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We discuss briefly some aspects of 'open flow systems' in the context

of deterministic chaos. This note is mostly a statement of the diffi-
culties in characterizing such flows, especially at high Reynolds num-
bers, by dynamical systems. Brief comments will be made on the frac-

tal geometry of turbulence.

1. Introduction

One of the most fascinating phenomena in fluid mechanics is the trans-
ition from a steady laminar state to a turbulent state. Our concern
here is a brief discussion (in the context of deterministic chaos) of
this transition process (or processes), and of aspects of the fully
turbulent state itself. We shall concentrate entirely on 'open flow
systems', or 'unconstrained' flows, e.g., wakes, jets, boundary layers,
channel and pipe flows, etc.

It is not obvious in what sense one can think of open flow systems
as genuine dynamical systems. We recall from [1] that such flows
could behave in generically different ways from the 'closed flow sys-
tems’. In all closed flow systems the boundary is fixed so that only
certain class of eigenfunctions can be selected by the system; this
does not hold for open flow systems in which the flow boundaries are
continuously changing with position. Thus, while in closed flow sys-
tems each value of the control parameter (for example, the rotation
speed of the inner cylinder in the Taylor-Couette problem) character-
izes a given state of the flow globally, this is not true of open sys-
tems. Consider as an example the near field of a circular jet. For a
given set of experimental conditions, the flow can be laminar at one
location, transitional at another and turbulent at yet another (down-
stream) location. This usually sets up a strong coupling between dif-
ferent phenomena in different spatial positions in a way that is pecu-
liar to the particular flow in question. Secondly, the nature and in-~
fluence of extermal disturbances (or the 'noise', or the 'background
or freestream turbulence') is more delicate and difficult to ascertain
in open flows: the 'mnoise', which is partly a remnant of complex flow
manipulation devices upstream and partly of the 'long range' pressure
perturbations, is not 'structureless' or 'white', no matter how well
controlled. Finally, it is well-known that closed flow systems can be
driven to different states by means of different start-up processes;
for example, different number of Taylor vortices can be observed in a
Taylor-Couette apparatus depending on different start-up accelerations
[2]. This type of path-sensitivity in a temporal sense does not apply
to open systems, where the overriding factor is the path-sensitivity
in a spatial sense (i.e., the 'upstream influence').

These remarks notwithstanding, it has been shown in Refs. 1 and 3
that it is worthwhile examining transition in open flow systems from
the point of view of low-dimensional chaos. The usual way of esta-
blishing this connection is via the analysis of the time history of a
single dynamical variable such as a velocity component obtained at a
fixed (Eulerian) point in the flow [4]. We should stress that this
procedure is inadequate especially for the open flow systems. Two re-
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marks ought to suffice. First, since the dynamical instabilities in
open flows are most often convective in nature, analysis of temporal
Eulerian quantities does not carry with it much information on the
evolution of the system. Deissler & Kaneko [5] have pointed out that
a flow which gives every appearance of being chaotic may nonetheless
have no positive Lyapunov exponents in the Eulerian frame of reference.
Perhaps a more relevant method of characterizing the evolution of the
flow in terms of a dynamical system would be to use the Lagrangian
information obtained, say, by measuring the velocity of a fluid parti-
cle as it moves about in the flow. To say the least, accurate mea-
surements of this type are hard to make.

The second point to be made is that most open flow systems pos-
sess strong spatial inhomogeneities in a direction normal to the flow.
(Indeed, these inhomogeneities are responsible for processes that
maintain the flows against viscous dissipation.) For this reason, it
is a priori unclear to what extent the temporal informatiomn obtained
at one selected point fixed in the flow can represent the global dy-
namics. One might think that a simultaneous measurement (at a given
time or as time sequences) of a dynamic quantity such as velocity,
made at many spatial points in the flow, might solve this problem.
This is not so: one does not even know how to construct a dynamical
system from such empirical data.

It therefore appears worth enquiring explicitly whether, in open
flow systems, attractors constructed from Eulerian point measurements,
using the usual time delay techniques, are chaotic; that is, whether
they are characterized by low dimensions, and possess (at least!) one
positive Lyapunov exponent. This is done in section 2. 1In section
3, we examine the variation with the flow Reynolds number of the di-
mension of the attractor, and comment briefly on the dimension at
large Reynolds numbers. In section 4, brief remarks will be made on
two aspects of turbulence that can be ascribed fractal dimensions.

