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TRANSITION INTERMITTENCY IN OPEN FLOWS, AND

INTERMITTENCY ROUTES TO CHAOS

K.R. SREENIVASAN and R. RAMSHANKAR
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The intermittent transition to turbulence in open flows (mainly pipe flows) is examined in the context of intermittency
routes to chaos. Preliminary conclusions are that some quantitative connections can be discerned, but that they are
incomplete. In a similar manner, connections with phase transition and other critical phenomena are also imperfect. Some
measurements which we hope will be helpful in developing alternative models describing the essentials of the phenomenon are

described. Some difficulties are highlighted.

1. Introduction

This paper is a part of an overall effort related
to the exploration of quantitative connections be-
tween chaos in dissipative dynamical systems on
the one hand, and transition and turbulence in the
so-called open flow systems on the other. Open
flows by definition possess a preferred direction,
and there is a flux of mass across its boundaries.
At least in some circumstances this elementary
feature of open flows renders the nature of flow
instability convective, as opposed to being ab-
solute, which is the case observed in closed flow
systems. This can have profound consequences on
the origin of turbulence in open flow systems,
which may in turn render our task quite difficult.

It has been known for over a hundred years
now [1] that transition to turbulence in pipe flows
occurs intermittently. For example, the velocity
measured on the centerline at a fixed axial loca-
tion in the pipe is typically as shown in fig. 1. It is
this intermittent transition to turbulence that is
our concern here. With increase in Reynolds num-
ber, the fraction of time that the flow is in the
turbulent state increases, until eventually the flow
is continuously turbulent. One observes qualita-
tively similar intermittency in the advanced stages
of transition to turbulence in boundary layers (fig.

2), and channel (i.e., plane Poiseuille) flows, to
which also we shall make a brief reference here.
Equally well known now is that many low-
dimensional dynamical systems approach a chaotic
state in an intermittent fashion, qualitatively simi-
lar to the intermittent transition to turbulence just
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Fig. 1. The streamwise (or axial) velocity measured as a func-
tion of time on the centerline of a pipe flow. The measuring
tool is a standard hot wire operated on a constant temperature
mode. The signal oscillates apparently randomly between an
essentially steady laminar state and a turbulent state. For a
given axial position, a velocity trace obtained simultancously at
another radial position will show a coincident alternation
between the two states, but the amplitude difference between
the two states is a function of radial position. Both the ordinate
and the abscissa are drawn to arbitrary scales.
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Fig. 2. Oscillograms of velocity fluctuations in the advanced stages of transition to turbulence in a constant-pressure boundary layer

Time interval between markers is 1,/60 s. Source: ref. 17.

discussed. Fig. 3 is an example. The Lorenz equa-
tions [2], the Logistic map [3). and the RCL oscil-
lator [4] are some of the other simple examples.
Pomeau and Manneville [5] identified three generic
intermittency routes which they called Type I,
Type Il and Type IIl-each differing from the
other in terms of how the eigenvalues of the
Floquet matrix, describing the return map lin-
earized around a closed trajectory, cross the unit
circle. Type I intermittency occurs when the linear
stability of the limit cycle is lost by an eigenvalue
of the Floquet matrix leaving the unit circle at
+1, Type I11 when the crossing occurs at —1, and
Type 11 when two complex conjugate eigenvalues
simultaneously cross the unit circle. That these
intermittent routes to chaos are relevant to fluid
flow phenomena governed by partial differential
equations has been demonstrated, for example, by
Bergé et al. [6] and Dubois et al. 7] in the
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Fig. 3. Iterations of the one-dimensional map x,, ., = x,(1 +
e)+ (1 — e)x2 mod 1; e=0.00025 for this plot. The map is the
result of a reduction [24] from the so-called Type II intermit-
tency [5]. The relevant aspects of this type of intermittency
route to chaos are mentioned in the text. The qualitative
analogy with fig. 1 is quite obvious.

Rayleigh-Benard experiment, and by Pomeau
et al. [8] in the Belousov-Zhabotinsky reaction.

It may be argued on the basis of these interest-
ing findings that intermittent transition in open
flows may belong to some kind of universality
class: Even though as already mentioned open
flows are different in several non-trivial ways from
the highly confined flows (see also [9]), it looks
reasonable to ask whether there are any connec-
tions between the intermittency routes to chaos
mentioned above and the intermittency routes to
turbulence in open flows. As we shall see, the
process involved in the latter are more complex; it
is to their partial characterization that this paper
is devoted.

