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Abstract

We show by experiment that the bifurcation accompanying the vortex
shedding behind circular cylinders is of the Hopf type, and that the
Landau equation (with constants possibly depending on the spatial
position) describes the post-critical behavior quite accurately. We
determine typical Landau constants, Finally, we examine the sense in
which absolute instability is relevant to the vortex shedding problem.

1._Introduction

It is well known that the flow behind circular cylinders is
steady up to a certain critical Reynolds number. Beyond this critical
value, the flow develops into a periodic state, corresponding to the
formation behind the cylinder of two rows of staggered vortices of
opposite sign - the so-called Karman vortex street. The downstream
distance up to which this 'street’ survives Behind the cylinder
depends on the Reynolds number.

There are three main points of interest here. First, we would
like to establish by experiment the precise nature of the bifurcation
occurring at the critical Reynolds number; we shall show that the
bifurcation is strictly of the Hopf type. Landau (see, for example,
Landau & Lifshitz 1959, p103) proposed a simple model equation to
describe the post-critical state of a system undergoing supercritical
bifurcation of the Hopf type. Our second objective is to make
measurements specifically designed to answer the question of how
well the Landau equation describes the post-critical state in the wake
problem. Finally, we discuss the sense in which our measurements
support the notion that the vortex shedding process in wakes is
governed by absolute instability.

2. Hopf bifureati

We consider the basic state of the system as being perturbed by
a disturbance. First, we ignore all spatial dependence and consider
only the temporal development; we shall later review why this
seemingly inappropriate approximation is the right one for the wake.
The disturbance decays in time to zero amplitude if the system is
stable, or grows to reach a saturation amplitude if the basic system is
unstable. The phase representation of this latter state is a limit cycle.

Letu, and uj be the real and imaginary parts of the perturbation
velocity. If we plot u; and u, against the Reynolds number Re, all
small perturbations below the critical Reynolds number Re,,. wind
down to zero. Above Re,,;, all small perturbations grow exponentially
with time, and eventually asymptote to a finite amplitude u,g ~ (Re ~
Recr)°~5. The situation is illustrated in figure 1a. Further, writing

(ir)=[Al[u] , (2.1)
the dot denoting the time derivative, we require for Hopf bifurcation
that the eigenvalues of the matrix A(Re) be complex conjugates of
each other, A,4i);, say, reside in the left half of the complex plane for
Re < Rey, and cross the imaginary axis at Regp. We further require
that the speed at which the eigenvalues cross the imaginary axis,
dA/dRe, be positive and finite (figure 1b). We shall determine by

measurement if these conditions accompany the vortex shedding
process.
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3 Exoe ,

3.1_Wind Tunnels

. All measurements made in the wake of the circular cylinder
were performed in two pressure driven wind tunnels, The tunnels
were supplied with compressed dry air from two large storage tanks.
One of the tunnels was a carefully designed, low turbulence facility in
which all spectral data (not shown here) were obtained. The second
tunnel was designed especially for measuring temporal growth and
decay rates in the wake, although the low-turbulence facility has also
been used for the purpose.

3.1a Low turbulence facility: Air entered two settling chambers
packed with damping material, downstream of which were two
contractions with several carefully placed screens in between; see
Strykowski (1986) for details. The settling chambers were
acoustically lined with convoluted foam, and the upstream and
downstream contractions had area ratios of 9:1 and 6:1 respectively.
The whole arrangement produced, in the empty tunnel, a turbulence
level w/Uy< 0.04% over the entire range of velocities investigated; u'
here is the root-mean-square (r7ns) magnitude of the streamwise

velocity whose mean is Ugy. The rms  turbulence levels were
measured from hot wire signals filtered from DC to 5 kHz and
integrated over long time intervals (typically one minute).
Downstream of the second contraction was located a test chamber of
circular cross section. The test section was 5 cm in diameter and 10
cm long; it was carefully diverged to produce constant velocity
throughout. The flow velocity U, entering the test section from the
second contraction was uniform across the test section to within 1%
(outside the wall boundary layers).

3.1b Tunnel designed to measure amplification and decay rates: A
second wind tunnel was employed to measure temporal growth and

decay rates in the wake. The tunnel provided a steady mean flow but
was designed with only a single contraction and could not be
considered a good 'low turbulence' tunnel, Upstream of a large
settling chamber were placed large needle and globe valves. The
needle valve was used to adjust thc‘speed and the globe valve enableﬂ
the flow to be rapidly set into motion or brought to rest; this will be
required for the.experiments to be described later. To enhance the
response of the system, oversized pipes were used to connect the
settling chamber to the two storage tanks (combined storage volume
of approximately 18 m3ata storage pressure of 8x10° N/mz).

