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TRANSCRITICAL FLOWS

TRANSITIONAL AND TURBULENT WAKES AND CHAOTIC DYNADICAL SYSTEMS

K.R. SREENIVASAN

Recent studies of the dynamics of simple nonlinear systems with chaotic
solutions have produced very interesting and (perhaps) profound results
with several implications in many disciplines. However, the interest of
fluid dynamicists in these studies stems primarily from the expectation
that they will help us better understand the process of transition and
turbulence in fluid flows. At this time, much of this expectation remains
untested, especially in 'open' or unconfined fluid systems. This work is
aimed at filling some of this gap.

We have measured in the wake behind a circulazr cylinder, chiefly about 5
diameters benind it, the spectral density of streamwise velocity as a
function of the Reynolds number. If the free stream turbulence is low and
devoid of any discrete fregquency, the signal/noise ratio is large (as in
our experiments where the peak signal/noise ratio is of the order of 106 or
more), and the FFT has adeguate resolution, it can be seen that the transi-
tion to chaotic state (broad-band spectrum) is characterized by the
following stages. As the Reynolds number is increased:

(a) there is first only one basic frequency EL (and its barmonics) aris-
ing from vortex shedding;

(b) this is followed by the appearance of a second frequency £2' incom=
xensurate with the vortex shedding frequency and the various combi-
nations of the two freguencies;

(c) a third incommensurate frequency appears (with several corbinations
of the three frequencies);

(d) at a =lightly higher Reynolds number, the spectrum has a broad-band
character, although the peak corresponding to the vortex t=hedding

remains.

Phase diagrams and Poincaré sections, as well as calculatione of the
dimension of the attractor, confirm the existence of theses stages, which
are mich like those indicated by the Ruelle-Takens-Newhouse picture.
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However, with further increase in Reynolds number, there is a re-emergence
of ordetr, appearance of a fourth independent frequency, and a return to
chaotic state; we emphasize that there is a stage in which there are four
independent degrees of freedom with no chaos. From this second chaotic
state, one can discern the re-emezrgence of order and return to chaos once
again; we suspect that there are many windows of chaos and order - much as
in several dynamical systems. It appears that the discontinuity in the
vortex shedding freguency at Reynolds numbers of about 80 and 130 is
related tw the appearance of chaos and order. ¥Ye have shown that the
dimension of the attractor is truly representztive of the number of
degrees of {reedom in the early stages of transition characterized by dis-
crete frequencies. If this same interpretation of the dimension is true
also in the chaotic state, then the relztively low dimension of the
attractor even at Reynolds number up to about 104 suggests that the number
of degrees of freedom in turbulent flows far past transitional stages is
not hignh, and some kind of slaving principle or renormalization theory
ought to be brought to bear in the reformulation of the "€urbulence prob-
lem'. N

1. INTRODUCTION

The equations governing the (incompressible) motion of fluids are

i .
. C 0 (1.1}
1
2
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where we have restricted ourselves to body-force-free situations and used
suitably normalized quantities, and Re is the Reynolds number. Observa-
tions have shown that for the given boundary conditions {(and external
forces, if applicable), the flow is unigue and steady for Re < Rect, where
Recr is a certain critical value of Re; this is the steady laminar motion.
As Re increases, the fluiQd motion may (first become periodic,
quasi-periodic, etc., and "eventually” chaotic and irregular such that
the details of this state of motion are not reproducible. This state is not
necessarily "turbulence” as generally understoad - whatever this precise-
ly means - but 3t is believed that the turbulent state is reached if the
Reynolds number is high enough. The traditional goal of the stability the-
ory is to describe the evolution from the laminar to the turbulent state,
and the goal of all turbulence theories is to understand the (fully) tur=

pulent state itself.

e e i ¢ o 2 e o e e

61

In the recent past, claims have been made that autaoncmous dynamical sys-—
tems with small number of degrees of freedom, typified by

(1.3)

where i is small znd £, are the control parameters, help us towavrds attain-
ing both of the goals mentioned above.