2. The physical phenomenon

It is useful to recapitulate briefly the physical
mechanism responsible for the temporal intermit-
tency observed in fig. 1. Evidence from our own
work —at least in pipes whose length is of the
order of a few hundred diameters — as well as that
of others (chiefly Wygnanski and Champagne,
[10]), suggests that ‘disturbances’, whose devel-
oped state corresponds to the turbulent regions in
the intermittent signal, arise locally (in radial,
azimuthal as well as axial directions) in the en-
trance region of the pipe where the flow is laminar
and steady, and is not fully developed (see fig. 4a).
Once created in the boundary layer region, the
disturbance quickly spreads over the entire cross-
section of the pipe, and moves like an independent
entity within the pipe; laminar regions are present
both upstream and downstream of this entity,
which now goes by the name ‘slug’. (They have
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Fig. 4. A schematic of intermittent transition structures in (a) pipe flows, (b) boundary layers.

been called ‘flashes of turbulence’ by Reynolds [1]
and ‘plugs’ by several workers. for example,
Tritton [11].) A probe fixed at any point in the
flow alternately sees the procession of slugs with
laminar regions interspersed between them; the
output signal consists of intermittent excursions
from the laminar to the turbulent state, followed
by the return (in the Eulerian frame of reference)
in some stochastic manner to the former. The
physical reasons for the return to the laminar state
are the following. Usually in most pipe flows, it is
the pressure difference between the inlet and the
exit that is held constant. A given pressure dif-
ference can support a larger mass flow when the
flow is laminar than when it is turbulent. As the
slugs form and grow, the increased friction due to
the turbulent flow in them produces a reduction in
mass flux, thus inhibiting the instabilities at the

inlet. New slugs are most likely to be born only
after the first slug completely passes out of the
pipe. It is not hard to argue similarly that inter-
mittent transition can occur also when the mass
flux is fixed but momentum variations occur. but
it is possible that the two types of intermittencies
do not share the same detailed properties.

Corresponding to slugs in pipe flows, the transi-
tional structure in boundary layers and in channel
flows is the so-called turbulent spot (fig. 4b). Un-
like the slugs which are constrained except in the
axial direction, the boundary layer spots can grow
in all directions. (There are some non-trivial dif-
ferences between spots in channel flows and
boundary layers, but these details are not relevant
here.)

It turns out that the speed of propagation U, of
the leading edge of the slug or a spot is different
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Fig. 5. Typical variation of the frequency of slugs as a func-
tion of Re for three streamwise locations. The topmost and
lowermost curves are from Wygnanski and Champagne [10]
corresponding to (Reg, x/D) of (21 X 10%,220) and (19 x
10, 395), respectively. The middle curve, Re, = 3900 and x/D
= 335, is from present measurements. U is the so-called bulk
velocity (= flow rate/cross-sectional area of the pipe). Re =
ub/v.

from the trailing edge speed U,.. Clearly, slugs (or
spots) grow with distance if Uy > U,. In the fol-
lowing we concentrate on the slugs. If the slugs
are generated at some mean frequency, and if
more than one slug resides in the pipe at the same
time, the leading edge of a slug could catch up
with the trailing edge of the preceding one, result-
ing in merger and a consequent reduction in their
passage frequency with axial distance. These two
factors could then provide a plausible mechanism
for the streamwise dependence, at any given
Reynolds number, of all measured temporal quan-
tities. The two most important parameters in the
problem are thus the Reynolds number Re and
the (normalized) axial distance x/D, where D is
the pipe diameter. The frequency of the slugs, for
example, depends on both of these parameters, as
shown in fig. 5. A characteristic value of this
frequency (say, the peak value) varies inversely
with x/D (fig. 6), and seems to be independent of
the Reynolds number. (Strictly, one must plot on
the abscissa the quantity x — x,, where x, is a
virtual origin for the slugs; it is possible that the
scatter in the plot partly originates from this

0k +

TSI ——

0040 g 30 W0 400 450 S0 50 60

x/D

Fig. 6. Inverse of the peak slug frequency (f*D/U) as a
function of the streamwise distance. Noting that all measure-
ments were made at the exit of pipes of different lengths, the
streamwise distance must really be understood to mean the
pipe length. The circled points are from Wygnanski and
Champagne [10].

source. However, since x is relatively large com-
pared to x,, this is believed to be of small conse-
quence.)