Well polished drill rods, tensioned across the test section, were
fitted with end plates to allow variation in aspect ratio and to provide
better end conditions. The plates were designed following Stansby
(1974); detailed measurements were made at aspect ratios, L/D, of
60, 27 and 14. A summary of the relevant diameters, aspect and
blockage ratios is given in Table 1.

Table 1

Nomenclature;
D ... Cylinder diameter,
L... Cylinder length between end plates.

H ... Height of test section normal to
cylinder axis and freestream.

Low Turbulence Wind Tunnel

Dcm) LD HD
0.083 60.0 60.0

Single Contraction Wind Tunnel

D {em LD HD
0.147 60.0 72.0
0.147 27.0 72.0
0.147 14.0 72.0
0318 60.0 33.0
0.183 60.0 55.0




13,2 Instrumentation

Some of the results to follow were obtained with DANTEC
constant temperature hot wire anemometers, type 55MO01, using 5um
wires etched to a working length of approximately 0.8mm; overheat
ratios of 1.75 were used. The resulting data were DC offset and
filtered with a DANTEC signal conditioner, model 55D26, and
amplified to optimize the 12-bit resolution (5 Volts) of the
MASSCOMP MC-500 series computer. All data processing was
done on this machine. During the initial stages of the work, it was felt
that the hot wire probe, when placed within a few diameters of the
cylinder, might be intruding with some details of flow development.
Thus, all hot wire measurements were made outside of this sensitive
region, Within this region, velocity measurements were made with a
TSI laser Doppler velocimeter used in the forward scatter mode. In
many instances where both LDV and hot wire were deemed reliable,
both were used under identical circumstances as a check on each
other.

Mean velocity was generally obtained using a Pitot-tube and a
MK.S-Baratron unit with a 10 Torr differential pressure head. At very

low velocities (corresponding to Re < 20) the speed was determined
by measuring the shedding frequency from several larger cylinders
placed in the test section (in all cases the aspect ratios of the cylinders
were never less than approximately 50). The velocity was then
deduced from Roshko's (1955) expression relating frequency of
shedding behind these larger cylinders and their Reynolds number:

fD%/v = 0.212 Re ~ 4.5. (3.1)

4. Experimental results

4.1 Tempora] growth rates

Iet us first concentrate on growth rates. The experiments
needed to determine them must ideally consist of abruptly setting up
the flow at a desired Reynolds number above the critical value, and
observing how the oscillations grow im time. If the growth rate is
exponential, one can obtain a, from the expectation that initially the
amplitude u, grows exponentially:

u, ~ exp(adt) 4.1

The procedure we adopted for determining growth rates was the
following. The globe valve mentioned in section 3.1b was opened
suddenly, and the streamwise velocity signal at the chosen location
within the wake was digitally recorded. To avoid unnecessary
changes in the mass flow rate, and to improve the effective time
constant for the rise time of the mean velocity, the flow rate was
increased from a value slightly below Re;. (where no fluctuations

exist) to the desired Reynolds number above Re, . at which the
oscillations begin to grow.

A typical oscillogram of velocity fluctuations is given in figure
2. The top trace, figure 2(a), corresponds to the mean velocity rise in
the flow, measured slightly upstream of the cyiinder. The
accompanying flow Reynolds number variation is from 43 to 49,
occurring in a time scale of the order of 200 msec which, as we shall
see, is sufficiently small compared with the growth pericd of the
velocity fluctuations. In fact, this characteristic rise time attainable for

Mean (a)

Velocity

© (b)
Fluctuating
Velocity
]
0 1
Time, seconds
Figure 2: Simultaneous records of the mean and fliuctuating

velocities, The flow Reynolds number, Ry , was
increased from 43 to 49. Trace (a) wag low pass
f£iltered below 30 Hz and trace (b) was high pass
filtered above 30 Hz.

the mean velocity will limit the largest growth rate we can measure in
our experiments. The bottom trace, figure 2(b), shows the manner in
which the oscillations at x/D = 10 grow with time. The signal in
figure 2(a) was low pass filtered below 30 Hz so as to reflect only the
mean velocity variations, while the trace in figure 2(b) was high pass
filtered above 30 Hz to eliminate the mean velocity variation. The
shedding frequency was substantially larger than 30 Hz so that this
high pass filtering does not introduce any artificial phase or frequency
modifications in the oscillations. The traces in figure 2 were recorded



simultaneously and indicate that the oscillations comnmence only after
the Reynolds number attains the supercritical state; hence, it is clear
that the characteristics of the oscillations correspond unambiguosly to
this Reynolds number. The mean and the fluctuation responses were
obtained by two different hot wires arranged in a non-intrusive way.
The one used to obtain the mean flow response was placed slightly
upstream of the cylinder, and so a time shift due to convection, of
approximately 40 msec., must be made before a direct comparison of
figures 2(a) and 2(b) is possible. The amplitude of the envelope in
figure 2(b) can now be processed to obtain the growth rates. The
logarithm of the amplitude envelope (figure 3a) plotted against time in
figure 3(b) shows a linear region whose slope gives the constant a,. at
the Reynolds number corresponding to the upper plateau in figure 2a.