Several questions arise immediately. One natural question is to what
degree dyramical systems with small number of degrees of freedom are rel-
evant to fluid flows. To elucidate the concept of "degrees of freedom in
fluid flows", let us approximate

4=l a (x;t)e™EX (1.4)

which, with (1.1) and (1.2), yields equations uf the type

da,
-t = F(a iRe}, i=1.% (large). (1.5)

The number of the coefficients ag, which, for given boundary conditioas
for the fluid flow, are capable of variation in time, can now be called the
degrees of freedom of the fluid flow governed by (1.1) and {(1.2). Since the
laminar flow is uniguely specified by the boundary (and external force)
conditions, this number is zero. If Re increases past Recr, only a finite
number of degrees of freedom are excited, and hence it appears that, at
least in the transcritical regime, consideration of a small number of

degrees of freedom is adequate.

An interesting hypothesis, which we shall examine in this paper, is that
the aumber of degrees of freedom (not necessarily in the sense described
above) remains small even in high Reynolds number turbulence.

Assuming that the number of degrees of freedom excited in the neighbour-
hocd of the critical state is indeed small, we must ask if the behaviour in
the tranecritical regime is independent of the precise nature of the
right-hand side of equatians (1.3) and (2.5). The reason most often cited
in support of the belief that the detailed structure of fi in (1.3) is
immaterial in understanding the evolution of chaatic state in dymamical
systems, 1s the RUELLE-TAKENS theorem [1], which states that chaos (or
strange attractor) sets in abruptly, following a few HOPF bifurcations,
and that this behaviour is "typical". (In a later paper, BEWHOUSE, RUZLLE
& TBEXENS [2] consider motion on a three-torus (i.e., quasi-periodic moticn
with three incommensurate frequencies) and introduce a small nonlinear
coupling among the three oscillators. They argue that to produce a broad-
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pand spectral density, it is enough to have a weak coupling among the three
oscillators.). Whether or not fluid flows are “typical”™ in the sense that
RUELLE & TAKENS discuss is not clear at all, and one should atteapt to
answer this question by looking at the specific form of F in (1.5) and by
cbserving the actual bifurcations in experiments on. laminar-turbulent

transition.

Finally, one must mention the predominant role played by spatial chaos
(and order!) in turbulent flows of fluids. Autenomous dynamical systems,
on the other hand, do not contain any space information. While spatial
order and chaos in fluid turbulence may in some way be related to temporal
chaos.and order, it is clear that there is little that (autonomous) dynam-
ical systems can say directly about the former.

Several Dpeautiful experiments that have been carried out in the

—— Taylor=Couette flow (e.g., Refs, 3,4) and the convection box (Refs. 5,6)

have lent support to the idea that fluid flows bear a close correspondence
to dynamical systems. This in itself is undoubtedly remarkable, but it
should be remembered that these two flows are special iA the feollowing
sense. In all "closed flow" systems - of which the convection box and the
Taylor-Couette flow are popular examples - each value of the control
parameter (for example, the rotation speed of the inner cylinder in the
Taylor-Couette problem) characterizes a given state of the flow globally.
At least in principle, one can follow the various stages of transition to
turbulence in as much detail as possible by exercising-infinitely fine
control over the control parameter. This is not necessarily true for
another class of flows, which we may call "open systems", e.g., channel
flows, wakes, jets, boundary layers, etc.. Consider the channel (or the
Plane Poiseuille) flow. For a given value of the control parameter Re, the
flow can be laminar at one location, transitional at another, and turbu-
lent at yet another (dowanstream) location; the same is true of jets,
wakes, for example. As a result, at least two complications arise. First,
in open systems, observations camnot be made with such exactitude as in
closed flow systems. Second, there could in principle be a strong coupling
between different phenomena in different spatial locations in a way that
is peculiar to the particular flow in question.

On balance, all these considerations suggested to us that it is desirable
to look at some open flows to dstermine the extent to which
(low-dimensional) dynamical systems can assist us in our goals of under-
standing transition arnd turbulence in fluid flows. This is the motivation
for the work described in this paper, which is to be viewed more as a prog-
ress report than as a complete account; obviously much more remains to be
done. Our approach is to sslect well-known flows and follow the bjfurca-
tions as closely as possible. Surprisingly, while much work has been done
on these flows in the past, an amazing amount of new information can still
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be acguired that will facilitate clerifying the relation between chaotic
dynamical systems and fluid £low transition and turbulence.