Several points must be made explicit. Both in
figs. 5 and 6 (and in the others to follow), x/D is
really L/D, where L is the pipe length. That is,
measurements were actually made at the exit of
pipes of different lengths. Although we have re-
tained the notation x/D above in conformity with
previous practice, it is not clear to us that mea-
surements made at different axial locations of the
same long pipe will show the behaviors of figs. 5
and 6. A look at fig. 5 shows that the mean length
of slugs (~ U/f) is greater than the pipe length,
suggesting that more than one fully developed slug
is unlikely to reside in a pipe at any given instant
of time. Thus, the probability of merger is quite
small. The reason for the observed reduction in
the characteristic frequency with pipe length (fig.
6) must then be attributed largely to the reduction
of the formation frequency of slugs with pipe
length. This makes sense if we remember that
longer pipes mean longer slugs which take longer
to pass the entire pipe. We conclude that detailed
and careful measurements at several stations in
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Fig. 7. Typical data on the intermittency factor y as a func-
tion of (Re — Reg)/Rey. a: L/D =505 [10}; +: L/D =435
(present). Other symbols as in fig. 5.

extremely long pipes (say, length to diameter ratio
> 10*%) is overdue.

As one varies the flow Reynolds number, the
appearance of the intermittent state is quite abrupt.
The intermittency factor vy, defined as the fraction
of time the flow is turbulent, appears to vary
approximately linearly with the Reynolds number.
By a backward extrapolation to zero of the mea-
sured intermittency factor, one can define a unique
value of the onset Reynolds number Re,. Fig. 7
shows that y is a unique linear function of Re —
Re, in a certain non-trivial neighborhood of Re,;
x/D or L/D is thus an inconsequential parameter
for this quantity.

A reasonable goal now is to describe in phase
space the main features of these processes. Return-
ing now to fig. 1, it appears plausible to think that
the steady laminar state is essentially zero-dimen-
sional - that is, a proper orthogonal decomposi-
tion of the temporal signal contains no time
dependent function. (Unfortunately, estimates of
statistical properties such as the entropy and di-
mension from the velocity signal obtained entirely
in the laminar state, for example just before the
onset of intermittency, is dominated by the high-
dimensional, low-amplitude noise overriding the
laminar motion. The noise here does not arise
merely from instrumentation or other ‘purely ran-

dom’ fluctuations in the background; as men-
tioned elsewhere [9], the background ‘noise’ in
most open flow systems is usually dominated by
large-scale pressure fluctuations which are far from
being structureless.) From this fixed point, the
motion escapes to an attractor representing the
turbulent state, and gets reinjected near the fixed
point at apparently random intervals. Two rele-
vant questions can be asked: 1) Can one quantita-
tively capture by a low-dimensional map the
essential dynamics of this intermittent motion from
the fixed point? 2) What are the characteristics of
the chaotic attractor? Answers to these questions
are attempted below.

3. The route to chaos

Fig. 8 shows a close-up of the vicinity of the
velocity signal near the leading edge of a typical
slug. Corresponding to the laminar as well as this
interface regions, we have constructed by discreti-
zation a return map of u,,, vs u, (fig. 9). A close
look in the vicinity of the fixed point shows that
the map is much like that from which fig. 3 was
constructed. Secondly, the slope of the return map
near the fixed point is close to but greater than
unity. This shows that the fixed point is unstable
once the onset of intermittency occurs; the laminar
and interface regions are thus merely a reflection
of the duration spent in the narrow channel in the
vicinity of the fixed point. There is some hope,
then, that the dynamics of the leading edge inter-
face can be described (approximately) by a one
dimensional map of some kind, for example that
used in fig. 3 (for small x,). This observation
lends some emphasis to our original question of
possible connections to the generic intermittency
routes to chaos. We must right away note a simple
fact: Pipe flows strictly belong to neither type of
intermittency mentioned in section 1, an obvious
reason being that, unlike in the Pomeau-
Manneville formulation, intermittent transition in
open flows (see especially fig. 2) occurs from a
steady state and not from a limit cycle. (For a
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Fig. 8. A close-up of the velocity signal near the leading edge
of a typical slug.

brief reexamination of this point see section 6.)
This may be interpreted to mean that Poincaré
sections of the Pomeau-Manneville intermitten-
cies have a direct bearing on pipe flow transition,
but it will unfold that this is not the entire story.
As we shall show soon, this is related to the
non-uniform manner in which the motion in phase
space gets reinjected to the vicinity of the unstable
fixed point. (We take the view that to label reinjec-
tion by ‘relaminarization’ - as is often done —is to
miss the point altogether. While in the Eulerian
frame of reference one sees an alternation between
laminar and turbulent states, this does not imply
relaminarization of fluid that was once turbulent.
As must be clear from section 2, in the Lagrangian
frame of reference, there is no relaminarization of
fluid entrained by a slug: one is talking merely
about the slug/no-slug situation.)