Similar LDV measurements made at 5 diameters downstream of
the cylinder show exactly the same features ; the growth rates are not a
function of position. It should be noted that as one gets closer to the
cylinder than, say, 2.5 diameters, the growth rates are hard to
measure, and some anomolies have been observed. We shall not
discuss them here.,
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Figure 3: “Trace (a) is the amplitude of the fluctuating velocity.
The logarithm of the amplitude envelope is plotted in
(b). The Reynolds number is 49 and ar= 4.0 sec-l,

4.2 Decay rates

While the measurement of growth rates as described above is in
principle a relatively simple matter, the same cannot be said of the
decay rates. In determining the growth rates, we set the flow instantly
(in principle) to the required Reynolds number, and watch how the
oscillations grow. Since the ground state here (being below Regp)
does not possess any oscillations, the flow is free to choose the
frequency and amplitudes appropriate to that Reynolds number. Since
the natural state at Reynolds numbers below Re,, is steady, it is clear

that oscillations can be established only by means of some external
forcing.The correct procedure in the decay measurements would

therefore be to establish (by some external means) flow oscillation at
the right frequency appropriate to any desired Reynolds number
below Rey,., and switch off the forcing to quantify the ensuing decay
of the flow oscillation. One does not a_priori know what the right
forcing frequency should be, or how the decay-rates depend on this
frequency. Part of the work reported here concerns these quitstions.

Flow oscillations at the desired subcritical Reynolds number
were set up in two different ways: (2) by mechanically oscillating the
cylinder at the desired frequency, and (b) by acoustically exciting the
oscillations in the flow behind the steady cylinder. In both cases,
flow oscillations could be set up at any desired subcritical Reynolds
number. The source of excitation was then switched off and the decay
of oscillations in the wake was recorded either by a hot-wire (located
at x/D >7) or the LDV. The decay rates of the wake oscillations were
again observed to be exponential (see figure 4), and the coefficient a
in equation (4.1) was obtained in a similar fashion to the growth case,
The difference is that a, is negative during decay.

Fluctuating
Velocity

Figure 4: Mean and fluctuating velocity response, measured during

decay. The flow Reynolds number is reduced from 50 to
44. Signal measured at x/D = 10 in shear layer.

We tried several excitation frequencies. Our first choice was the
frequency with the least damping in the steady basic state for Re «
Regy; from the work of Nishioka & Sato (1978) we know that large
amplitude forcing at this special frequency can indeed set up vortex
shedding even below Reg,. Oscillations could be set up at other
frequencies also, the point to note being that at these other fregencies
the amount of external excitation required to produce sizeable flow
oscillations is rather large. We have used as an example the frequency
corresponding to a backward extrapolation of Roshko's relation
(3.1). In this case too, the decay rates following the removal of the

;
]




cylinder excitation was exponential, with the same decay rates as
before.

The measured growth and decay rates are collected in figure 5.
Only one set of growth rate data has been plotted, but other sets
obtained at different x/D, y/D, and by LDV as well as hot wires were
no different except that the uncertainty in the data obtained at larger
downstream distances was somewhat larger both because of the
smaller amplitudes and possible three dimensional effects. It is clear
that the exponent a, varies linearly with the Reynolds number in a
certain nontrivial neighborhood of Rep.

A remark seems useful on why we have normalized the growth
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Figure 5:

and decay rate data in figure 5 by the viscous time scale D%/ instead
of the convective time scale D/U, which, apriori, can be considered
equally legitimate. The choice appears natural in view of the fact that
arDZ/v is usually of the order unity while a,D/U, which is smaller
by the factor of the Reynolds number, gives numerical values on the
order 0.01.

The main conclusion then is that there exists a certain
neighborhood of Re, in which the growth and decay rates behave
according to

Re,, = 46, and d(aD2v)/dRe = 0.20. (4.2)

These numbers are independent of the measurement location,
as well as (in the case of decay) of the excitation frequency. Both of
them vary with the aspect ratio of the cylinder. Detailed growth rate
measurements were made for aspect ratios of 60, 27 and 14 (figure
6). Obviously, the critical Reynolds number corresponding to zero
growth rate is seen to be a function of the aspect ratio, as has been
pointed out, for example, by Nishioka & Sato (1974). For the aspect
ratios mentioned above, the critical Reynolds numbers were
respectively 46, 50 and 53, in reasonable agreement with the data of
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Figure 6: Amplification and decay rate measurements taken at

an aspect ration of 60; amplification rates only
for aspect rates of 27 and 14.

