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TRANSITION INTERMITTENCY IN OPEN FLOWS, AND

INTERMITTENCY ROUTES TO CHAOS

K.R. SREENIVASAN and R. RAMSHANKAR

Center for Applied Mechanics, Yale University, New Haven, CT 06520, USA

The intermittent transition to turbulence in open flows (mainly pipe flows) is examined in the context of intermittency
routes to chaos. Preliminary conclusions are that some quantitative connections can be discerned, but that they are
incomplete. In a similar manner, connections with phase transition and other critical phenomena are also imperfect. Some
measurements which we hope will be helpful in developing alternative models describing the essentials of the phenomenon are

described. Some difficulties are highlighted.

1. Introduction

This paper is a part of an overall effort related
to the exploration of quantitative connections be-
tween chaos in dissipative dynamical systems on
the one hand, and transition and turbulence in the
so-called open flow systems on the other. Open
flows by definition possess a preferred direction,
and there is a flux of mass across its boundaries.
At least in some circumstances this elementary
feature of open flows renders the nature of flow
instability convective, as opposed to being ab-
solute, which is the case observed in closed flow
systems. This can have profound consequences on
the origin of turbulence in open flow systems,
which may in turn render our task quite difficult.

It has been known for over a hundred years
now [1] that transition to turbulence in pipe flows
occurs intermittently. For example, the velocity
measured on the centerline at a fixed axial loca-
tion in the pipe is typically as shown in fig. 1. It is
this intermittent transition to turbulence that is
our concern here. With increase in Reynolds num-
ber, the fraction of time that the flow is in the
turbulent state increases, until eventually the flow
is continuously turbulent. One observes qualita-
tively similar intermittency in the advanced stages
of transition to turbulence in boundary layers (fig.

2), and channel (i.e., plane Poiseuille) flows, to
which also we shall make a brief reference here.
Equally well known now is that many low-
dimensional dynamical systems approach a chaotic
state in an intermittent fashion, qualitatively simi-
lar to the intermittent transition to turbulence just
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Fig. 1. The streamwise (or axial) velocity measured as a func-
tion of time on the centerline of a pipe flow. The measuring
tool is a standard hot wire operated on a constant temperature
mode. The signal oscillates apparently randomly between an
essentially steady laminar state and a turbulent state. For a
given axial position, a velocity trace obtained simultancously at
another radial position will show a coincident alternation
between the two states, but the amplitude difference between
the two states is a function of radial position. Both the ordinate
and the abscissa are drawn to arbitrary scales.
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Fig. 2. Oscillograms of velocity fluctuations in the advanced stages of transition to turbulence in a constant-pressure boundary layer

Time interval between markers is 1,/60 s. Source: ref. 17.

discussed. Fig. 3 is an example. The Lorenz equa-
tions [2], the Logistic map [3). and the RCL oscil-
lator [4] are some of the other simple examples.
Pomeau and Manneville [5] identified three generic
intermittency routes which they called Type I,
Type Il and Type IIl-each differing from the
other in terms of how the eigenvalues of the
Floquet matrix, describing the return map lin-
earized around a closed trajectory, cross the unit
circle. Type I intermittency occurs when the linear
stability of the limit cycle is lost by an eigenvalue
of the Floquet matrix leaving the unit circle at
+1, Type I11 when the crossing occurs at —1, and
Type 11 when two complex conjugate eigenvalues
simultaneously cross the unit circle. That these
intermittent routes to chaos are relevant to fluid
flow phenomena governed by partial differential
equations has been demonstrated, for example, by
Bergé et al. [6] and Dubois et al. 7] in the
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Fig. 3. Iterations of the one-dimensional map x,, ., = x,(1 +
e)+ (1 — e)x2 mod 1; e=0.00025 for this plot. The map is the
result of a reduction [24] from the so-called Type II intermit-
tency [5]. The relevant aspects of this type of intermittency
route to chaos are mentioned in the text. The qualitative
analogy with fig. 1 is quite obvious.

Rayleigh-Benard experiment, and by Pomeau
et al. [8] in the Belousov-Zhabotinsky reaction.

It may be argued on the basis of these interest-
ing findings that intermittent transition in open
flows may belong to some kind of universality
class: Even though as already mentioned open
flows are different in several non-trivial ways from
the highly confined flows (see also [9]), it looks
reasonable to ask whether there are any connec-
tions between the intermittency routes to chaos
mentioned above and the intermittency routes to
turbulence in open flows. As we shall see, the
process involved in the latter are more complex; it
is to their partial characterization that this paper
is devoted.

