below the critical Reynolds number Re,, wind down to zero. If the bifurcation is
of the Hopf type, small perturbations grow exponentially with time above Re,,, and eventually
asymptote to a finite amplitude vy ~ (Re — Rep) /2, Here, ugq s the saturation, value of the.
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disturbance amplitude u, = (u2 + y;2)1/2, The situation is illustrated in figure 2a. Further,

writing in the linear stage
(u'] = [A] [u], (2.1)

‘with- the dash’ dcnotlng the time denvanve, we rcqulrc for Hopf blfurcation that thc -

exgcnvalues of the matnx A(Re) be complex conJugatcs 7»1 + (\/-—-1)7&1, say, and resxdc in thc

o7 et ha]f of the complex planc for Re < Recr, a:nd cross the i mmgmary axis at Re:cr the specd at

g ‘~‘_~
P

which the eigenvalues cross the 1magmary axis, d?k,/dRe must be positive and fimtc (ﬁgure

2b) More dctalls can be found e.g., in- Guckcnhcxmcr & Holmes (1983 plSO)

o Our objccuvc LQ to qua,nufy:‘by mcas}_"
".'eventu.ail}'l, léad to vortex sheddmg ThlS caﬁ bc done in prmmplc by 1mposmg a small
disturbance on the steady state of the wake at different Reynolds numbers in the vicinity of
the qritical value, and determining the matrix A from the exponc.ntial stage of the disturbance
- growth. But in experiments at Reynolds numbers above the critical value, such steady states
are inaccessible except through transient experiments in which the flow at any desired
Reynolds number is created suddenly from rest. The flow then evolves through a
'quasi-steady’ state (as in the numerical simulations of Hannemann 1987 and Hannemann &
Oertel 1988) which can then be considered to have been perturbed by the background
disturbances present in the flow facility. The perturbation does not grow if the flow is
subcritical, and the only observable asymptotic state is the steady one. If, on thé other hand,

the flow is supercritical, the background fluctuations grow, and a new state ensues. The linear

as well as the nonlinear stages of evolution to this new state concerns us here.

3. Experimental facilities and instrumentation
3.1 Wind Tunnels
Measurements were made in pressure driven wind tunnels, supplied with comﬂpressed
dry air from two large storage tanks (combined storage volume of appro‘nmately 18 m3 ara

' storave prcssure of 8(103 N/m? ) Onc of the tunnels was a carcfulI/ deswmd low turbulence '
5
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_ 3.2 The cylinders
Well polished drill rods were fitted with end plates to allow variation in aspect ratio andv

to provide better end coﬁditions; the plates were designed following Stansby (1974). Detailed

measurements ., were made at aspect ratios, L/D, of 60, 27 and 14. A summary of the relevant

'diamete;s,"’aspeet and blockage ratios is given in table 1. -
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3.3 Instnimentaﬁoh L

Some of the results to follow ‘were obtamed w1th DANTEC constant temperature

‘.hot w1re anemometers type 55M01 usmg Sum w1res etched 0 a Workmg length of

‘ o)

; . . . . AR
v':r-A-.v.", . .......‘,_. 0 K3 e d ws - . .,,,5‘ sl

e approxnnately 0. 8mm o‘verheat ratms of 175 were used The resultmg data were BC offset T

and filtered with a DANTEC signal conditioner, model 55D26, and amplified to optirnize the
12-bit resolufion (x5 Volts) of the MASSCOMP MC-5000 series computer. All data
, processmg was done on ths machme Durmc the mmal stages of the work, it was felt that the
‘hot-wxre probe, when placed w1thm a few d1ame+e*s of the’ cylmder might be intruding with
some details of flow development (see Kovasznay 1949, Mair & Maull 1971, and II). Thus, all
hot-wire measurements were made cutside of this sensitive region. Within this region,
velocity measurements were made with a TSI laser Doppler velocimeter (LDV) in the forward
scatter mode. In instances where both LDV and hot-wire were deemed reliable, both were
- used under identical circumstances as a check on each other.

Mean velocity was obtained using a Pitot-tube and an MKS-Baratron unit with a 10 Torr

differential pressure head. -

4. Principal experimental results
4.1 Temporal growth rates
Let us first concentrate on the growth rates of the disturbances at some supercritical
Reynolds number. The experiments needed to determine these growth rates must consist of
abruptly setting the flow at the desired -Revnolds number;-and observing how-the oscillations- -
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grow in time. If the disturbance (at any g1ven posmon) amphﬁes exponentlally as one expects

to be the case 1mt1a11y, one can obtain the growth rate a, from

- u, ~ exp(at). 4.1)

If ‘the growth rates are the same everywhere m a ﬁnlte reglon of the ﬂow the perturbatxonh |

L grows temporally everywhere in that reglon

i P \"\na
R T O
ST e

s 'f_mgnxﬁcant dlfferences, many expenmen,ts were made wuhout hnearizmg.~ To obvxatef ST

’I'he gIobe valve menuoned m §3 1 2 Wis opened suddcnly, and the streammse velomty R

- signal at the- chosen location w1th1n the wake was d1g1ta11y recorded ¢either by the hot “wire or

: LDV Lmeanzatlon of hot—w1re sxgnals was done in some- cases but smce thlS d1d not produce

ey

'unnecessary changes in the mass flow rate and to 1mprove the effectlve t1me constant for the

rise time of the mean velocity, the flow rate was increased from a value slightly below Re,,

(where only background fluctuations were present) to the desired supercritical Reynolds

~number at which the oscillations selected by the flow begin to grow from the background.

A typical mean velocity change as well as an oscillogram of velocity fluctuations are
given in figure 3. The accompanying flow Reynolds number variation in the top trace is frorn 43
to 49, occurring in a time scale of the order of 200 msec.. The bottom trace (b) shows the
manner in which the oscillations in the streamwise velocity, measured at x/D = 10, y/D =1,
grow with time. The signal in figure 3(a) was low pass filtered below 30 Hz so as to reflect
only the mean velocity variations, while the trace in figure 3(b) was high pass filtered above
30 Hz to remove the mean velocity variation. The vortex shedding frequency was about 48 Hz,
so that this high pass filtering did not introduce too much phase or frequency modifications in
the oscillations. The mean and fluctuation responses in figure 3 were recorded simultaneously,
but by two different hot-wires arranged in a non-intrusive way: The one used to obtain the
mean flow response was placed slightly upstream of the cylinder, and so a time shift due to
convection, of approximately 40 msec., must be made before comparing figures 3(a) and 3(b).