Nishioka & Sato. Less detailed measurements showed that the critical
Reynolds number for the aspect ratio of 200 was also 46 in the
present experiments, and therefore the results for the aspect ratio of
60 are believed to represent the essentials of the phenomena for an
infinitely long cylinder. The decay rate measurements were restricted
to the aspect ratio of 60. )

The upper Reynolds number range for the growth rate
measurements was set by the following two conditions. The first is
that the higher the Reynolds number, the less adequate it is to assume
that the mean velocity rise is essentially instantaneous on the scale of
aT'l. Secondly, as was pointed out by Sreenivasan (1985) in another
context, the periodic state at higher Reynolds number is modulated by
higher order modes, and the measured exponential growth rates have
a less satisfactory interpretation. The measurements presented here do
not suffer from either of these two problems.

It is clear that the flow oscillations take a very long time to
develop if one is in very close positive vicinity of Re..,. It is truly

exciting to watch vortex shedding appear just above Re, say Re, +
1. The growth rates there are so small that saturation amplitudes are

reached only for long times of the order of a minute corresponding to
convective scales of the order 104; it is thus clear that vortex shedding
at these Reynolds numbers is unrelated to any spatial development in
the flow. In one case, we observed the growth phase extending for
over one minute followed by an immediate decay over a comparable
period of time; apparently, the Reynolds number had inadvertently
fallen from just above to just below Re,.

4.3 The saturation amplitu
After the initial growth period, the amplitude saturates to a final
value (see for example figure 2b), Here, we measure the maximum of



the amplitude of oscillation as a function of the flow Reynolds
number at different locations in the wake. Figure 7 shows that this
amplitude, squared, is a linear function of the Reynolds number.
Again, the intercept on the Reynolds number axis gives us another
estimate of the critical Reynolds number. Not surprisingly, this
estimate agrees well with the previous one given by (4.2). This holds
true for measurements at all locations in the wake. Saturation
amplitudes have been made at a few streamwise locations in the flow,
but the data are not detailed enough to decide whether or not the slope
of the straight line in figure 7 is dependent on the spatial position in
the wake. The available evidence, even though not sufficiently
conclusive, suggests that the slope might in fact vary with x/D,
although by not much in the region 3 < x/D < 7.
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Figure 7: The saturation amplitude at x/D = 5,

y/D = 0.5 in the wake of the cylinder.

2.5 The Periodic (Vortex Shedding) State and the Landau
Equation

It will now be shown that the results of the previous section are
consistent with the dictates of the Landau equation. We then deduce
further consequences of the Landau equation, dnd examine them for
consistency with measurements. The equation under question was
formulated by Landau in the belief that it describes some universal
features of an unstable system in some finite (but small) region in the
vicinity of the critical Reynolds number (or some other control
parameter relevant to the problem). In the present context, it can be

written as

du/dt=au-clu?ju (5.1)

where u is the (complex) velocity fluctuation, and a and ¢ are both (in
general) complex constants. Writing u = u, expf i¢p(t) ] we have:

dug/dt=a,uy-cp “03 5.2)

governing the real part, and
do/dt = a; - ¢ ug? (5.3)

governing the imaginary part. Equation (5.1) can be solved exactly
(see Landau and Lifshitz 1‘959), but our purposes are served
adequately by noting the following features. Focusing first on
equation (5.2), it is clear that all stable states are given by the
condition a,. < 0 and ¢, positive. As the basic state becomes unstable,
a, will change sign from negative to positive; the Reynolds number at
which it happens will in fact define the critical Reynolds number
Reg, In the linear regime, the second term on the right hand side is
negligible, and the disturbance will grow in the usual eiponemial
manner at a rate that depends on the magnitude of a,. As the
amplitude increases, nonlinear effects will become important, and the
amplitude saturates to a certain level. The saturation state is given by
the condition dug/dt = 0 in (5.2),or .

ugg = (/¢ )03 (5.4)

where the suffix s denotes the saturation amplitude of ug,
Following Landau, we may expand a, in terms of the Reynolds
number, and write a; in a certain nontrivial neighborhood of Regp as:

ay(Re) = a(Regp) + day/dRe (Re -Regp ) +. .. (5.5)

Clearly, a,(Re,;) = 0 by definition (see previous paragraph), and we
have

a (Re) = da/dRe (Re - Regy ). (5.6)

That is, the growth (or decay) rates are a linear function of the
Reynolds number in the vicinity of Re,, — as observed in the
experiments (see figure 5).