All three types of intermittencies mentioned in
section 1 make definite predictions for certain
statistical quantities of the intermittent signals,
against which the outcomes of experiments can be
tested. Apart from the nature of the return maps
themselves, the important predictions concern the
probability distribution for the duration of the
laminar regions; from this distribution one can in
particular calculate their mean duration as a func-
tion of the departure from the critical value of the
control parameter, Re — Re, here. At any rate, it
is useful to measure these quantities in the hope
that they will help us build alternative models.
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Fig. 9. The return map of u,., vs u, for the interface region
shown in fig. 8, obtained by the discretization of the signal.
The origin is the fixed point representing the laminar state.

Fig. 10 shows a plot of the average length L, of
the laminar regions as a function of Re— Re,.
The data for several experimental conditions all
tend to show that L,~ (Re — Re,) . This behav-
ior is common to both Type 1l and Type Il
intermittencies. The measured inverse cumulative
distributions for the length of the laminar inter-
vals (fig. 11) follows the expression

P(1> 1,) ~ [e/expl(del,— 1)]'7, (1)
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Fig. 10. The mean length of the laminar regions in the mea-
sured velocity signals, plotted as a function of the distance
from the critical Reynolds number. Lines correspond to the
-1 power predicted for Type 11 and Type 111 intermittencics.
+, L/D =435, Re, = 4480. Other symbols as in fig. 5.
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Fig. 11. The cumulative distribution of the laminar intervals.
Re = 4725, y=10.379, e = 0.004. Note that, except for a small
/, the behaviour of P is very nearly exponential.

which is a result known to hold for Type III
intermittency. Here, the parameter e should be
identified as being proportional to (Re —
Re;)/Re,. The inset, which is an expanded
log-linear plot shows that the fit is very good even
towards the tail region.

In spite of these concurrences, one cannot iden-
tify the pipe flow with Type III intermittency for
two reasons. Firstly, the hallmark of Type III
intermittency is the subcritical period-doubling [7],
with the primary effect of nonlinearity being a
dramatic enhancement of the subharmonic com-
ponent just before the flip to the chaotic state
occurs. The system, instead of subsequently fol-
lowing the period doubling route to chaos, some-
how decides to go the intermittency route. As
already mentioned, the nonturbulent state is not a
limit cycle. Secondly, and more importantly, in
arriving at expression (1), the assumption has been
made that whenever reinjection occurs from the
chaotic attractor to the vicinity of the limit cycle,
the distance from the fixed point of a Poincaré
map where this reinjection occurs is uniformly
distributed [12]. We have measured (see Appendix)
the distribution of the reinjection distance from
the unstable fixed point (in this case), and ob-
tained the result that it is approximately an in-
verse power law (fig. 12) over a certain range. The
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Fig. 12. The measured reinjection probability. For a discussion of how this was obtained, sec Appendix. The inset which is a
log-lincar plot shows that the cumulative probability for the reinjection distance increases logarithmically with the reinjection

distance from the fixed point (laminar state).
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log-linear plot of the cumulative distribution
shown in the inset is a less scattered comparison
because of the averaging involved in the integrat-
ing process.

This nonlinearity associated with the reinjection
probability adds an additional ‘dimension’ to the
problem, and should be explicitly incorporated in
any model of the problem. Using this empirically
determined reinjection probability, it is easily
shown that Type Il intermittency also leads pre-
cisely to the expression (1) for the cumulative
distribution of laminar lengths. This result, to-
gether with figs. 9 and 10, might be taken to
indicate a closer connection with Type II. It is also
worth recalling that the one-dimensional map from
which fig. 3 was constructed was obtained after
some simplification from Type II. Perhaps the
connection is even closer if we realize that a
suitably obtained Poincaré section of Type IT in-
termittency is qualitatively similar to the measured
velocity signals here (figs. 1 and 2).