2. EXPERIMENTS

Our first attempts were (for historical reasons) on flow in a coiled pipe,
SREENIVASAN & STRYKOWSKI [7]. Spectral measurements indicated that tran-
sition to turbulence occurred somewhat similarly to the RUELLE-TAKENS
picture; that is, with increasing Re, the pover spectral density of the
streamwise velocity fluctuation shows essentially a single peak, two
peaks and then three peaks immediately followed by the onset of a
broad-pand camponent. This behaviour mighbt suggest the presence of a
strange attractor. .Our subsequent evaluation of the "dimension" (see sec-
tion 4) of the attractor indicated that this quantity was small (not
greater than about 6), at least at Reynolds numbers not too far from the
transition value. Our calculations at much higher Re were inconclusive,
due to various computational and instrumentation resoluticn problems; it
was also displeasing that spectral pea.hs were not as sharp or as narrow as
desired. A further problem seemed to be the somewhat unusual f£low config-
uration, which itself led to many physically unfamiliar behaviours,
making interpretations of results somewhat difficult. Although our fur-
ther work has led to a better understanding of that flow, it seemed
necessary to make measurexents in other less unfamiliar flows of common
occurrence. We decided to make measurements in a two-dimensional wake,
covering a Reynolds number range from the onset of vortex shedding to an
"essentially turbulent" state.

All experiments vere done in a 70 cm x 50 cm suction-type wind tunnel with
speed control obtained by varying the armature current of the d.c. motor
driving the fan. At the speeds of the experiments, the free-stream turbu-
lence level) (including the wind tunael unsteadiness) was less than about
0.2 ¥ - neither very small nor very large in comparison with most existing
facilities. The spectral density of the streamwise velocity fluctuation u
in the free-stream showed no discrete peaks. Three wake generators were
used. Two of them were nylon threads stretched across the width of the' wind
tunnel, 0.024 cm and 0.036 cm in diameter, giving agpect ratios of about
2000 and 1500 respectively; the third was an aluminum tube 4 mm in diameter
(aspect ratio = L75).

A large part of the data to be presented below is in the form of power spec-
tral densities of u. For nearly all the signals, digitization was done at
sufficiently high frequency (60 kHz or more) to ensure that whenever the
signal was periadic, at least 30 digiticed points were contained in one
pericd of the ‘basic frequency (so that it was a good representation of the
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____=naleog signal). . Further  the eantire length of the signal, which contained . = .

at least 100 cycles of the basic frequency, was Fourier transformed at
once, using the Cooley-Tukey FFT algorithm. The overriding criterion was
that the spectral resclution should be as good as possible (here, about
0.9 Hz compared with shedding frequencies of the order of 2000 Hz or more)

and must not miss any low frequency madulations.

All velocity signals were aobtained with s hot-wire operated an a DISA
55M01 constant temperature anemocmeter. The speed of the tunnel was moni-
tored with a Pitot tube caonnected to a calibrated MKS Baratron with ade-
quate resolution (and an averager). The hot-wire and the Pitot tube were
mounted on 2 specially-made =lim holder. Most measurements were made
approximately 5 diameters downstream from the cylinder and about a diam-
eter or so off the centerplane where the signal was the largest (see Figure
1).

Figure 2 shows the logarithm (to base 20) of the normalized power spectral
density of the hot-wire signal at a Heynolds number Re (based on the free
stream velocity and the diameter of the vortex shedding cylinder) of about
36, wnich is just about the onset value for vortex shedding. Notice thz¢
the general noise level is around 10—8, while the peak of the spectrum
(marked ‘(L) , corresponding to the basic vortex shedding frequency behind

the cylinder cylinder, is at around ’10_0‘5, about 7 1/2 orders of magni-

tude higher than the noise level! The sharpness is excellent, which also
holds for the other peaks to the right of fZ' which are the harmonics of

L.
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Fig. 2 Frequency spectrum of streamwise velocity fluctuations at Re = 36.
Note that the power is plotted on a logarithmic scale. The peak at
fy = 590 Hz corresponding to vortex shedding, and the subsequent
strong peaks above the noige level are simply harmonics of ft.

Notice that the backgrcund noise is not white.