Combining (5.6) with (5.4), we obtain the expression

ugs? = (1/c;) dag/dRe (Re - Regy ). (5.7)

In general, ¢, can also be expected to be a function of Reynolds
number, and a Taylor series expansion can be made in the vicinity of
Re,,. Equation (5.7) then yields

da/dRe (Re - Re,)2 d. /dRe

uge? = (leyy) da/dRe (Re - Re,,) — 5
Cro” + de/dRe (Re - Regp)ey,

(5.8)

where ¢y, = ¢ (Reg,p). In general, if (Re - Re,) is small enough, the
first term in (5.8) is an adequate representation of “osz’ and we have




Ugs = ( 1o )2 (dafdRe)!2 (Re - Regp)l/2, (5.9)
This states that the saturation amplitude increases as the half power of
the difference Reynolds number (Re ~ Re;). We saw in section 4.3
that (5.9) is valid even if (Re ~ Re,) is not too small, implying that
(de/dRe) = O over a range of Reynolds numbers. Expressions (5.6)
and (5.7) suggest that the constants dag/dRe and c,, can be
determined if (a) the growth rates a; and (b) the saturation amplitudes
Uy can be measured as a function of the Reynolds number in the
vicinity of Reg. This is precisely what we did in section 4. Note that
da/dRe (xO.Zv/D2 for aspect ratios of the order 60 and above) is
independent of position in the wake, but that, if our earlier statement
on the slope of the line in figure 7 is correct, ¢, must be
position-dependent. Our results at this point are not sufficiently
complete to specify this dependence confidently, but it seems that ¢,
does not vary all that strongly in the range 3 < x/D < 7. So, the value
quoted here (crODZ/v = 67), as determined from figure 7 via (5.9)
and (4.2), must tentatively be considered representative.

To determine the constants a; and ¢;, we have to turn to the
imaginary part of the Landau equation. Noting that d¢/dt = 2xf,

where f is the frequency of oscillations in the disturbed state, we may
write (5.3) as:

2nf = a; — ¢4 uo2 (5.10)
In the saturated state, ug, = Uy given by (10), and so we have after a
little rearrangement:

D2y = aioDz/va +
(1/27) [ d(@D2V JdRe ~ (¢jo/cre) daD%v) dRe ] (Re-Rey)
~ (1/27¢y d(a,D2V)/dRe (Re — Regp)? dejfdRe, (5.11)

where again a; and c; have been expanded in terms of Re around
Rep, and aj = a;(Re(,), and ¢jg = ¢j(Regp). The last term in equation
(5.11) depends quadratically on the difference Reynolds number and
can be neglected based on the well known empirical finding (equation
3.1) that the frequency in the saturation state varies linearly with (Re
-Re ;). Further substantiation that the quadratic term can be
neglected will be provided later, where we show that dc;/dRe = 0
over a range of (Re —~Re.,).
Dropping the nonlinear term from equation (5.11) we get,
D2y = a;gD%2mv +
(72m)[ d(aDV)dRe ~ (¢jo/ere) d(aDv)/dRe | (Re ~ Regy).
(5.12)

This equation shows that the frequency in the saturation state varies
linearly with (Re — Re;), with an offset given by the first term on the
right hand side. From experiments, we can thus deduce the constant

a;,, (=3; at Re.;), and the combination of constants multiplying (Re ~

Regp). Among them, a, is alrcady known from (4.2), but to determine
the other constants from this combination individually, we need to
look at equation (5.10) again. If this equation is valid for the present
problem, the following situation must occur, When the oscillations do
occur in the flow, they must set in initially at a frequency equal to
a;/21, which should then increase quadratically with the amplitude of
oscillation (as shown qualitatively in figure 8a). As the amplitude
saturates according to (5.9), so does the frequency according to

Saturation Frequency

Oscillation
Frequency
£, Hz

Figure 8a: Qualitative relationship between the frequency and the
amplitude of oscillations. Oscillations commence at a
frequency equal to ag/2m.

27

Qualitative dependence of the onset frequency ai/2ﬂ,
on the difference Reynolds number Ry =~ R,

Figure 8 b:

cx’



(5.12). Data similar to figure 8a, obtained at various Reynolds
numbers, may now be plotted as in figure 8b to give a;, (the same as
that obtained from equation (5.12)) as well as da;/dRe. This now
gives us the combination Cro/Cio- But since ¢, is already known
from (5.9), ¢;, can be calculated also. It should be noted that since
Cro is likely to be a function of x/D, c;, will have a similar
dependence.

We now return to the experimental determination of the
remaining constants.