Before closing this section, we note that, inde-
pendent of the agreement between measurement
in fig. 10 and the intermittency models, the almost
exponential variation of the data (fig. 11) is point-
ing to some simple mechanism of slug generation
(e.g., a Poisson process).

4. The chaotic state

From traces of the type shown in fig. 1, we have
constructed a composite velocity signal by string-
ing together all the turbulent patches; that is, by
removing the laminar as well as the parts corre-
sponding to the interface between the two states.
For this composite signal, we have calculated the
correlation dimension using the Grassberger—
Procaccia [13] algorithm. Calculations show the
scaling exponent of the correlation function is
about 18. To the extent that one can trust calcu-
lations resulting in such large numbers and their
interpretation, the dimension of the attractor is
about 18. This relatively high dimension does not
come as a surprise to us, because it is consistent

with our experience with most open flow systems
[14]; for all Reynolds numbers except those very
close to the onset of turbulence, low-dimensional
attractors do not seem to exist. (The number of
data points used in these calculations is not as
large as is usually believed to be necessary for
calculating dimensions of the order 18 reliably,
but far fewer (~ 3000). We have however calcu-
lated the dimension from several independent
patches of the composite signal each of which is
about 3000 points long, and performed ensemble
averaging over these segments. We have found on
other occasions - to be described elsewhere — that
this procedure gives stable numbers. In any case,
the issue here is not whether the dimension is 18.1
or 18.2, but whether it is 2, 6 or 18. The safest
conclusion to draw from here is that the dimen-
sion is not small, of the order of 5, say.)

We conclude that pipe flow transition exhibits
partial similarities with known intermittency routes
to chaos — especially with Type II - but it does not
strictly belong to any of them, at least because of
the preferential nonlinearity in the reinjection
mechanism. Although the dynamics appears low-
dimensional on the interface region, it is clearly
not so elsewhere. For this reason, it is helpful to
examine the problem from another point of view.

5. Analogy with phase transitions

As we already mentioned in section 2, the change
of state from a laminar to a turbulent one occurs
in pipe flows essentially discontinuously at an
onset Reynolds number Re,, and at any instant at
a spatial location it is easy to say to which of the
two states the fluid flow belongs. Above this onset
Reynolds number the laminar and turbulent phases
can be thought of as coexisting, with the fraction
of time the flow is turbulent increasing monotoni-
cally with the Reynolds number; in the intermit-
tent regime all the mean flow properties (such as
the pressure drop in the pipe) change continuously
from the laminar values to the fully turbulent
values. Following the lead of Dhawan and
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Fig. 13. The measured time-mean square of the streamwise
velocity compared with the sum of y times the turbulent value
(for that Reynolds number) and (1 —y) times the laminar
value. @8, Re = 4214, y = 0.87; a, 4006, 0.72; O, 4110, 0.54; =,
4774, 0.32; @, 4882, 0.43; », 4451, 0.05; m, 4559, 0.16. For
calibration purposes, completely laminar values ( + ) have also
been plotied. We suspect that this agreement will not hold so
well if the critical Reynolds number is large.

Narasimha [15] in boundary layers, we show in fig.
13 that, at any given Reynolds number during the
intermittent transition, one can express to a good
approximation some measured time average flow
properties (such as the dynamic head on the pipe
axis) as a linear combination of the laminar and
fully turbulent properties appropriate to that
Reynolds number. Noting that the intermittency
factor itself appears to vary linearly with Re — Re,
(see fig. 6), it is clear that flow properties in the
vicinity of Re, can be expressed as linear com-
bination of the laminar and turbulent ones, with y
replaced by (1 — Re/Rey).

The above description tempts us to explore
possible connections with phase transitions. Since
all phase transitions can be described in similar
terms, the crucial step is to identify an order
parameter, which is such that it takes on different
values in coexisting phases, and jumps discontinu-
ously in the course of the phase transition; the
magnitude of the jump is zero at the critical point.
As an example, the order parameter in the
gas-liquid phase transition is the difference be-
tween the actual density and the density at the
critical point.