The oscillations commence only after the Reynolds number attains the supercrmcal value

'hence it is clear that the charactenstlcs of the osc'llauons corresnond unambmuously to tlus

3




supercritical state. This behaviour was observed even at those supercritical Reynolds
numbers for which the charactensuc growth time of the oscﬂlatlons was comparable or smaller
lthan the rise t1me of the mean velocity. Presumably, oscillations do not amplify at the
intermediate supercritical states because the instability associated with such tarnsient states
_does not have. time to develop.

“The amphtude of the envelope in ﬁgure 3(b) can now be processed to obtam the growth'

_"-:,rates The logarlthm of the amplxtude envelope (figure 4a) plorted agamst nme 1n ﬁlgure 4(b). ey

i shows a l1near reglon whose slope glves the constant ar ln 4.1) at the Reynolds number.

vcorrespondmg to the upper plateau in ﬁgure 3a. B o

el Sur DT o PRI lv*.l.

dlameters the growth rate measurements become more and more uncertain; some of the
anomalies observed are not understood, and will not be discussed here.

All the growth rate measurernents ‘were made in the shear layer reglon of the wake (that
"‘1s the reg10n in Wthh only one frequency is anparent in the hot-wire or LDV s10nals) If one
moves closer to the cylinder axis, the influence of the opposite row of vortices will be felt, and
the observed frequency will acquire a dominant harmonic component. In such cases, the
exponential growth rates can be fitted for each of the frequencies separately. We have done
this, and especially examined the growth rates on the centerline. However, further
consideration of this feature is best relegated until after the basic facts have been established

(see §5.4).

4.2 Decay rates
While the measurement of growth rates is a relatively straightforward, the same cannot
be said of decay rates. In determining growth rates, we set the flow instantly (in principle) to
the required supercritical Reynolds number starting from some subcritical state. Since the

latter does not possess any preferentially periodic oscillations, the flow is fres to choose the

".LDV measurements made at,5,d1ameters downstream of 'the cylmder':show exactly the e

'.same feafures It should be ridted that as ‘orie gets closer o :the cylmder than say, 2 5 b

frequency and amplitudes appropriate to-the supercritical Reynolds number. In contrast,'decay - -

9



& two, oseillancms wete set-

Y

measurements require the examination of the wake response in the subcritical state, where

periodic oscillations can be established only by means of some exrernal forcing. The eorrec,t_ _

procedure would therefore be to establish (by some external means) flow oscillations at the

right frequency appropriate to the desired subcritical Reynolds number, and switch off the

- . forcing to quantify the ensuing decay of the oscillations. One does not a priori know what this

“right forcmg frequency should be (or, for that matter, whether such a frequency ex1sts) and

how the decay rates depend on thls frequency, pan of the work reporred m this- subsecnon',- S

CODCCI’HS thCSﬁ qUCSthIlS

Flow osc1llat10ns in the subcntlcal states were set up in three different ways. In the first

stationary cylinder. The source of excitation was then switched off abruptly, and the decay of

flow oscillations in the wake was recorded. In the third method (c), a steady flow was set up

at a slightly supercritical Reynolds number Re* so that full-fledged oscillations occurred

naturally. The flow was suddenly slowed down to the desired subcritical Reynolds number
Re™ below Re;, and the ensuing decay rates of the oscillations was measured. These decay
rates were then taken to correspond to the Reynolds number Re—. Clearly, this is a
reasonable procedure if Re* is close to Re™ (or, we are in the very close vicinity of Re. ). For
(Ret —Re™) not small, in so far as the initial oscillations are at a frequency characteristic of
Ret and not of Re™, the results can only be considered approximate. However, there is an
important reason for these measurements to which we shall return in §5.3; we shall also have
occasion to refer to these measurements in §5.2. The primary point to be made here is that the
decay rates of wake oscillations were observed to be exponential in all these cases (see
figure 5 for an example), and the coefficient a, in equation (4.1) was obtained as for the growth
case — the difference, of course, being that a, is negative during decay.

We tried several excitation frequencies in methods (a) and (b). Our first choice was the

frequency which showed the largest spatial growth in the steady basic state below Re;,; from

-« 'the work of Nishioka & Sato (1978), we know that forcing at this special fréquency (f’D/U‘O =

10

"t the desu'ed suantlcal Reynolds number by exther_: (a)

".""mechamcally oscnliatmg the cyhnder or (b) acoustlcally eXCmng ﬂow oscﬂlanons behmd the :



0.1) can indeed set up vortex shedding below Re ;. (See also Taneda 1963, and Berger 1964.)
Oscﬂlauons could be set up at other frequenmes also, but at these other frequencies the
amount of external excitation required to produce sxzeable ﬂow oscﬂlauons is Iaroer We have
used as an example the frequency corresponding to a backward extrapolation of Roshko's

..(1954) relation . .
£DHv=0212Re-45 - (42)

& being the vortex snedding freciuency.' 1In this case too, the decay. rates,follo_wing_the.re,rnovél,i N

- -.of the.cylinder. eXcitation were exponential-as 'before T TR

.' »_-‘-, 7\"".-

7‘:';,Intexest1ngly, we could not exclte oscﬂlanons m the wake (say, m the reglon x/D > 7)

when the Reynolds number was below about 25 ‘even thh strong external excuanon e

Nishioka & Sato (1978) remarked similarly, but thier work puts this number around a slightly
different value of 26. We believe that this limiting Reynolds number, which must be calculable
. by energy methods of the sort. dlscussed in Ioseph (1976), forms ‘another. cntlcal value below
which perturbauons no matter how larce cannot be sustamed in the wake. A related remark
will be made in §6.2.

The measured growth and decay rates are collected in figure 6. Only one set of growth
rate data has been plotted, but other sets obtained at different x/D (by LDV as well as
hot-wires) were no different (see inset to figure 6), except that the measurement uncertainty
was larger at downstream distances, both because of the smaller amplitudes and somewhat
higher three-dimensional effects there. It is clear that the exponent a, varies linearly with the
Reynolds number in a certain nontrivial neighborhood of Re,, which, by definition, is the
Reynolds number at which a, = 0.