At a somewhat higher Reynolds number of 54, there appear a number of peaks
in the spectrum (Figure 3a). As shown in the expanded version (Figure 3b),
all the peaks can be identified precisely in terms of the intezraction of
the two frequencies - the basic vortex shedding freguency fl and another
incommensurate {requency fz. That it contains aonly two frequencies can be
seen also from a combination of the phase plot and its Poincarée section
(Figures 4 and S). Figure 4, which is a computer plot of the time deriva-
tive 1 of the =ignal against the signal u itself, is seen to be a
complicated structure; the Poincaré section (Figure 5), which is eimply &
vs u sampled at the frequency f,. is essentially a circle - as it ought to
be if the signal contained only frequencies f1 and fz. At a slightly higher
Reynolds number of 62, the second f{requency becomes much weaker (Figure
6); that it has not disappeared can be seen clearly from the corresponding
phase plot (Figure 7). At Re = 76, several peaks can be seen in the spec-
tral density (Figure 8) and, as shown in detail in Figure 9, these peaks
can all be identified with great precision (actually 5 decimal places) as
arising from the interaction of three irrational frequencies. After a
finite (though small) increase in Reynolds number, one can s=e algount an
order of magnitude increase in broad-band frequency content to the left of

,fl (Figure 10). In the language of dynamical systems, we may now consider

chaas to have set in.

This progression towards chacs - underlying the possihle presence of a
strange attractor - proceeds more or less according to the prescription
given by NEWHOUSE, RUELLE & TAKENS [2]. There are deviations! These
include the conspicuous weakening at Re = 62 of the second frequency after
its strong appearance at Re = 54, as well as the moderate and finite
increase in Reynolds numbev that is required between the appearance of the
third frequenty (Re = 76) and the onset of chaos (Re = 93). It.is st3ll
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Expanded version of Figure 3a in the frequency range 0 - 2200 Hz.
Note that all significant peaks in Figure 3a are simply linear
combinations of £ and another incommensurate frequency £; = 119
Hz.
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- A phase plot from the velocity

signal u at Re = 54. The ordinate
is simply the time derivative U of
the abscissa u. Number of data
points = 3000.
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62. Notice that the second freguency

has diminished in importance.




Fig. 7

Phase plot for Re = 62; all de=tails

as in Fiqure 4.

Fig. 8

Frequency spectrum at Re = 76.
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range has gone up by an order of magnitude or so.

fig. 10

extraordinazry that the "typical" behaviour indicated by RUELLE & TAKENS
for a highly idealized mathematical system should have a nontrivial bear-
ing on a rather complicated system.

It should be emphasized that the state we have recogmized as chaotic is
still far away from beiag turbulent. In fact, most of the energy is still
contained in the discrete shedding freguency. Thus further increase in
Reynolds number is in order.

With further increase in Reynolds number, the flow evolves iato a much
better organited state (Figure 11) at Re = 102, and the signal itself looks
more periodic. We believe that there are at least two basic fregueacies
present in the system, although, because of the their low amplitude, we
have been unable to recognize them precisely or to establish their can-
nection to the frequencies occurring before the onset of chaos at Re = 93.

=12
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Fig. 11 ”Rec_;bdering" at Re = 102.
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Fig. 12b Expanded version of Figure 12a in the raunge O - 3 kHz. Notice
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Fig. 13 Freguency spectrum at Re = 127. Notice the reduced relative domi-
nance of the discrete freguencies f , £ , and £ in comparison
with £

With further increase in Re, there is a reappearance (Re = {15) of rela-
tively strong discrete coxponents (Figure 12a); and, as outlined in detail
in Figure 12b, there ic a definite need for four frequencies and their var-
ious combinations to identify all the dominant peaks. Further increase in
Re results in the weakening (but not the disappearance) of the discrete
components at Be = 127 (Figure 13) and a reappearance of chaos at Re = 135
(Figure 14), as indicated by the broadband component in the power spectral
density. This second appearance of chaos is marked by a larger fraction of
energy content in the broadband component than was the case when chaos set
in the first time at Re = 93.