6. Tl -

6.1, The relation between the vortex_shedding frequency and the
Reynolds number: As we mentioned in section 3, it is well known
that the vortex shedding frequency varies linearly with the Reynolds

number. We show this again here by plotting in figure 9 the
combination sz/v, known both as the Stokes number and the
Roshko number, for the three aspect ratios mentioned above. It is
interesting to note that the slopes are different in the three cases, the
largest value corresponding to the largest aspect ratio. For the largest
aspect ratio data, the best fit gives

D2y =546 + 0.21(Re - Reg,), (6.1)

which is quite close to the relation ebtained by Roshko, equation
(3.1). Comparing this with equation (5.12), we get

aj,D%2ny = 5.46, (6.2)
and the combination
(1/2m) [ d(@;Dv)/dRe - (cjofcry) daD2v)dRe ] = 021, (6.3)

To determine all the constants explicitly, we follow the
procedure outlined at the end of section 5. From the experimentally
determined relation between the frequency and amplitude of
oscillations (figures 10a and b), it is seen that the quadratic relation
(5.10) is indeed valid. Furthermore, the slopes from figures 10a and
10b, corresponding to Reynolds numbers 30 and 62 respeciivcly, are
nearly equivalent; this condition is approximately satisfied over a
range of (Re ~ Recy). Since the slope d(fD2/v)/du,? = —c;D2/25v,
and is approximately independent of Reynolds number, we are
justified in replacing (5.11) by (5.12) by neglecting d(CiDZ/V) /dRé.

The intercept in figures 10 gives the constant a appropriateito
the measurement Reynolds number. From many such plots, we
obtain figure 11 which shows how a; varies with Reynolds number;-
data has been collected for both amplified and damped disturbances.
It is seen that the dependence is linear to a first approximation in the
positive neighborhood of (Re Re..), as envisaged earlier. This
approximation becomes invalid for values of (Re ~ Req,) < ~10.

In figure 11, the intercept of aiDz/va with the line Re = Re,,.
gives the constant aj, (the same as (6.2)) and the slope, taken in the
positive neighborhood of (Re ~ Re.,), gives the constant (1/2n)
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Vortex shedding frequency measured in the saturation state for three aspect ratios




d(aiDZ/V)/dRe. From here, we have:
d(a;D?v)/dRe = 0.7 (6.4)
Putting them all in equation (6.3), we also have
cioD = - 202, (6.5)

0.2 A further simplification: The number of constants required to
specify the frequency and amplitude of oscillations in the periodic

state are five according to the previous analysis. They are:-

da,/dRe, 4, dag/dRe, Cpp and Cior »

A rather simple observation reduces the number by one. This follows
from a comparison of figures 6 and 9. The slopes d(aTDzlv)/dRc and
£02 d(fDZ/v)/dRe are nearly equal to each other at all aspect i‘atios even
though the individual slopes do vary with the aspect ratio, T b test this
interesting conclusion further, we measured both the growth rates and

the vortex shedding frequency for an aspect ratio of 5. Although these

particular experiments were not very clean because of several
operational difficulties associated with small aspect ratio cylinders -

ug,

3 4

arbitrary units

here, the reduction in the aspect ratio was achieved by bringing the
artificial end plates closer - the conclusion regarding the slopes was

borne out satisfactorily. It appears that the equality of the two slopes
lationship bat frequency of oscillation and can be regarded as approximately true to within the experimental
Relationship between

amplitude during decay at Re= 30 and durlng amp-
lification at Re= 60. The intercept determines the
onset frequency ajDZ/2wv. L/D= 60.

Figure 10: . .
accuracy (see Table 2). The conclusion then is that

(1/2m) d(aD2/v)/dRe = 1.05 (¢;o/2Mcyq + 1) daD?V)dRe  (6.6)

s which reduces the number of constants to four.

Table 2

Aspect Ratio d(D%v)/dRe d(a,Dv)/dRe

60 0.21 0.20

~
H

27 0.20 0.19

14 0.17 0.17

5 0.17 0.17

\

! | |

30 40 s0 60 70 B0
Reynolds Number

Here we summarize the experimentally determinated Landau
constants for the large aspect ratio (I/D = 60).

Figure 11: Dinmensionless onset frequency as a function of the

Reynolds number. L/D = 60,



D2y = 0.20 (Re ~Reg,) . (6.72)
4;D%/v =343 +0.7 (Re - Regy) (6.7b)
;D% = 67 (6.7¢)
D2y = ~202. (6.7d)

With the expectation that proper normalization should lead to
numbers of the order unity, we renormalize ¢, and ¢y with the
convective time scale D/U,, reducing their magnitudes by the factor
of Re. We obtain the constants:

¢DZ/v) I Re = 1.2
(D) I Re = -3.5.