2. The physical phenomenon

It is useful to recapitulate briefly the physical
mechanism responsible for the temporal intermit-
tency observed in fig. 1. Evidence from our own
work —at least in pipes whose length is of the
order of a few hundred diameters — as well as that
of others (chiefly Wygnanski and Champagne,
[10]), suggests that ‘disturbances’, whose devel-
oped state corresponds to the turbulent regions in
the intermittent signal, arise locally (in radial,
azimuthal as well as axial directions) in the en-
trance region of the pipe where the flow is laminar
and steady, and is not fully developed (see fig. 4a).
Once created in the boundary layer region, the
disturbance quickly spreads over the entire cross-
section of the pipe, and moves like an independent
entity within the pipe; laminar regions are present
both upstream and downstream of this entity,
which now goes by the name ‘slug’. (They have
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Fig. 4. A schematic of intermittent transition structures in (a) pipe flows, (b) boundary layers.

been called ‘flashes of turbulence’ by Reynolds [1]
and ‘plugs’ by several workers. for example,
Tritton [11].) A probe fixed at any point in the
flow alternately sees the procession of slugs with
laminar regions interspersed between them; the
output signal consists of intermittent excursions
from the laminar to the turbulent state, followed
by the return (in the Eulerian frame of reference)
in some stochastic manner to the former. The
physical reasons for the return to the laminar state
are the following. Usually in most pipe flows, it is
the pressure difference between the inlet and the
exit that is held constant. A given pressure dif-
ference can support a larger mass flow when the
flow is laminar than when it is turbulent. As the
slugs form and grow, the increased friction due to
the turbulent flow in them produces a reduction in
mass flux, thus inhibiting the instabilities at the

inlet. New slugs are most likely to be born only
after the first slug completely passes out of the
pipe. It is not hard to argue similarly that inter-
mittent transition can occur also when the mass
flux is fixed but momentum variations occur. but
it is possible that the two types of intermittencies
do not share the same detailed properties.

Corresponding to slugs in pipe flows, the transi-
tional structure in boundary layers and in channel
flows is the so-called turbulent spot (fig. 4b). Un-
like the slugs which are constrained except in the
axial direction, the boundary layer spots can grow
in all directions. (There are some non-trivial dif-
ferences between spots in channel flows and
boundary layers, but these details are not relevant
here.)

It turns out that the speed of propagation U, of
the leading edge of the slug or a spot is different
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Fig. 5. Typical variation of the frequency of slugs as a func-
tion of Re for three streamwise locations. The topmost and
lowermost curves are from Wygnanski and Champagne [10]
corresponding to (Reg, x/D) of (21 X 10%,220) and (19 x
10, 395), respectively. The middle curve, Re, = 3900 and x/D
= 335, is from present measurements. U is the so-called bulk
velocity (= flow rate/cross-sectional area of the pipe). Re =
ub/v.

from the trailing edge speed U,.. Clearly, slugs (or
spots) grow with distance if Uy > U,. In the fol-
lowing we concentrate on the slugs. If the slugs
are generated at some mean frequency, and if
more than one slug resides in the pipe at the same
time, the leading edge of a slug could catch up
with the trailing edge of the preceding one, result-
ing in merger and a consequent reduction in their
passage frequency with axial distance. These two
factors could then provide a plausible mechanism
for the streamwise dependence, at any given
Reynolds number, of all measured temporal quan-
tities. The two most important parameters in the
problem are thus the Reynolds number Re and
the (normalized) axial distance x/D, where D is
the pipe diameter. The frequency of the slugs, for
example, depends on both of these parameters, as
shown in fig. 5. A characteristic value of this
frequency (say, the peak value) varies inversely
with x/D (fig. 6), and seems to be independent of
the Reynolds number. (Strictly, one must plot on
the abscissa the quantity x — x,, where x, is a
virtual origin for the slugs; it is possible that the
scatter in the plot partly originates from this
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Fig. 6. Inverse of the peak slug frequency (f*D/U) as a
function of the streamwise distance. Noting that all measure-
ments were made at the exit of pipes of different lengths, the
streamwise distance must really be understood to mean the
pipe length. The circled points are from Wygnanski and
Champagne [10].

source. However, since x is relatively large com-
pared to x,, this is believed to be of small conse-
quence.)

Several points must be made explicit. Both in
figs. 5 and 6 (and in the others to follow), x/D is
really L/D, where L is the pipe length. That is,
measurements were actually made at the exit of
pipes of different lengths. Although we have re-
tained the notation x/D above in conformity with
previous practice, it is not clear to us that mea-
surements made at different axial locations of the
same long pipe will show the behaviors of figs. 5
and 6. A look at fig. 5 shows that the mean length
of slugs (~ U/f) is greater than the pipe length,
suggesting that more than one fully developed slug
is unlikely to reside in a pipe at any given instant
of time. Thus, the probability of merger is quite
small. The reason for the observed reduction in
the characteristic frequency with pipe length (fig.
6) must then be attributed largely to the reduction
of the formation frequency of slugs with pipe
length. This makes sense if we remember that
longer pipes mean longer slugs which take longer
to pass the entire pipe. We conclude that detailed
and careful measurements at several stations in
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Fig. 7. Typical data on the intermittency factor y as a func-
tion of (Re — Reg)/Rey. a: L/D =505 [10}; +: L/D =435
(present). Other symbols as in fig. 5.

extremely long pipes (say, length to diameter ratio
> 10*%) is overdue.