Purther increase in Re results in a return to a more ordered state (Figure
15), but this return to "order" is somewhat less convincing than the pre-
vious instance at Re = 102. As Re increases further, one sees the reappear-
ance of chaos (Figure 16) at Re = 164; presumably, greater resolution in
our measurements would reveal steps similar to those preceeding the
appearance of chaotic states at Re = 93 and 135. This reappearance of chaos
is also marked by a much higher fraction of energy in the broadband compo-
nent of motion (or "background noise', as it is often labeled).

Two remarks should be made: First, we note that there is a well-defined
state with four discrete freguencies (and their linear combinationg)
without the presence of a strange attractor - a statement we shall justify
later (Asect‘xcm 4). This is in contradiction to the NEWHOUSE-RUELLE-TAKENS
projection, and to the popular - and as far as we know unproven - statement
that "period three means chaos"., Second, the complicated appearances and
reappearance of ordering and chaos is not unusual in other dynamical sys-

tems, either.

The sequence of events described above is susmarized in Figure 17. - Rven
though these precise details have not been noted before, we believe that
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Fig. 17 Summary of the events.
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related observations in wakes have in fact been made by previous research-
ers. For example, consider the windows of chaos and order alluded to
zbove. Although we have not made detailed spectral measurements at higher
Reynolds numbers, it is our contention that the succession of order end
chaos in a wake continues indefinitely even at very high Reynolds numbers.
This was noted several years ago by ROSHXO [8], who showed that order reap-
pears in the Reynolds number range of 10~ . More recently, the fluctuating
lift force measurem=nts of SCHEWE [9] on a circular cylinder showsd that

the spectral depmsity of the lift coefficient was broad at Re = 3.7 x 10
(upper end of tramnsition) and became increasingly narrow until, at Re =
7.1 x 106, it was quite sharp, rather like a narrow-band-pass filtered
signal. Although the fluctuating lift force can at best be related to the
squared fluctuating velocity filtered via the transfer function corre-
sponding to the response of the circular cylinder, its behaviour is
nevertheless indicative of the flow itself in the vicinity of the

cylinder.

As another example, consider the variation of the vortex shedding frequen-
cy with respect to Reynolds number (Figure 18). It can immediately be seen
that the fregquency does not monctonically increase with Re, but shows (at
least) two distinct breaks. These breaks appear whenever there is a tran-
sition to chaos and reorderirg. Such breaks bhave been noted before
[10,31,12], and perhaps most convincingly demonstrated in a beautiful
experiment by FRIEHE [13]. Although the appearance of these breaks has
been disputed, GASTER [1¢], our own data tend to support the conclusicn
that they do indeed appear. In TRITION's first observations of the phenom-
ena [10), a discontinuity in fl vs Re curve was cbserved in the range
€0 <= Re <= 90, While in his later experiments, TRITTON [12], it appeared
at around Re = 110. Our conclusion is that they both appear, in agreement
with FRIEHE's observation. Friehe varied the Reynolds pumber continuously
at a low rate and obtained on an x~y plotter the freguency-Re variation
directly.

/{0 2Lmm
4L /
///C:D.ssmm Fig. 18
Variation of the vortex shedding
1

r freguency with respect to Reynolds
00 Re 20 number .
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4. DIMENSION OF THE STRANGE ATTRACTOR

It is clearly worth enguiring whether or ‘not there is cne single quantity
that can successfully describe the many subtle changes that occur in the
frequency spectra. There is indeed such a quantity, namely the dimension
of the turbulence attractor. The concept of the dimension of the attractor
is highlighted in studies of dynamical systems, and we may briefly digress
here to discuse its meaning before presenting resulte of our measurements.

Let us consider that the attractor for turbulent signals is embedded in a
(large) d-dimensiopal phase gpace. Let N(e) be the number of d-dimensional
cubes of linear dimension ¢ reguired to cover the attractor to an accuracy
¢. Obviously, making ¢ smaller renders N larger, but if the limiting guan-

tity

fim lo—qﬂ_i(ﬂ 14.1}
€0 log [__c_)

exists, it will be called the dimension of the attractor. An important
characteristic of a strange attractor is that D is small even though d is
large. We would be interested to see if turbulence has this property.