(6.8a)
(6.8b)

Realizing that the constants ¢, and ¢; govern the saturation or the
vortex shedding state, and recalling that Karman's original analysis
(see Lamb 1945, p224) predicted the structure of the wake from a
completely inviscid model, it seems reasonable that these constants
should be dictated by convective scales as opposed to viscous ones.

We should mention that there is some difficulty in obtaining
accurate absolute numbers from figures 7 and 10, due to Jarge spatial

variation of the saturation amplitude in the near-wake region.We have
chosen to obtain ¢, from the slope in figure 7 instead of ¢;, from the
slope in figure 10. This choice was made because figure 7 is
determined in the saturation state where the data tend to be more
consistent. Independent of these difficulties it is clear that the ratio
Cio/Cro = —3 quite accurately from equation (6.3).

3..Is the wake absolutely unstable 2

5.1 The background: We have seen that many of the experimentally
observed features of the vortex shedding process are locally in
agreement with the Landau equation which is purely temporal in
nature. But some of the Landau constants appear to vary from place
to place in the wake, so that the problem may be thought of as being
characterized by a combination of spatial and temporal features, the
spatial aspects appearing only indirectly. It has been suggested (e.g.,
Monkewitz & Nguyen 1986, Strykowski 1986) that the wake
instability giving rise to vortex shedding is an absolute type which is
spatio-temporal in character. We introduce the concept of absolute
instability briefly — for a more detailed discussion see Huerre &
Monkewitz 1985 — and describe our measurements that may shed
some light on the problem. The concepts of absolute and convective
instability develop quite naturally from an analysis in which a
disturbance packet containing all wavenumbers is introduced into an
initially parallel shear flow field (basic state) and allowed to develop
in both space and time. If the shear flow is unstable it will contain a
group of amplified waves which travel at their group velocity, and the
evolution of these amplified wavepackets determines the nature of the

flow instability. A convective instability results if a wave packet

introduced at a spatial position x, and time t, has a positive group
velocity when amplified, so that it gets convected away with the flow,
leaving the basic flow locally undisturbed for large times. If the
amplified wave packet has zero group velocity, it grows locally and
will eventually dominate the flow development. In a real system,
non-linearities prevent the amplitude of the disturbance from
becoming unbounded and a saturation amplitude is reached. In
contrast to a convectively unstable flow where the amplified

disturbance has contributions from all wavenumbers growing as they
convect, an absolutely unstable flow is dominated by a pure

frequency instability.

Now, it is well known that vortex shedding at low Reynolds
numbers, unlike the case of the boundary layer instability, shows a
pure frequency behavior (Kovasznay 1949, Roshko 1954). This was
emphasized by Sreenivasan (1985), who showed that the pure
frequency component could be seven or so orders of magnitude
above the background noise. Prorripmd primarily by this observation,
we have studied the vortex shedding process in the context of the
absolute stability characteristics discussed above in qualitative terms.
The conformity of this process with a purely temporal model (Landau
equation) with spatially varying constants provides the additional
incentive.

An absolutely unstable flow will be insensitive to the amplitude
of the initial disturbance since this amplitude will only determine how
long it takes for the disturbance to grow but will not affect the rate at
which it grows or the saturation amplitude it eventually reaches. In
contrast, a convectively unstable flow will be sensitive to initial
disturbance amplitude. But, an absolutely unstable flow will show
sensitivity to external geometric changes since it is dominated by a
local instability. Hence an external device which locally alters the
basic state (mean velocity profile) may profoundly affect the nature of
instability. A convectively unstable flow is governed by a global
instability, and hence altering the basic state locally will have little
effect. Strykowski & Sreenivasan (1985) and Strykowski (1986)
have discussed the dramatic effect that geometric changes can have on
wake stability, showing that the placement of a second small cylinder
in an appropriate position in the wake can severely alter and even
completely suppress vortex shedding in a certain non-trivial Reynolds
number range above the critical Reynolds number. In fact,
Strykowski argues that the second cylinder suppresses shedding by
altering the wake's stability from absolute to convective. A systematic
study of the insensitivity of vortex shedding to the initial disturbance
level has not been attempted, however. Below, we give some
preliminary results addressing this question directly. We choose to
alter the initial disturbance amplitude in two ways: external acoustic
excitation and varying freestream turbulence level. We then study the
effect on vortex shedding, in terms of the temporal growth rates,
saturation amplitude, and the critical Reynolds number.