As one varies the flow Reynolds number, the
appearance of the intermittent state is quite abrupt.
The intermittency factor vy, defined as the fraction
of time the flow is turbulent, appears to vary
approximately linearly with the Reynolds number.
By a backward extrapolation to zero of the mea-
sured intermittency factor, one can define a unique
value of the onset Reynolds number Re,. Fig. 7
shows that y is a unique linear function of Re —
Re, in a certain non-trivial neighborhood of Re,;
x/D or L/D is thus an inconsequential parameter
for this quantity.

A reasonable goal now is to describe in phase
space the main features of these processes. Return-
ing now to fig. 1, it appears plausible to think that
the steady laminar state is essentially zero-dimen-
sional - that is, a proper orthogonal decomposi-
tion of the temporal signal contains no time
dependent function. (Unfortunately, estimates of
statistical properties such as the entropy and di-
mension from the velocity signal obtained entirely
in the laminar state, for example just before the
onset of intermittency, is dominated by the high-
dimensional, low-amplitude noise overriding the
laminar motion. The noise here does not arise
merely from instrumentation or other ‘purely ran-

dom’ fluctuations in the background; as men-
tioned elsewhere [9], the background ‘noise’ in
most open flow systems is usually dominated by
large-scale pressure fluctuations which are far from
being structureless.) From this fixed point, the
motion escapes to an attractor representing the
turbulent state, and gets reinjected near the fixed
point at apparently random intervals. Two rele-
vant questions can be asked: 1) Can one quantita-
tively capture by a low-dimensional map the
essential dynamics of this intermittent motion from
the fixed point? 2) What are the characteristics of
the chaotic attractor? Answers to these questions
are attempted below.

3. The route to chaos

Fig. 8 shows a close-up of the vicinity of the
velocity signal near the leading edge of a typical
slug. Corresponding to the laminar as well as this
interface regions, we have constructed by discreti-
zation a return map of u,,, vs u, (fig. 9). A close
look in the vicinity of the fixed point shows that
the map is much like that from which fig. 3 was
constructed. Secondly, the slope of the return map
near the fixed point is close to but greater than
unity. This shows that the fixed point is unstable
once the onset of intermittency occurs; the laminar
and interface regions are thus merely a reflection
of the duration spent in the narrow channel in the
vicinity of the fixed point. There is some hope,
then, that the dynamics of the leading edge inter-
face can be described (approximately) by a one
dimensional map of some kind, for example that
used in fig. 3 (for small x,). This observation
lends some emphasis to our original question of
possible connections to the generic intermittency
routes to chaos. We must right away note a simple
fact: Pipe flows strictly belong to neither type of
intermittency mentioned in section 1, an obvious
reason being that, unlike in the Pomeau-
Manneville formulation, intermittent transition in
open flows (see especially fig. 2) occurs from a
steady state and not from a limit cycle. (For a
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Fig. 8. A close-up of the velocity signal near the leading edge
of a typical slug.

brief reexamination of this point see section 6.)
This may be interpreted to mean that Poincaré
sections of the Pomeau-Manneville intermitten-
cies have a direct bearing on pipe flow transition,
but it will unfold that this is not the entire story.
As we shall show soon, this is related to the
non-uniform manner in which the motion in phase
space gets reinjected to the vicinity of the unstable
fixed point. (We take the view that to label reinjec-
tion by ‘relaminarization’ - as is often done —is to
miss the point altogether. While in the Eulerian
frame of reference one sees an alternation between
laminar and turbulent states, this does not imply
relaminarization of fluid that was once turbulent.
As must be clear from section 2, in the Lagrangian
frame of reference, there is no relaminarization of
fluid entrained by a slug: one is talking merely
about the slug/no-slug situation.)

All three types of intermittencies mentioned in
section 1 make definite predictions for certain
statistical quantities of the intermittent signals,
against which the outcomes of experiments can be
tested. Apart from the nature of the return maps
themselves, the important predictions concern the
probability distribution for the duration of the
laminar regions; from this distribution one can in
particular calculate their mean duration as a func-
tion of the departure from the critical value of the
control parameter, Re — Re, here. At any rate, it
is useful to measure these quantities in the hope
that they will help us build alternative models.
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Fig. 9. The return map of u,., vs u, for the interface region
shown in fig. 8, obtained by the discretization of the signal.
The origin is the fixed point representing the laminar state.

Fig. 10 shows a plot of the average length L, of
the laminar regions as a function of Re— Re,.
The data for several experimental conditions all
tend to show that L,~ (Re — Re,) . This behav-
ior is common to both Type 1l and Type Il
intermittencies. The measured inverse cumulative
distributions for the length of the laminar inter-
vals (fig. 11) follows the expression
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Fig. 10. The mean length of the laminar regions in the mea-
sured velocity signals, plotted as a function of the distance
from the critical Reynolds number. Lines correspond to the
-1 power predicted for Type 11 and Type 111 intermittencics.
+, L/D =435, Re, = 4480. Other symbols as in fig. 5.