The main conclusion from figure 6 is that
Re., =46 (4.3a)
and that there exists a certain non-trivial neighborhood of Re.; in which the growth and decay

11



rates behave according to
' d(a,D2/Vv)/dRe = 0.2. | 7 (4.3b)

(The reason fnr normalizing the growth and decay rate data in figure 6 by the viscous time
sca.le D2/v 1nstead of the convectwe nme scale D/Uo is s1mply that arDZ/v 1s usua.lly of thel_k

‘ order umty whlle arD/UO, wh1ch 1s smaller by the factor of the Reynolds number gwes

‘ numencal values on the order 0. Ol ) As already mennoned the resulrs {4 3a) and (4 3b) are: b

- zndependent of the ‘medasurement Iocatzon Another 1mportant po1nts 1s that the decay rates

are 1ndependent of the excxtanon frequency ThlS may not be completely ev1dent frorn the

, ‘f',scatter m figme 6 but least s,quare ﬁr.s: to severa.l ,sets of decay daxa (obtamed at the two‘:';»;-"< Uk

excitation frequenc1es already ment1oned as well as by the two dlfferent methods of
excitation) agreed with (4.3b) to within about 8%.

The growth and decay rates vary with the aspect ratio of the cylinder. Detailed growth
rate ‘measurements were made for nspect ratios of 60, 27 and 14 (fignre 7), but the
corresponding decay rate measurements were less detailed except for the aspect ratio of 60.
Obviously, the critical Reynolds number corresponding to zero growth rate is seen to be a
function of the aspect ratio, as has been pointed out, for example, by Nishioka & Sao (1974).
For the aspect ratios mentioned above, the critical Reynolds numbers were respectively 46, 50
and 53, in reasonable agreement with the data of lehloka & Sato. We satisfied ourselves
that the critical Reynolds number for the aspect ratio of 200 was also 46 in the present
facilities, and therefore concluded that the results for the aspect ratio of 60 represent the
essentials of the phen’dmen—d for an infinitely long cylinder. Time-dependent numerical
simulations by Strykowski (briefly described in II, but yet unpublished in detail) of
two-dimensional Navier-Stokes equations verify the t'empornl exponential growth™ of

fluctuations in the supercritical regime, and indicate preliminary values of Re., = 41 and

Since the background noise in numerical calculations is much smaller than in experiments, the exponential

growthcan be observed over several decades of amplitude growth.

12
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d(a DZ/V)/dRe = 0.24. Numerical stability calculanons by Jackson (1987) of two-dimensional
ergenfuncuons predict a critical Reynolds number of 46.2 for the two- drmenswnal cm:ular
cylinder.

Oscillations grow rather slowly in very close‘ positive vicinity of Re; it is exciting to
- watch sustained. oscillations_appear just above Re,,, say Reg, + 0.1: The growth rates_there . .

'are so small that saturatlon amphtudes are reached only for long times of the order of a mlnute '

‘ i"-;vcorrespondmg to aboug_ 104 eonvecuve t1me scales D/UO Many flow fa,crhtres do not have test':_.-;;.

.secuons that are 104 cylmder dlameters long, and it is therefore clear that the appearanee of .

_sustamed pure-frequency oscrllanons at these Reynolds numbers cannot be related o any

' ; 'spanal development rn the flow In; a few cases we observed the: growth phase extending - ..

gty ot
R ", .=.,. AR - “ - P \.-v’

. """fOrover one. rmnute followed by an’ nnmechate decay over a comparable penod of tinie,” ¥+

apparently because the Reynolds number had inadvertently fallen frorn just above to just

below Re,;.

4.3 The saturation amplitude

After the initial growth period, the amplitude saturates to a final value (see for exarnple
figure 3b). This final amplitude can be measured as a function of tie flow Reynolds number.
For data obtained at a fixed location in the wake, figure 8 shows that the square of this
amplitude is a linear function of Re. Again, the intercept on the Reynolds number axis gives us
another estimate of the critical Reynolds number; not surprisingly, this estimate agrees well
with (4.3a). Since the saturation amplitude at fixed Reynolds number is different at different
spatial positions (see, for example, Kovasznay 1949), the precise slope of the straight line in
figure § varies withv the spatial position in the wake. However, the linear relationship between
the saturation amplitude and the Reynolds number was found to be true (to within

measurement-accuracy) at all positions in the wake where measurements were made.

5 The periodic (vortex shedding) state and the Landau equation
5:1 Two elementary features:
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It will now be shown that the results of the previous section are consistent with the
dictates of the Landau, or Lgndaufstuart, equation, whose further consequences ‘“:/c de.d'i;ccl
'and examine for éonsistcncy with measurements. The equation is meant to model some
universal features of an unstable system in some finite (but small) vicinity of the critical
Reynolds number, -and has the form -

| cdudi=au-elwllu . L)

e Tt DR S 4 LR
. L. A N .

e s et .- T N T
. . . . . .

.~

- where u is the (complex) vclocxty ﬂuctuanon and a and c are both (m general) complex

.. ‘constants. Wntmg u= uo cxp[lq)(t)] we have

governing the real part,.and |
’ oL dddr=a-gu? e (83)

governing the imaginary part; the subscripts r and i indicate real and imaginary parts
respectively. Equation (5.1) can be solved exactly (see Landau & Lifshitz 1959, p. 103), but
our purposes are served adequately by noting the following features. Focusing first on (5.2), it
is clear that all stable states correspond to a, < 0 and ¢;> 0. The second term on the right side
is negligible in the linear regime and, as the basic state becomes unstable at Re.,, the
constant a, will éhange sign from negative to positive: The disturbance will grow in the usual
exponential manner at the rate a.. As the amplitude increases, nonlinear effects lead to an

amplitude saturation given by the condition du/dt = 0 in (5.2), or
ugs = (a,/ c)172. (5.4)

Following Landau, we may use Taylor's series and write a,in the neighbourhood of Re,,

as:
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ay(Re) = a;(Re.p) +da/dRe (Re —Re ) +... (5.5)
Since a;(Re¢;) =0 by definition, we have’
a(Re) = da/dRe (Re — Re, ). (5.6)

: That is, the growth (or decay) rates are a linear function of the Reynolds number in the vicinity

“of Rﬁcr": as obscrved m the expenments (sce ﬁgure 6 and equauon (4 3b)) Thc fact that L

' .da /dRe is an absolute constant (cqual to 0. 2V/D2) mdependent of the spanal posznon ana' R

Reynolds number is one of thc 1mportant ﬁndmgs of thlS paper Combmmg (5 6) with (5 4) We' S

obtmn the exprcssxon :

ug? =(lf) dafdRe Re—Reg). (7))

In general, c; can also be expected to be a function of the Reynolds number, and a Taylor
~ series expansion can be made in the vicinity of Re¢;. Equation (5.7) then yields

da/dRe (Re — Re)? dc/dRe
Ugs? = (1/cyp) da/dRe (Re — Reg,) — (5.8)