7.2 The i itivity of f . litud ] o
amplitude; The vortex shedding wake was acoustically excited using
the experimental set-up detailed in figure 12. The acoustic excitation
produced by the 10 cm. diameter speaker was monitored by a Bruel
& Kjaer Type 1613 acoustic pressure meter (Type 4165 microphone)
placed in the opposite test section wall. The excitation frequencies
used were much lower than frequencies which would set up standing
waves in the wind tunnel test section. The frequency of acoustic
excitation was set at the natural shedding frequency for Re > Regp (=
43 for this particular flow). Below Re, the vortex shedding is
artificially excited at the frequency which yields the largest wake
response for a given acoustic excitation level (the least damped
frequency). This Strouhal number St = fD/U,, for the least damped
frequency was found to be very close to 0.1, the value suggested by
Nishioka & Sato (1978). A hot wire placed at an x/D = 10 measured
the x-component wake response of the velocity to the acoustic
excitation. As discussed previously one would expect an absolutely
unstable flow to yield a saturation amplitude which is independent of
the initial disturbance amplitude. In figure 13, which shows the
saturation amplitude vs acoustic excitation level, we see that this is
indeed the case for Re > 46, the wake response being flat to excitation
levels up to 25 dB above background noise levels. In sharp contrast
is the wake response for Re < 40, which shows an approximately
linear response to acoustic excitation level (see especially the Re = 40
case). This suggests that the flow over a circular éylinder for
Reynolds number below critical is indeed convectively unstable. It
should be noted that it was difficult to artificially excite vortex
shedding below Re = 27 suggesting that the flow becomes completely
stable at these low Reynolds numbers.

o
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~—mmmgn FloW D 60D Test Section
@ Side View
k4\~h Microphone
Figure 12: Schematic of apparatus for acoustic

excitation work.
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1.3, The insensitivity of temporal growth rates and the critical
Reynolds number to the background noise level: This question was
studied in the same facility used to measure growth and decay rates
described in section 3, Freestream turbulence level was increased by
placing additional screens approximately 100 diameters upstream of

the shedding cylinder. The freestream turbulence level was varied
from 0.03% to 0.19%. Temporal growth rates were determined as

previously discussed. A hot wire placed in the wake at x/D = 10
measured the temporal growth of the x-component of velocity. The

aspect ratio for this experiment was approximately 60, Figure 14
shows the temporal growth rates vs Reynolds number for three
different freestream turbulence levels, Within experimental scatter we
see that all data collapses onto a single line with slope da,/dRe =
0.20, thus highlighting the insensitivity of temporal growth rates to
freestream turbulence levels.

From the growth rate data, we have obtained the critical
Reynolds numbers at different noise levels by determining where the
least square fits to the growth rate data intersect the abscissa
(corresponding to the zero growth rate condition); see figure 15. We
note the insensitivity of critical Reynolds number as freestream
turbulence level is varied and compare this to the well known
sensitivity of Re., in a convectively unstable flow such as the
boundary layer on a flat plate.

8._Summary
Writing again u as uyexp(i¢:), noting that U = exp(a,t), and,
from (5.3) that d¢/dt = a; for small amplitudes, we have:

i _ [ar [

ol [

The square matrix in the above eqation gives the matrix A in equation
(2.1). The eigenvalues of this matrix are easily shown to be ap & iay,
both known from measurement. From this, we can now determine
how the eigenvalues journey in the complex plane as Reynolds
number increases from below Reg, to above Reg,.. This is done in
figure 16. Clearly, the eigenvalues cross the imaginary axis at Reg,
(which by definition corresponds to a, = 0). Also, the speed at which
the real part of the eigevalues cross the imaginary axis is given by
da/dRe which, by equation (4.2) is equal to 0.2v/D2,

We have thus shown that the onset of vortex shedding occurs
strictly according to the Hopf bifurcation. We have also shown that,
in a certain non-trivial neighborhood of the critical Reynolds number,
the supercritical state is described by the Landau equation. This may
at first appear surprising because intuition suggests that the problem
must be spatial in character. One important finding of this work is that
the spatial nature of the problem appears only in a secondary role,
namely in the spatial dependence of some of the Landau constants,
We have also shown that the growth rates, saturation amplitudes, and
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Figure 16: As the Reynolds number increases from

below Recr to above Recr, the complex

conjugate eigen values of the matrix
A in (2.1) move from the left half of
the complex plane to the right.

the critical Reynolds number associated with the vortex shedding
process are robust against the background noise level. This is in
contrast with many other familiar fluid flows such as constant-density
cold jets and boundary layers, and in this sense the vortex shedding
process in wakes shares some of the very important characteristics of
dynamical systems, It is expected that most of these aspects will be
discussed in greater detail in a forthcoming publication,

After this work was completed, we came across a paper
(Mathis et al., 1984) and a report (Provansal et al,, 1986) which
independently make measurements similar to the ones reported here.
We have not yet had the opportunity for a detailed comparative study
of the two sets of measurements. This too is anticipated to occur in
the near future.
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