2. Chaotic attractors for open flows: low Reynolds numbers

Chaotic attractors are characterized by at least one positive
Lyapunov exponent and by relatively low dimensions that do not comn-
tinously increase with the embedding dimension. We have made point
measurements of velocity signals in several different flows and con-
structed attractors using the time delay technique; we have obtained
the correlation dimension v according to the Grassberger-Procaccia
algorithm [6], and the largest Lyapunov exponent according to the al-
gorithm given in Wolf et al. [7]. (Spurred by a talk that Harry
Swinney gave in Kyoto in 1983, we wrote versions of a program to cal-
culate the largest Lyapunov exponent, but have now switched over to
the method of Ref. 7.) Since both these procedures are now well-
known, we shall not describe them here.

In Table 1, we list some basic information for four flows. A
crucial factor in obtaining the correlation dimension is the choice
of the optimum time delay t. We simply varied 1 over a wide range,

and used a 1 in the range where its precise value is not critical.
We show in Fig. 1 the correlation dimension as a function of 1.
Clearly, too large a t will result in the increase of v.

Figure 2 shows the convergence with the number of iterates of the
largest Lyapunov exponent for the wake, calculated using an embedding
dimension of 6; other embedding dimensions yield essentially the same
asymptotic value, even though the initial behaviors could be quite
different. It should be remarked that the dimension and the Lyapunov
exponents usually converge (for the calculations typified by Table 1)
relatively fast; total signal durations of the order of 2000t _, where
T is the zero—-crossing time scale of the auto-correlation function,

was found to be usually sufficient.
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Table 1: Typical data for low Reynolds number open flow systems

Flow Re=Uod/v Correlation Largest
dimension,v Lyapunov
exponent,l1

wake behind circular cylinder? 67 2.6 0.65 bits/orbit

axisymmetric jet (unexcited)? 1000 6.3 0.95 bits/orbit

axisymmetric jet (excited)? 1000 3.2 _—

curved pipe® 6625 6.0 0.40 bits/orbit

'd = diameter of the cylinder, U = upstream flow speed; data were
obtained 10 diameters downstream, 1 diameter off-axis.

2d = diameter of the nozzle, U = nozzle exit velocity; data were ob-
tained in the potential core 2 diameters downstream of nozzle
exit. ’

%no Lyapunov expomnent was computed because we lost the data sets
immediately after computing the dimension.

*d = pipe diamter, U_ = section average velocity; the data correspond
to the centerline of the pipe.
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Fig. 1 The variation of the correlation dimension as a function of
the time delay 1 used to construct the attractor.

Fig. 2 Variation of the largest Lyapunov exponent with the evolution
time.

From many such calculations, we conclude that if one constructs
attractors using a single Eulerian dynamical quantity via time delay
techniques, such attractors do possess (at low Reynolds numbers)
characteristics of chaotic dynamics. Perhaps, Eulerian quantities do
preserve some information on the dynamical evolution, in some loose
sense akin to Poincaré sections!

We shall remark that these calculations do not unequivocally esta-
blish that tubulence is chaotic (in the sense of extreme sensitivity
to initial conditions). Our findings could perhaps be interpreted
equally well in terms of 'external noise amplification' in the system.
Much more work is needed before one can determine the extent to which
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Fig. 3a Measurement stations for

the curved pipe. Flow at the mea-
surement stations is fully devel-

oped. Configuration details can be
found in [3].
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Fig. 3b Streamwise velocity
fluctuations at several Reynolds
numbers at position A (the right
set of signals, measured 0.25
radius from the outer wall) and
position B.

this last mentioned factor competes with the intrimsic sensitivity to
initial conditions as the mechanism for the generation of turbulence.

We should also reiterate the variation with spatial position of
'Eulerian attractors'.
3 shows samples of streamwise velocity history
at the same streamwise section in the so-called fully
attractors constructed from signals at

characteristics of the
Fig.
locations (but

developed region). Clearly,

the
For the curved pipe,
at two spatial

these two different locations can be expected to have different dimen-

sions and spectra of Lyapunov exponents.
At the least,

are as shown in Table 2.

. For an Re of 6625, the data
these data suggest that the

interpretation of the dimension as an indicator of the dynamically
significant degrees of freedom of flow needs some qualification.