Crof + de/dRe(Re — Rep)cpg

where ¢ = c(Regp). If
Cro >> dc/dRe (Re — Rep), (5.9)

the first term on the right hand side of (5.8) is an adequate representation of u,g2in the

supercritical regime, and we have
s = (1/erg)1/2 (da/dRe)!2 (Re— Ree)2. (5.10)

This states that the saturation amplitude increases as the half power of the difference
Reynolds number (Re — Re,,). Note that, unless dc,/dRe is indeed small, the condition (5.9)

~will not be valid except in the immediate vicinity of Re.,, but we saw in §4.3 that (5.10) is
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valid over a finite range of (Re — Re), implying that dc;/dRe is indeed negligible. Expressions
. (5.6) and (5.7) suggesf that the constants dar/dRe and- Cro can fbe d_étcfrnined if the growm
rates a, and the saturation amplitudes u,g can be measured as a function of Re in the vicinity
of Re;. This is preciscly‘;vhat we did in §4. Note that da;/dRe is independent of the spatial
- position in-the wake, but ¢4 must be position- depcndent because thé saturation amphtude is

' so. One can obtam a quahtatlvc apprecxatlon for the magrumde vanauons of cro by perusmcr

: :-_the saturanon amphsude mcasurements of - Kovasznay (1949) and lehloka &"Satv’ (1978)

. We shall remark on some. represcntauvc values.in §5.5.

To determmc thc constants al and cl, ‘we tum to the 1mag1hary part of (5 1) Notmg that' -

" dé/dt = 2xf, where fis thc oscillation frequcncy in the dlsturbed state we may write (5 3) as
27if = a; — ¢; Uy 2. ' (5.11)

If this is valid for the present problem, the following situation must occur; for convenience, we
first concentrate on the supercritical regime postpone a discussion of the subcritical state until
the next subsection. The oscillation frequency must equal a;/27 at the onset, and increase
quadratically with the amplitude; the frequency shift depends on the second term involving c;
and denotes a nonlinear effect; if ¢; = 6, the frequency selection in the supercritical wake is
completely governed by the linear theory. The experimentally determined relation between the
oscillation frequency and amplitude (figure 9) appears to validate this quadratic relation, and
suggest that the linear theory becomes increasingly incapable predicting the frequency
selection as the Reynolds number departs from the critical value. Below, we examine both the
onset value of the oscillation frequency and its nonlinear variation.

The intercept in figure 9 gives the constant a; appropriate to the measurement Reynolds

number; this, of course, is the onset frequency f,,, and can be written as

£,D2v = aD2/(2av) =a;,D2/(2nv) + (1/27) [d(;DY/v)/dRe] (Re — Rey;) (5.12)
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where aj, = aj(Re,). The onset frequency obtained at various Reynolds numbers from figures
such as 9 may now be plotted as in figure 10 to give 3, (the intercept) as well as da;/dRe (the
slope). An approximate fit to the data of figure 10 is

(12n)a;D2/v = £, D2}y = 5.46 +O0.IT(Re=Rey). " ~(5.13)
- As the amphtude sgtpya{&#é ;tQ.' '(5'.10),' ‘diefljeqnene.y_ shi‘fts'gn_d_asxmptdtes .i.b'«a__valne; fg given

£D2v = amD2/27cv + (1/27:) [d(alDzlv)/dRe - (cm/cm) d(arD2/v)/ dRe] (Re - Recr) —
o ( 1/27rcm) d(arD2/VJ/dRe_(Rc - Recr)2 dg; /dRe s (5 14)

R
\".l‘.’ .

- ,k,-,.1~_.....-'-v»..<-., e ~.~.-.~~'-t..',~--.~ -‘\.-'.'4.-,",-" ‘-.' AN

.'—

where c1 has been expanded in tenns of (Re Recr) and c:lo = cl(Rec,) The last tenn in (5 14) |
depends quadrancally on the dlfference Reynolds number and can be neglected on the basm of ‘
the well-known empirical finding (equation (4.2)) that the frequency f in the saturation state

varies linedrly with (Re - Rec‘rﬂ).; The »'cqn'd.i-.tion.fdr th‘is,_ 'an_eldgqus_ to (5.A9),‘ ivs' that o
Cip >> dcy/dRe (Re — Re,)). (5.15)
Dropping the nonlinear term in (5.13) we write
£D2/v = aioDz[thv + (1/2n)[d(aiD2/v5/dRe — (Cjo/Cro)d(a,D2/v)/dRe](Re — Rep). (5.16)
Experimentally, we find that
| stZ/v '-- 5.46 + O.il (Re —Re,p). | (5.17)

for the aspect ratio 60 (figure 11) and beyond. Figure 11 shows data at two other two aspect
ratios also, which will be useful in §5.4. The shift in frequency, Af = f; - £, is given by the

difference between (5.17) and (5.13) to be

AD?v =0lRe~Re). . . (5.18a) .
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As seen from mdepcndcnt measurements glvcn in thc inset to ﬁgure 11, the fit (5 18a)
describes the frequcncy increment quite well. The exact combination of constants respons1ble

for the frequency shift becomes transparent when we write, from (5.12) and (5.17), that
AFD2Y = —[c;o/(21c,y) d(‘ar'b2/v')/dRe]"(R§;’Recr)";" O Gasyy

.-V-.,-‘_In ,summary, comparmg (5 13) w1th (5 12) and (5 17) w1th (5 16) wc obtam the followmg_‘- .
| ) '.thrcc further results '

“and g (clolcro)~'—-31 R (5.19¢)

We emphasize that all these results are ‘independent of the spatial position in the wake.
Finally, if we can estimate c¢;,(x) from saturation amplitude measurements (see equation
(5.10)), ¢jo(x) can be calculated from (5.18c). Equivalently, since the slope of the line in figure

9 is d(ﬂﬁ/v)/duo? = —¢;oD2/(21v), ¢;o(x) can be determined directly; (5.18c) then yields Cro(X).

5.3 Frequency éhanges during decay

The analogue of the onset frequency in the subcritical regime is the frequency observed in
the limit of zero amplitude, that is when the externally excited oscillations have decayed to
zero amplitude. Since one can in principle excite oscillations at any frequency in the subcritical
regime, frequency changes during decay can be positive or negative in general. The data
obtained by the method (c) mentioned in §4.2 show that the oscillation frequency decreases
during decay. Those obtained by exciting wake oscillations, mechanically or acoustically, at
the special value given by the backward extrapolation of the saturation frequcncyr (4.2),
confirmed that a frequency increase accompamed the decay. From such StUd.ICS we conclude

that the freauencv of oscxilmons alwavs ap roqches (5 13) durm" decay, fro*n bclow if it is
18
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initially lower and from above if it is initially higher; this leads to the view that the wake in its
subcrmcal state prefers to set up oscillations given by (5.13). Wc mcrely note here that (5.13)
corresponds to the backward extrapolatlon of the onset frequency in the supercntlcal regime,

and leave a more detailed interpretation to §5.7 and §7.