To cee what the dimension means, let us write (4.1) as

niey e 2; (4.2)
that is, if one specifies D and the accuracy ¢ to which we need €o determine
the attractor, we sutcmatically know the number of cubes reguired to cover
the attractor. The only missing information will now be the position of
the cubes in the phase space. Thus, D can be considered as a measure of how
much more informatiaon is required in order to specify the attractor com-
pletely; the larger the value of D, the larger is this missing

information.

The dimension D, as defined in (4.1), has been called the fractal dimen—
sion by MANDELSRUT [15], who has contributed a lot to our understanding of
the gquantity. As defired ip (¢.1), D is a geametric property of the attrac-
tor, and does not take into account the fact that a typical trajectory may
visit some region of the phase space more freguently than others. Several
measures taking this probability into account nave been defined, and are
pelieved to be closely related to the dynamical properties of the attrac-
tor. The most well-known among them are:

(a) the pointwise dimensicn
(b) the Grassberger-Procaccia dimension.
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I1f the attractor is uniform, i.e., if each region in the phase space is as
likely to be visited by the trajectory as every other, then the above two
measures equal D defined by (4.1). Otherwise, they are generally smaller
than D.

Let Sc(x) be a sphere of radius e centered about a point x® on the
attractor, end let p be the probability measure on the attractor. Then, the
pointwise dimension is defined , FARMER, OTT & YURKE [16], as

loguls (x))

Togc 4.0

d_(x) =*rim
P €0
or

4
kIS _(x)] =~ <P (4-4)

GRASSBERGER & PROCACCIA (17) have defined another measuzre v that is
related to the dimension of the attractor, as well as the
information-theoretic entropy. The procedure for computing v is as
follows:

(1) Obtain the correlating sum C(c) from:

N
Cle) = !.j.m-—% I Hie-|x,-x.[]
N+s N i=3=1 Bt
i3

where H is the Heaviside step function and 51—5)‘ is difference in the two
vector positions x5 and {tj on the phase space. Basically, what C does is to
consider a window of size £, and start a clock that ticks each time the dif-
ference I’fi'fjl lies within the box of size t¢. Thus, one essentially has

Ctc) = Lim — [number of pairs of points {i,)) with |xi—xj|<t]

(ii) Obtain v from the relation, GRASSBERGER & PROCACCIA (17) ,

c(e) ~ € as e-o (4.5)

In practice, uot all components of x are known for constructing the phase
space, but perhaps only one component, say X One then constructs a

d-dimensional "phase space' using delay cooxrdinates

{xm’ Xper’ Hme2r’ 7 Xoe (d-1 )r}

where v is some interval which is neither too small nor too large. 1fdis
substantially larger than v itself, reasonable results can be obtained.
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Since ane does not a priori know v, one constructs several phase spaces of
increasingly large values of 4 and evaluates v for each of them; v will
first increase with d and eventually asymptote to a constant independent
of d. This asymptotic value of v is of interest to us as a measure of the
dimension of the strange attractor.

He have computed both d_ and v for turbulent velocity signals as described
abave, using the streamwise velocity fluctuations u and the delay coordi-
nates described above to comstruct the phase space. Our confidence in the
numerical values of these measures of dimension is very good when they are
less than about 5 or 6, but becames increasingly shaky at higher values.
However, we do believe that they are reasonable, judging from their
repeatability and the several precautions we have taken (such as taking
the proper limit as ¢ * O and using, in a couple of cases, double precision
arithmetic in our computations). Figure 19 gives the data on v and dp a5 3
function of the Reynolds numbers.

Several observations must be made. Concentrating first on the data at Rey-
nolds mumbers with discrete spectral peaks, we may conclude the following.
At Re = 36, vhere there is only one independent degree of freedom (carre-
sponding to the vortex shedding) (see Figure 2), the dimension of the
attractor does indeed turn out to be about 1. When only two freguencies are
present (Figures 3 and 4, Re = 54¢ and 62 respectively), the dimension is
about 2, independent of the relative magnitude of the second frequency.
One must note that at Re = 62, where the second frequency is of smaller
amplitude, it is necessary to take the computations of the dimension to
fairly small values of &. At Re = 76, vwhere there are three dominant fre-
quencies, the dimension is about 2.7, aot very different from the number
of independent freguencies present. Lastly, at Re = 11S, where thsre are
four independent frequencies, the calculated v is not very different from
4. Thus, making some small allowsnces for the computational uncertainties
in celculating the dimension, it is seen to be a reascnable representation

of the number of degrees of freedom in the system.