Table 2:
attractors'

flow at the same streamwise location at the same Re.
details as in Fig. 3.

are for curved pipe;

The spatial variation of the characteristics of the
at two different spatial positions in the same

'"Eulerian

Data

position A

v A bits/orbit

1,
6.0 0.4

position B

v by bits/orbit

1,
0.17

3. Dimension calculations at higher Reynolds numbers

If we persist with dimension calculations at higher Reynolds
in spite of its shortcomings — they

bers — using the same technique,
become uncertain because:

num-

(a) The number of data points required for convergence, and the
number of steps involved in dimension calculations go up;

(b) One cannot in general find a proper range of time delays over
which the results are sensibly independent;

(c) There is no guarantee that the dimension calculations asymp-
tote to constant values as the embedding dimension ingcreases.
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Fig. 4a The variation of the correlation dimension v with the embed-
ding dimension d. Re = 500, approximately 5 diameters down-
stream of the cylinder. A space-filling attractor is

expected to have the behavior shown by the dashed line.

Fig. 4b The variation of the correlation dimension v with the embed-
ding dimension d. Re = 2000, approximately 5 diameters
behind the cylinder. v = d line holds for a space-filling
attractor. The A's indicate the values of v computed for
the random noise from a commercial random noise generator.
Notice that the asymptotic value of v is definitely below
the noise data, although only by a small margin. The near-
ness of the noise data to the flow data shows why we cannot
place too much emphasis on high dimension computations.
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Fig. 5 The variation of the dimension with Reynolds number. Data

are for the wake of a circular cylinder.

Figures 4a and b illustrate this last point; Fig. 4b is the upper
limit on the Reynolds number at which some credibility (already rather
low!) can be ascribed to the dimension calculations. If we believe
the numbers obtained from such calculations, we may deduce that a
power law relation like Re3/* is not unlikely (Fig. 5).

It is worth mentioning that Constantin et al. [8] have placed the
upper bound on the dimension of Navier-Stokes attractors to be
of order R®/* (and higher if self-similarity in the Kolmogorov range
does not obtain!), where the Reynolds number R = u'L/v, u' being a
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root-mean-square velocity fluctuation,and L is an integral state of
turbulence. The precise relation between R and the Reynolds numbers
Re used in Table 1 depends on the flow, but it is clear that if the
present finding of a 3/4 - power law is true, it is of undoubted sig-
nificance in spite of our earlier reservations on the meaning of the
dimension obtained in this way.

Fully turbulent flows are characterized by temporal and spatial
chaos. Temporal dynamics is thus merely a part of the whole story;
this in itself is hard to come to grips with, even if the dimension
were to increase 'only' according to a 3/4 power of the Reynolds num-
bers. 1Is there then any connection between real turbulent flows and
finite- (and low-) dimensional dynamical models which one hopes one can
construct? (That, presumably, is the practical motivation for studies
of this type.) The answer would have been an unequivocal 'no' were
it not for the fact that some (perhaps strong?) spatial coherence ap-
pears to exist at least in some classesof fully turbulent flows. One
might, in some way that remains unclear, be able to decompose the
motion into two components, one of which consists of this coherent
element and the other, its complement. One can then think of a low-
dimensional attractor characterizing the coherent motion, the attrac-
tor being made fuzzy by the small scale motion whose effect is to re-
duce the correlation. Unfortunately, it is not clear whether this
loosely worded picture is comnsistent with facts.

Elementary tests of this hypothesis can be made if one 1is able
to separate the incoherent motion from the coherent part. This might
be possible, for example, by some kind of ensemble averaging methods
such as used in [9]. The simplest (by no means the most correct) way
is to filter out linearly in the frequency domain the coherent motion
from the rest. To avoid many conceptual difficulties associated with
filtering as the technique for separating the coherent and incoherent
motions we choose a (relatively) high Reynolds number flow where the
coherent part is clearly contained within a narrow band of frequen-
cies; we then enquire whether the motion associated with this narrow
band is low dimensional.

Figure 6a shows the streamwise velocity fluctuation in the wake
of a circular cylinder, measured about 2 diameters behind the
cylinder and a diameter off-axis; the flow Reynolds number of 10,000
is considered moderately high. Computing the dimension of the attrac-
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time (arb. units) time (arb. units)

vigs 6a,b: The total (unfiltered) and the coherent part respectively
of the streamwise velocity fluctuation in the wake of a
cylinder; Re = 10,000. Both the ordinate and abscissa
are arbitrary but the same in the two figures.
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tor constructed from this signal is doomed to be meaningless in view
of the remarks made earlier. (If the Re®/* dependence is valid, the
extrapolated estimate for v is of the order of 30!) We do know from
power spectral measurements that this signal has a peak at a frequency
f of about 550 Hz; this peak,corresponding to a Strouhal number £4/U

= 0.21, characterizes the coherent part of the motion. 1f we band- °
pass filter this signal between, say, 500 and 600 Hz, the resulting
signature is given in Fig. 6b. Calculations show that the corres-
ponding attractor has a dimension of about 5.5!