While many details are not clear and the anal-
ogy has not yet been pushed to its logical conclu-
sion, one can identify an order parameter with the
(normalized) difference speed AU between U,,, the
leading edge speed, and U,, the trailing edge
speed, of the slug or the spot. Fig. 14 shows that
in all flows in which AU has been measured to-date,
the relationship

AU = a(Re — Re,)'* (2)

holds quite well in a nontrivial neighbourhood of
Re,, where Re, is a ‘critical’ Reynolds number
akin to the critical temperature in the gas-liquid
phase transition. It is surprising that this should
be so, considering that the four flows studied in
fig. 14 are quite different in detail; they range, on
one extreme, from spots which grow in all direc-
tions to slugs on the other extreme which are
constrained in all but the axial direction.* We also
find it very interesting that the ‘critical exponent’
must take on the classical value of 0.5.

For the boundary layer, Re_ = 200 according to
fig. 14. This suggests that attempts to create sus-
tained spots below Re. must necessarily fail be-
cause, interpreted literally, fig. 14 suggests that the
trailing edge should then travel faster than the
leading edge. If this does occur we would have on
our hand a case of relaminarization but, in reality,
spot-like structures below Re, will break up and
decay. To our knowledge, detailed tests relating to
this issue have not been made. In the literature on
spots, we have found no documentation of spots

*For all cases but that involving boundary layer spots, a
linear fit between AU and (Re — Re,) is not unthinkable, but
the fit (2) is a bit better when Re — Re, is not too large. Also,
we believe that the departure from (2) in fig. 14d, for cxampl_e.
is largely due to the fact that the flows were generally set up in
pipes which were not long enough for the fully developed
parabolic state to emerge. This means that the leading edge
speed of the slug, which is essentially equal to the largest speed
anywhere in the flow field, cannot be as high as it would be if
one had a parabolic distribution of velocity ahead of the slug.
Data from Alavyoon et al. [31] in plane Poiscuille flow became
available too late for inclusion here, but they follow the
equation AU?=0.727 x 10~* (Re - 800); the fit appears as
unambiguous as for the boundary layer data of fig. 14(a).
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Fig. 14. The difference between the propagation speeds of the leading and trailing edges of the slug as a function of the flow
Reynolds number. (a) Spots in a two-dimensional boundary layer: Re is based on the [reestream speed U, and the displacement
thickness, The normalizing speed for AU is U,. X, Cantwell et al. [24]; +, Wygnanski [18]; O, Zilberman (see Wygnanski [18]).

Since Reynolds number (no matter how defined) increases wit
Reynolds numbers at which spots were created. —, 3.65 % 10

h streamwise distance in boundary layers those used here are the
4 (Re — 200). (b) Spots on an axisymmetric body. When the spots

grow to sufficient sizes, they wrap around the body. Data from Rao [25]. —, 5.6 X 10 S (Re — 2500); Reynolds numbers are based
on the boundary layer thickness. () Transitional structure in a rectangular pipe, aspect ratio 4.0; Reynolds numbers are based on the
hydraulic radius. Data from Sherlin [26]. —, 5.0 X 10 4 (Re — 1240); (d) Slugs in circular pipes. Data from one experimental run,

present. ——, 2.56 X 10~* (Re — 2350). Similar data have been
Champagne [10].

generated below Re,, the lowest such Reynolds
number being around 210 due to Elder [16]. Al-
though Elder did not make specific claims that
spot generation attempts below Re, were unsuc-
cessful, the absence of any documentation con-
trary to our conclusion must be deemed to be
significant. Similarly for pipes attempts to gener-

obtained by Lindgren [27], Pantulu [28], Coles [29] and Wygnanski &

ate slugs below a Reynolds number of about 2400
are known to be unsuccessful.

We draw attention to two minor matters. First,
the constant a in each of the four flows is of the
same order of magnitude when proper account is
taken of the differences in the definitions of the
Reynolds number and different normalizing speeds
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used in AU. Second, the rate of spread of the
spanwise extent of the spots (the ‘width’) in con-
stant pressure boundary layers is only a weakly
increasing function of the Reynolds number. (It
goes up by about 20% in a Reynolds number
differing by a factor of about 3 in the experiments
of Schubauer and Klebanoff' [17], and by about
half as much in a similar Reynolds number range
in Wygnanski’s [18] experiments.) Not enough data
exist on the Reynolds number dependence of the
growth of the spot height normal to the plane.