544 further sunphﬁcatlon o |
Accordmg to thc analysrs so far, the ﬁvc constants da /dRe am, daI/dRc, Cro- and cm. :
’ ) \spccrfy the evolutton of thc frequency and arnphtude of oscﬂlanons 1n thc pcrrodrc state It is

~ worth repeating that the first three constants, and the Tatio bctwcen the fourth and the ﬁfth _

' are mdependent of the SPatlaI posmon A sunple obscrvauon whtch follows frorn a companson" e

: H i Y
o'», .l). . -"-.& ey

e Tof growth TAtS and saturatlon frcquency data reduccs thc nurnber of constants by one We

" measuréd growth rates’as well as’ thc""s_aturauon"(that'i's_,"the‘v‘o'rtcx shedding) frequency at - -
four different aspect ratios, and found that the slopes d(a,DZ/v)/dRe and d(f,D2/v)/dRe are
nearly equal to each other even though the individual slopes' do vary with aspect ratio. (See,
for example, figure 11 for the latter quantity.) Although measurements at the smallnst aspect
ratio of 5 were not very clean because of several operational ctifﬁculties associated with small
aspect ratio cylinders — here, the reduction in the aspect ratio was achieved by bringing the
end plates closer — the conclusion regarding the slopes was borne out to within the

experimental accuracy (see table 2). The conclusion then is that
(1/2r) d(@;D%/Vv)/dRe = (c;o/2mC g + 1) d(a,D2/v)/dRe, (5.20)

which reduces the number of independent constants to four.

Returning now to the observation in §4.1 that the dominant frequency on the wake
centerline is twice that in the shear layer, we note that a simple consequence of the equality
between da;/dRe and dfy/dRe is that the centerline frequency must grow at twice the rate of
the vortex shedding frequency. This has been observed to be true both experimentally and in
the computation described in II. It has since also been confirmed by Hannemann & Oertel
©(1988) in the wake of a flat plate.
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55 Summmy of Landau Stuart constants |

For the large aspect ratio (L/D = 60 and above), we have

2D/ = 0.20 (Re — Regy) - (5.21a)
4DV =343 +07 ®Re-Ree) (521b)
. defdRe=deydRe=0 . (52lc)
e e o/c:~- O I ST 6210

These results are mdependent of the flow Reynolds number in the ne1ghbourhood of Re;

a and the space coordmate If the value of cro 1nferred from the saturanon arnphtude data of .

";ﬂgure 8 can be cons;deredrrepresentauve, we obtam - “ T o : e { ‘
‘"ékaZ/v’L%“O.OZ%,';and”'é{;Dz]V =20.06. e (522) T
5.6 Hopf bifurcation

Writing again u-as u,exp(io(t)), noting that u, = exp(a,t),-and, from (5.3) that dd/dt = a,

for linear amplitudes, we have:

The square matrix in the above equation gives A in equation (2.1). The eigenvalues of this
matrix are easily shown to be a, * (\/-1)ai, both known from measurement to be independent
of the spatial coordinate as well as the Reynolds number (in a finite neighbourhood of Re,,).
From this, we can now determine how the eigenvalues journey in the complex plane as the
Reynolds number increases from below Re, to above Re. This is done in figure 12. Clearly,
the eigenvalues cross the imaginary axis at Re.; (which by definition corresponds to a, = 0).
Also, the speed at which the real part of the eigenvalues crosses the imaginary axis is given

by da/dRe = 0.2v/D2.



5.7 Companson with prcvmus measurements o
As already noted, the present measurements overlap with those rcportcd by Mathis et
al. (1984), and its sequel by Provansal et al. (1987). Here, we highlight the similarities and
differences .between the ‘present measurements and these two sets of data... -
‘ Math1s et al were the first to study expenmentally the b1furcat10n characterlstlcs of the
R ;-'vortcx shcddmg Pracﬁss Thelr measuremcnts of thc normal vclocny componem werﬂ “made otr.: - ’
_'tilc wakc ccnterlmc at x/D 5 fora cyhnder of aspect rauo 60, and conccmcd exclaswcly the.

saturation state. ‘They cStablished the proportio'nality between the satura’tion amplitude and

"‘--f'Athe square root of th 3 ‘d1ffcrence Reynolds numbcr'on thc soné" hand,’ and a sumlar“f' o

.‘&-r,;-'_"- Cw

0
I

e propomonaln;y Betwedn tﬁc‘ saturatxon'.frequency 'a'nd ‘thé Reynolds - numbcr They. dlso
* -estimated “the critical Reynolds fumber to be’ 'SOi""P'rdvanéal et al. r"epdrt'ed'“mbr'c’"dé'ta'iled" o
measurements for cylinders of 'several aspect ratios. Of primary interest here are their
‘ transient measurements accompanying an impulse disturbance created by striking an elastic
.'dlaphracm upstream of the test section. By such measurements, Provansal et al. determined
the constant a;. and established the linear relationship between a, and Re (equation (5.20a))
for (Re — Re,,). It should be noted that the measurements of Mathis et al. and Provansal et al.
did not include any spatial variation of oscillations; this has been one of our concems. A
comparison of the various Landau constants from the two related studies is given in table 3.

It is clear that the agreement in the first three quantities is excellent, showing that the
streamwise and normal velocity fluctuations both develop similarly. In particular, the
constancy of the quantity d(a,D2/v)/dRe in both sets of data holds over a sizeable
neighbourhood of Re—Re.;. One difference is in the ratio ci/c,: It is nonzero in the present
experiments whereas Provansal et al. conclude that c; is essentially zero. (Perhaps
coincidentally, their c_is quite close to the value given in §5.5.) Noting that c; is related to the
nonlinear effect producing a frequency shift during the growth phase of the disturbance, the
present results, unlike those of Provansal et al., suggest a sizeable frequency shift; this has