It is appropriate to end this discussion with the statement that
the coherent part, as we defined it here, contains a significant
fraction of energy.

4. The fractal geometry of turbulence: a brief note

We have indicated that measurements of attractor dimensions are
beset with increasing uncertainties at increasingly high Reynolds num-
bers. But there are other fractal dimensions whose measurement be-
comes increasingly definitive as Reynolds number increases. It is to
a mention of two of these aspects that this section is devoted; more
details should be forthcoming in [10]. The results of this section
are essentially spurred by Mandelbrot's remarks on several occasions
that many facets of turbulence are fractal.

4a. The fractal dimension of the turbulent/non-turbulent interface

Observations suggest that in high Reynolds number free shear
flows (i.e., open flow systems with no constraining boundary) a sharp
front or interface demarcates the turbulent and non-turbulent regions.
Although a completely accepted view of the detailed nature of this
interface does not seem to exist, a visual or spectral study suggests
that contortions over a wide range of scales occur. This leads one
to the natural expectation that the interface is a fractal surface.

By illuminating a thin section of a flow, and by digitizing the
resulting picture, one can evaluate the fractal dimension of the
curve that separates the turbulent from the non-turbulent regions; a
threshold set on the intensity of illumination separates the two re-
gions. The fractal dimension of the surface bounding turbulent re-
gions is then one more than that of the curve.

Several methods can be adopted to measure the fractal dimension
[11]. We shall describe only one rather briefly. Assign to each
point in the digitized image of the flow a number 1 when the point
lies within the turbulent region, and a number 0 when it lies within
the non-turbulent region. Let the boundary shown in Fig. 7 represent

non~turbulent

v O

turbulent

G

Fig. 7 The boundary between the turbulent and non-turbulent regions.
If a circle of radius e drawn around a given point in the
digitized image crosses the boundary, the point is consider-
ed to be within a distance ¢ from the boundary.
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the boundary between the 1's and the 0's. Count the number Nb(e) of
the digitized points which are within a distance ¢ from the boundary.
If this boundary is a fractal of dimension D, then it is easily shown
from the basic definition of D that

N(e) - 2P (1)

Measurements to be described in [10] show that (1) holds for
scales ranging from the Kolmogorov scale to a fraction of the inte-
gral length scale (but excluding scales of the order of the integral
scale and higher). The measured value of the fractal dimension for
the interface varies between 2.3 and 2.4; there is no identifiable
variation from one type of flow to another.

4b. The fractal dimension of the velocity and scalar dissipation
fields

Another aspect of turbulence that is a candidate for fractal be-
havior is its dissipative (or intermal or small) structure. It has been
well-known for some time that the small structure of turbulence is
intermittent. The essence of scale-similarity arguments in this con-
text is the following. Within a given field of (fully developed)
turbulence, consider a cube with sides of length L , where L_ is an
integral scale of turbulence. If we divide this cube into arbitrarily
large number (n>>1) of smaller cubes of length L. = L n~*/%, the
density of dissipation rate in each of these smaller Qubes is distri-
buted according to a probabilistic 1law. Further subdivision of these
cubes into second-order ones of length L, = L,~!/3 leaves the proba-
bility distribution unaltered. This similarity extends to all scales
of motion until one reaches sizes directly affected by viscosity.
Clearly, this case cries out for fractal description.

Using methods discussed in [11], we have obtained the results
shown in Table 3.

One concludes from here that the dissipation field is not space-
filling (less space-filling in the high Reynolds number regime) and
that (c) is less space-filling than (b) — a result consistent with
observations in oceanography. Note that the result (b) is only at
slight variance with Mandelbrot's [11] original estimate of 2.6.

Table 3: Summary of the fractal dimensions of the dissipation fields

Field Fractal dimension

(a) Kinetic energy dissipation 2.9
(low Reynolds number)*

(b) Kinetic energy dissipation 2.7
(high Reynolds number)

(c) Passive scalar (e.g., 2.6
temperature) dissipation
(high Reynolds number)

* The boundary between the low and high Reynolds number regimes
is not well-defined. A convenient boundary occurs at a microscale
Reynolds number of about 150.
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Theoretical explanations of these fractal dimensions, as well as
of the connections that might exist among them, would be of fundamen-
tal interest.
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