We should remark on the likelihood that the
expression (2) may signify nothing more than a
characteristic shared by propagation fronts in di-
verse circumstances, where a power-law usually
describes the relation between the propagation
speed of the front and the distance from the
critical value of the control parameter. Some ex-
amples are the speed of propagation of the turbu-
lence front produced by an oscillating grid in a
tank of still water [32], the speed with which the
upper (lower) surface vortex propagates into the
lower (upper) vortex in a short aspect ratio (= 1.25)
Taylor—Couette apparatus housing only two vortex
rolls [19, 20], the propagation speed of solidifica-
tion fronts in dendritic growths [21] the speed of
the so-called ‘directed lattice animals’ in percola-
tion theory [22], etc. Even this is an interesting
enough conclusion.

6. Discussion and conclusions

The behaviors described so far are not strictly
applicable for large Re — Re,,. For example, as the
intermittency factor approaches unity, increas-
ingly larger departures occur between expression
(1) and the measured probability distribution of
laminar regions; similarly(2) is violated for large
values of Re — Re_.. This in itself is no serious
detraction, since all ‘universality theories’ aim to
explain only the region immediately after the onset
of intermittency. We want to emphasize one fur-
ther point. For certain combinations of experi-
mental conditions which are poorly understood,
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Fig. 15. A velocity signal measured on the pipe centerline for
conditions different from those of fig. 1. Unfortunately, the
differences are not documentable in detail.

the alternation between the two states occurs regu-
larly (fig. 15); the distribution of the laminar
intervals in this case obviously peaks sharply
around some value. This last fact serves as a
reminder of the complexity of the process involved.
Further, even restricting to what one might call
the generic features of this transition process, it
should be clear from section 4 that the dynamics
does not entirely reside on a low-dimensional at-
tractor.

Nevertheless, several common features exist be-
tween pipe flow transition and purely mathemati-
cal models like one-dimensional maps; further
work is needed to be completely certain of this, as
well as about possible analogies to physical
processes like phase transitions. In any case, a
more realistic model than the existing ones need to
be invented to duplicate the observed facts in
detail. We think that a suitable modification of the
Rossler equations [23] may serve this end to some
extent.

One of our contentions has been that transition
in the examples studied here occurs intermittently
between a steady state and a chaotic one. In
particular, the laminar regions do not correspond
to any periodic states, as is especially clear from
fig. 2. It may, however, be of interest to recall that
in the experiments of Schubauer and Klebanoff
[17] the first-born spots are generally accompanied
by an undulating (nor steady) laminar state, but



K.R. Sreenivasan and R. Ramshankar / Transition intermittency in open flows 257

once a newly born spot sweeps by the fluid, it
produces a ‘calming effect’ that subsequently
eliminates the undulations in the laminar state.

Finally, we must remark that the standing of
the conclusions of this paper is only preliminary
unless substantiated by measurements in  e€x-
tremely long pipes (length to diameter ratios well
in excess of 10*) in which the mass flux (instead
of the usual pressure drop) is held constant. We
believe that such an experimental effort is
worthwhile. Pipe flows are fascinating also be-
cause they provide counter examples to the com-
monly observed bifurcations, as well to many
beliefs usually held, in dynamical systems. For
example, ‘noise-free’ pipe flows are strictly stable
at all Reynolds numbers, which clearly requires
the presence of sustained noise for initiating tran-
sition: it is therefore not clear to what extent the
intermittency statistics reflect the statistical prop-
erties of the noise itself. In contrast 10 transition
to turbulence in convection problems (for exam-
ple), much less appears 10 be known about the
type of ‘metastable’ transition observed in pipe
flows. The purpose of this paper is more than
adequately served if it brings these problems to
the attention of a wider audience than that
customarily involved in them.
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Appendix

Transition from the turbulent to laminar state is
very sharp as can be seen in fig. 1. (It is in fact
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Fig. 16. The upper trace (a) is a velocity trace which, when
modified as described in the text and differentiated, vields the
lower trace (b).

sharper than the transition from the laminar to
turbulent one.) It thus seems reasonable to associ-
ate reinjection with sharp velocity gradients. Hence
a numerical differentiation was performed on the
time trace, after substituting the turbulent state by
a constant, say, 500 on the ordinate of fig. 16a.
This modified signal u, when differentiated, looks
as in fig. 16b. The reinjection point is then iden-
tified as the distance from the reference laminar
state where the largest velocity gradient occurs.
(Other plausible definitions yield much the same
result.) Fig. 12 was obtained after rescaling the
distance.
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