- already ‘been discussed in §5:2. That there'is such a frequéncy shift was'noted by Thomah & °°
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Szewczyk (1969); Hannemann (1987) and Hannemann & Oertel (1988) have also carefully
‘documented it in their numerical mveSUganon of the 1mpulsxvely started flow past a flat plate.
We beheve that the reason why Provansal et al. did not detect substanual shift is that their
experiments involved an increase in Reynolds number from one supercritical value to another
~in close v1c1mty, and not from the subcrmcal to the supercrmcal as. in our experiments.
But one could look at the problem in another way. As already remarked, we found that
S .',‘the preferred ,frequency in. the subcnucal regune hes on:a. backward extrapolatlon of the onset., RS

frequency curve Smce the asymptoueally preferred frequency in the supercntlcal reg1me 1s the‘
.saturauon frequency glven by 6. 17), 1t 1s clear that tlus unphes a d1scont1nu1ty in slopes of the »

i preferred frequenc1es as-we Cross- the cnucal Reynolds number A replot of the data of RN

T ':‘:""'.Provansal et al s ﬁgure 8 on thelr ﬁgure -1‘1- does.m‘fact}conﬁrn:x thxs drscontmulty '.[n pnvate‘
~correspondence. -approximately two years ago; Provansal and Boyer have kindly confirmed that--. -
the data of Mathis (1983) can be interpreted to givé a value for the ratio ¢i/c; of order unity, in

qualitative agreement with the present results.

6. Is the wake absolutely unstable ?
6.1 The background

We have thus shown that the onset of vortex shedding occurs strictly according to the
Hopf bifurcation. We have also shown that, ir: a certain non-trivial neighborhood of the critical
Reynolds number, the supercritical state is described by the Landau-Stuart equation (5.1).
One important finding of this work is that the spatial nature of the problem appears only in a
secondary role, namely in the dependence of the constants ¢. This may at first appear
surprising because intuition suggests that the problem must be spatial in character. The
Landau-Stuart equation in which only the constants ¢ are spatially dependent cannot in
principle be completely self-consistent, but apparently it represents a good approximation to
reality. Unlike most other familiar instabilities, such as in isothermal constant density jets and
boundary layers, the onset of the periodic state is strictly via a Hopf bifurcation.

*We recall from §1 the sucgestion that the wake instability giving-rise to vortex shedding
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u.;.févave 'packct has zero groUp velomty,';f

is of the absolute type. We recapitulate the concept of absolute instability briefly — for a more
‘detallcd dlscussmn see, for example Huerre & Monkewitz (1985) — and dCSCHbC
measurements which shed light on the sug estion. The concepts of absolutc‘and convective
instability develop quite riaturally from an analysis in which an impulse-type disturbance is
. introduced into an infinitely parallel shear flow (the basic state) and allowed to develop in both

space and tune If the shear ﬂow is unstablc it-will contain amphﬁed waves travclhng at their -

Do group velocuy, and the evoluuon of thcse amphﬁed wavepackcts dctenmnes the nature of thc;. -

s

ﬂow 1nstab1hty A convcctlvc mstabrhty rcsults 1f a wavepacket mtroduced at a spat;aI_’ o

y .___posmon Xo and tlme to has a posmvc group veloc1ty when amphﬁcd SO that it gcts convected

. de,vclopmcnt;-"thc nonlingarities of the system: prevent thp a_mphtudc_ of -the -dls;ugbach,;frqm
becomirig unbounded and a saturation amﬁlirudc 'is reached. In contrast to a conveciively
unstable ﬂow where the amphfxed d1sturbance has contnbutions from all wavenumbers
growing as the y convect, an absolutcly unstable flow is’ dommated by a pure frequency”'
instability. We already showed in §1 that the wake oscillations extremely sharp spectral
peaks. Prompted primarily by this observation, we have studied the vortex shedding process
in the context of the absolute stability characteristics discussed above in qualitative terms.
Related information can be found in II.

An absolutely unstable flow is insensitive to the amplitude of the initial disturbance
since this amplitude will only determine how long it takes for the disturbance to grow but will
not affect the rate at which it grows or the saturation amplitude that is eventually reached.
But, an absolutely unstable flow will show sensitivity to small configurational changes since it
is dominated by a local instability. Hence an external device which locally alters the basic
state (mean velocity profile) may profoundly affect the nature of instability. In contast, a
convectively unstable flow will be sensitive to initial disturbance amplitude; the disturbance
growth being an integrated effect along the path of propagation of the disturbance, local

~alterations-of the basic state will have little effect on the final state; In II, we have discussed.
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the dramatic effect that a simple scheme of altering the mean velocity profile has on wake
stability: The placement of a secdnd, much smaller, cylinder in an élppropxjiate pps_ition in the
Qake severely alters and even completely suppresses vortek shedding in a certain non-trivial
range of Reynolds numbers above the critical.

A systematic study of the insensitivity of vortex shedding to the initial disturbance level

A 'has not been attempted before Below we g1ve some results We chose to vary the mmal

}dzsturbance amplnude exther by varymg the external acousnc excnatlon or’ the freestream e

- turbulence level and stud1ed the effects on vortex sheddmg — in terms of tempozal growth .

_rates, saturation amplitudes and the critical Reynolds number..

~ 6.2 The i msensmwty of the saturaﬁon amphtude to excitition levels

“The vortex shedding W‘a;k"é:f"W'aS ,aeoi'lfstiéa‘lly‘ 'exéi'fed"'ﬁsin?g the” expéﬁhien'_tai' "sét_'ﬁp AP

shown in figure 13. The acoustic excitation produced by the 10 cm diameter speaker was
monitored by a Bruel & Kjaer (type 1613) acoustic pressure meter (type 4165 micxjoph_one)
| placed in the opposite test section wall. The excitation frequencies tlse:cl were mllcll lower than
those of possible standing wave modes in the wind tunnel test section. The frequency of
acoustic excitation was set at the natural shedding frequency for Re > Req; (= 43 for ihis
particular flow). Below Re, the vortex shedding was artificially excited at the frequency
producing the largest wake response for a given acoustic excitation level. This frequency has a
Strouhal number St = fD/U, = 0.1, coincident with the spatially most amplified frequency of
Nishioka & Sato (1978). A hot-wire placed at an x/D = 10 in the shear layer measured the
streamwise velocity component. As discussed previously, one would expect an absolutely
unstable flow to yield a saturation amplimde which is independent of the initial disturbance
amplitude. In figure 14, which shows the saturation amplitude vs acoustic excitation level, we
ses that this is indeed the case for Re > 43, the wake response being flat to excitation levels
up to 25 dB above background noise levels. In sharp contrast, the wake response for 27 < Re
< 40 shows an approximately linear response to acoustic excitation level. This suggests that
the flow-over a-circular eylinder ‘for Reynolds number below critical is' indeed convectively =
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unstable. It should be noted that it was extremely difficult to artificially excite vortex shedding
‘below Re = 25 suggesung that thc flow becomes completely stable at these low Reynolds

numbers (see also § 4.2).