2
10 + GRASSBERGER - PROCACCIA
o PAINTWI SE
0 .
o Fig. 19
10 © 0L variati ~ i i
ion of the dimension of the
o © attractor with respect to Reynolds
% e . numbers. Note that the dimension
° hd is about 1 vhen there is anly vor-
e tex shedding (Re = 136), about 2
n[ R when there are only 2 frequencies
10 o 5 '3 . (Re = 54), about 3 when there are 3
10 10 10 Re 10 frequencies, etc..
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Now ge=tting back to other Reynolds numbers, it is clear that the first
appearance of chaos at Re = 93 is characterized by a jump in the dimension
(to about 4.3), whereas a return to "order® at Re = 102 is characterized by
a dip in the dimensiou. We have not computed the dimensions in the Reynolds
rumber range 200 - 500, but calculations in higher Reynolds number range
up to about 7000 indicate that it does go up with Re, al though not rapidly.
In fact, it is about 20 at Re = 7000.

Keeping the above interpretation of the dimensien in mind - namely, that
it is indicative of the degtees of freedom of the system - it follows that
the number of degrees of freedom even at Re = 7000 is of the order of 20. If
this is true, it is clear that this information must be used to the best

advantage.

It is pertinent to point out that, apart from our own earlier measurements

of the dimension of the turbulence attractor, Reference ¢ gives such meas-

urements for a TAYLOR-COURTTE flow.

5. DISCUSSION

We have chown tbat many of the qualitative features of transition to tur-
bulence behind circular cylinders aze 3in essential- agreement with the
behaviour of dynamical systems. There are some deviations, but it 3s sur-
prising that the dynamics of fluid motiocn which we believe to be partic-
ularly governed by the Navier-Stokes equations should be represented by
extremely simple systems at all. We hzve shown that during early stages of
transition, a strong connecticn (speculated previously, but never conclu-
sively shown to bhe true) exists belween the dimension of the attractor and
the degrees of freedom of the fluid system. Provided that this interpreta-
tion is true at higher Reynolds numbers also, our results suggest that the
degrees of £zeedom are not too many, even up to Reynolds number of the
order of 2079. We have several reasons to believe that the dimension of the
attractor, as computed according ¢to (4.4) and (4. 5), is not very high,
even at much luaher Reynolds number carresponding to the fully turbulent
state (Re = 10 ). Most of our data has been at 5 diameters dovnstream from
. the cylinder. At least at low enough Reynolds numbers, much the same hap~
rens at x/d = 50, for example.

Do we then conclude that the key to understanding transition and turbu-
lence Iies completely in the study of dynamical systems? We think that
such statements are optimistic at best and misguided at worst, even though
there is much that we can learn fram dynamical systems. Consider our own
experiments. Dyrnamical systems theory can correctly tell us that chaos
occurs after 3 bifurcations, but does not at all tell us what those bifur-

<, ‘AA'_,-__'.'...:_,L;.\.;.__'.;-,-_:;,

S e

S Ll
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cations are! The origin and physical structure of these bifurcations can
be discovered only by looking at the particular form of £ in (1.5). For the
same reasan, it will perhaps never Be possible to predict CD vs Re curve
for the circular cylinder without worrying about the special form of F in
(1.5). Furthermore, the spatial structure of the wake is an important
element completely outside the scope of dynamical systems theory - at
least as as it stands today.

What do we make of the fact that the dimensions of the attractor is not too
high even at high Re? If the attractor is sufficiently low-dimensional, a
clever projection of it can perhaps be used to our advantage. If the
attractor dimension is even as high as 20, no matter what projection che
devises, it will look uniformly dark. So it is unclear at this stage how
this information could be used, except in the hope that it lends credence
to concepts embodied in renormalization group theory or slaving

principle, etc.. Perhaps it is appropriate to remind ourselves that same

excellent fluid dynamicists have for many years toyed with the idea of a
relatively small number of degrees of freedom in turbulence, and have not

gon= very far!
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