. 6.3. The insensitiyity of temporal growth rates and the critical Reynolds number to the

' background noise level
Ca 'I'lus quesuon was stud1ed in the famhty descnbed in §3 1 l The cyhnder aspect rano. L L
’vyas.approxxmately 60 The freestream turbulence level was vaned (m the range O 03% to .
0.19%) by placmg addmonal screens approxunately 100 dlameters upstream of the sheddlng |
. ‘cyhnder Temporal growth rates ‘were. detenmned as. before at x/D =:10. F1gure 15 shows the

'...

S temporal gTOWth rates s Reynolds number for three dxfferentz freesneam turbulence=levels R
- “Within the experimental scatter-all the-data collapse onto.a s_mgle»,hne with slope-da;/dRe = -
| 0.2v/D2, thus bigblighting the insensitivity of temporal growth rates to freestream turbulence

levels Data from acousnc excitation produced the same result

| From the 0rowth rate data we have obtamed the crmcal Reynolds numbers at chfferent.
turbulence levels by determining where the least square fits to the growth rate data intersect
the abscissa (corresponding to the zero growth rate condition); see figure 16. We note the
insensitivity of critical Reynolds number as freestream turbulence level is varied, and contrast
this with the well known sensitivity of Re, in the flat plate boundary layer (e.g., Schubauer &
Skramstad 1947). Although we do not know of any specific analysis showing that the
boundary layer is convectively unstable from the spatio-temporal point of view, circumstantial

evidence seems to sug est that the instability there is of the convective type.

7. Summary
We have shown that the growth rates and the critical Reynolds number associated with
the vortex shedding process are robust against background noise level. These characteristics
are shared by absolutely unstable flows. The reason that we have been less than definitive in
identifying wake instability leading to vortex shedding with absolute instability is-that, as a
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concept, the latter is strictly applicable to linear perturbations of the impulse type growing in
space and time with zero group velocity in infinitely parallel flows (e.g'.' Briggs 1964)." None of
these criteria hold strictly in vthc present préblem, especially because the characteristic
wavelength of growing disturbances is not small compared to the extent of the flow domain
participating in the global instability..It has been shownin II that this region is of the order of 4
'dlamctcrs immediately behmd the cyhnder ‘where strcamwmc nonumformltles cannot be |
EE :1gn()red Yet, we bchch that the general notien of absolute mstabihty can have somc value m'.,':‘ SR
B dcscnbmg the progcess.’ Perhaps it is morc appropnate to think of the wake mstabﬂny as of thcf |
__global tcmporal type in 'which the instability mode extends in both tiansversc and, streamwise .

}.'.;f’dJrecnons we parncularly havc in mmd thc numcncal work of Jackson (1987): We havs shown

R .. e RO
»,",4-\‘.,.'”;- W RN \~ ; :‘~~ e 1 [N

P T Ay RN

'."'Ethat thc pcrturbamon dynarmés is- govemcd by the Landau Stuart equauon where all the '
~ ¢onstants a and the ratio ¢,/¢; are ,spaceflndependcnt in a cérfain nelghbourhood of the critical
Reynolds number.

- One of the interesting obser\)ations is that the onset frequency of the oscillations in the
supeféddcal regime is given by (5.13), and that it shifts during evolution to the value given by
(5.17). Further, all oscillation frequencies ink the subcritical regime asymptote to (5.13) as they
decay subsequent to the removal of the excitation source; the rate of decay is independent of
the oscillation frequency. To understand its significance of these observations, we plot in
figure 17 equations (5.13) and (5.17) and superimpose the data Nishioka & Sato (1978)
corresponding to the spatially most amplified mode in the subcritical regime; also plotted is
their saturation frequency data in the supercritical regime.There is good agreement in both the
subcritical and supercritical regimes. It is clear that the extrapolation of their subcritical data
to the supercritical regime is identical to the onset frequency given by (5.13). We assume that
the extrapolation of the Nishioka-Sato line in the supercritical regime retains the same
meaning, namely that it represents the spatially most amplified mode. It follows that in the
subcritical regime all oscillations tend to favour the spatially most amplified mode, consistent
with our earlier remark in §6 that there is a convective instability in the wake at Reynolds

‘numbers above about 25: Oscillations  in the ‘supercritical regime begin at the ‘spatially ‘most”
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amplified frequency but soon chancre over to the temporally most amplified value because the
latter is so overwhelmingly large the change m frequency is the essent1a1 mamfestanon of
nonlmeanty Below a Reynolds number of 25, the wake appears to be completely stable
The primary factor that sets wake instability apart from that in many other familiar fluid
-, flows, such as constant density isothermal jets -and boundary. layers, is. that a finite.region .
part1c1pates as a whole m the evolutlon process In th1s sense vortex sheddmg m wakes’
shares Some 1mportant charac{enstlcs of dynarmcal systems As alreadx remarked s.ox.ne;.
consequences of thlS feature have been explored in Sreemvasan (1985) Ohnger &

Sreemvasan (1988a b), and Chhabra et aI (1989), and ‘more work 1s in _progress. It 1sA

pertment to note that sn:mlar phenomenon occurs.m vanable densxty jets; '-(Kyle 1986,

Sreemvasan Raghu & Kyle 1989) and heated JCtS (Bechart Lehmann Barsﬂcov-:.
- Monkewitz- 1988)
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- Table1

menclature:

... Cylinder diameter.

.. Cylinder length between end plates.
... Height of:test section normal to
cylinder axis and freestream.

o

ool Lo Tyrbuletice Wind Tunngl - . 4 7+ -




Table 2

 AspectRatio d(E,DYv)/dRe . d@D2V)/dRe - . .

6 021 - 020
27 020 019

- Table3

quantity Provansal et al.  Present

Re., 47 46  (both for L/D = 00)
d(a,D2Z/v)/dRe 0.2 0.2 A
ajoDZ/(2nv) 5.7 (L/D =66)  5.46 (L/D = 60)
4.6 (L/D = 33)
Cio/Cro =0 =3
(see text)




Figure captions

4F.i'g. 1_..

Fig. 2.

. Fig. 4.,

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.,

Normalized power spectral densrty of the streamw1se velocrty component in the
wake (x/D =10, y/D = 1) at a Reynolds number of 48. Here, x is the streamw1se
distance measured from the cylinder axis, and y is the coordinate normal to it; D is
the cylinder diameter. The power P is plotted on loganthrmc scale to base 10. The
‘peak marked f; at about-590 Hz: corresponds-to-the vortex shedding frequency,-and -

~the subsequent strong peaks above the noise level-are- the harmonics of fy: The -
E stronvest peak is about seven orders of. magmtude above the noise level and all = .
- "':'-';‘Peaks are extremely shm‘p N S "L-.'.f‘:*-:" R

Hopf bflfur_cation: A schemaﬁc -
i :..“"t{:f;-:_Simu}tancons rccords o,f .' C;‘ mcan imd ﬂuc;tuagmg velom 'es., The ﬂow' Reynolds;

‘number; Re, was increased from 43 to 49. As will be determmed Tater, ‘the chitical
- Reynolds number; Regr, is 46 Trace (a) was low pass filtered below 30 Hz. and trace

(b) was high pass filtered above 30 Hz. The aspect ratio, L/D, of the cylinder was 60.

Trace (a) is the amplitude of the fluctuating velocity. The logzmthrn of the arnphtude ,

envelope is plotted in (b). The Reyrolds number is 49. The growth rate ap =4.5 -~
sec™1.

Fluctuating velocity response, measured during decay. The flow Reynolds number is
reduced from 50 to 44. Signal measured at x/D = 10 in the shear layer. Re,, = 46, L/D
= 60.

Growth and decay rates. Q, turbulence level = 0.09%. CU , decay rates for acoustically
excited oscillations; A , decay rates for oscillations excited by cylinder oscillations, St
= 0.1; { , same as in the previous case, oscillation frequency given by (4.2). The

inset shows growth rate measurements made at different streamwise positions at Re
= 60.

Amplification and decay rate measurements for an aspect ratio of 60; only

amplification rates have been measured for aspect ratios of 27 and 14. O, aspect ratio
60;7,27; 0,14,

The sqturnnon amohtude at x/D =5, y/D OS In the wake of the cvhnder

(OS]
[OP



Measurements using the LDV,

Fig. 9. Rclationship between frequency of oscillations and their amplitude. The upper curve
corresponds to decay at Re = 30 and the lower curve to amplification at Re = 62. The
intercept determines the onset frequency a;D2/2rv. L/D = 60.

Fig. 10. The dependence of the onset frequency aj/2n on the difference’ Rcynolds number Re—

- Reg,. These data were compxled frorn data similar to ﬁgure 9 for vanous Reynolds ,

numbers o R S

- Fig. 11. The variation of the saturation frequency with- Reynolds nurnber for three: d1fferent '
., aspect ratios. O, aspect ratio 60; Y, 27; 0, 14. -

HF ‘-.";."7As thc. Rcynolds number mcreascs from b::Iqw Rccrto abovc‘ Rccr, t}m COmpch.‘ ;
conjugate ewenvalucs of the ‘matrix A in (2 1) move from the lcft haH of thc plane to
* “the right at a'speed given by d(a,D2/v)/dRe ' . :

Fig. 13. Schematic of apparatus for the the acoustic excitation work; not to scale.

Fig. 14. Wake saturation amplitude vs external acoustic excitation. Both axes are in
logarithmic scales to base 10. Hot wire position x/D = 10, y/D = 1.0, Re = 27, O, Re
=30; A,Re=36;4%,Re=46; % ,Re=51; @ ,Re =61.

Fig. 15. Growth rates at different freestream turbulence levels. , turbulence level of 0.09%; ,

0.16%; , 0.19%. The continuous line corresponds to equations (4.3), and is a good
fit to data obtained at a turbulence level of 0.03%.

Fig. 16. Critical Reynolds numbers as a function of the freestream turbulence level

Fig. 17. Dimensionless onset and saturation frequencies as a function of the difference
Reynolds number. The onset frequency is given by (5.13) and shown dashed. The
continuous line is the saturation frequency given by (5.17). The symbols are data
from Nishioka & Sato. The subcritical data (9) for the spatially most amplified mode
are taken from their figure 8b. The supercritical data are for the saturation
oscillations, taken from their figure 10.
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Fig. 1. Normalized power spectral density of the streamwise velocity component in the

wake (x/D = 10, y/D = 1) at a Reynolds number of 48. Here, x is the streamwise
distance measured from the cylinder axis, and y is the coordinate normal to it: D is
the cylindzr diameter. The power P is plotted on logarithmic scale to base 10. The
peak marked f; at about 590 Hz. corresponds to the vortex shedding frequency, and
the subsequent strong peaks above the noise level are the harmonics of fj. The

strongest peak is about seven orders of magnitude above the noise level, and all
peaks are extremely sharp.
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Fig. 4. Trace (a) is the amplitude of the fluctuating velocity. The logarithm of the amplitude

envelope is plotted in (b). The Reynolds number is 49. The growth rate a; = 4.5
sec™l, |
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Fig. 5.

Fluctuating velocity response, measured during

reduced from 50 to 44. Signal measured at x/D
= 60.

decay. The flow Reynolds number is
= 10 in the shear layer, Re. =46, L/D
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Fig. 6.

Growth and decay rates. O, turbulence level = 0.09%. 1 , decay rates for acoustically
excited oscillations; A , decay rates for oscillations excited by cylinder oscillations, St
= 0.1; & , same as in the previous case, oscillation frequency given by (4.2). The

- inset shows growth rate .measurements made at different streamwise positons at Re -
= 60.
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Fig. 7. Amplification and decay rate measurements for an aspect ratio of 60; only
amplification rates have been measured for aspect ratios of 27 and 14. O, aspect ratio
60;7,27; 0,14,
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Fig. 8. The saturation amplitqdc at x/D = 5, y/D = 0.5 in the wake of the cylinder.
Measurements using the LDV.
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Fig. 9. Relationship between frequency of oscillations and their am

plitude. The upper curve
corresponds to decay at Re = 30 and the lower

curve to amplification at Re = 62. The
intercept determines the onset frequency a;D?%/2mv. L/D = 60.



|
: |
@ I Py
T ,
I
I |
5 ‘\\ 2y D2
| /O’O/ : 21V ~
O
& cS/ :
l ! ‘ | l |
30 40 50 50 - -

Reynolds Number

Fig. 10. The dependence of the onset frequency ay/2w on the difference Reynolds number Re —

Re,;. These data were compiled from data similar to ﬁgurq 9 for various Reynolds
numbers, - - : T







Fig. 12. As the Reynolds number increases from below Re to above Re,,, the complex

conjugate eigenvalues of the matrix A in (2.1) move from the left half of the plane to
the right at a speed given by d(a,D2/v)/dRe.
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Fig. 16. Critical Reynolds numbers as a function of the freestream turbulence level
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