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ABSTRACT

Recent studies of the dynamics of low-dimensional nonlinear systems with chaotic
solutions have produced very interesting and profound results with several implica-
tions in many disciplines dealing with nonlinear equations. However, the interest of
fluid dynamicists in these studies stems primarily from the expectation that they
will help us understand better the onset as well as dynamics of turbulence in fluid
flows. At this time, much of this expectation remains untested, especially in 'open'
or unconfined fluid flows. This work is aimed at filling some of this gap.

_ Measurements made in the wake of a circular cylinder, chiefly in the Reynolds
number range of about 30-10", have been analyzed to show aspects of similarity with
low-dimensional chaotic dynamical systems. In particular, it is shown that the ini-
tial stages of transiﬁion to turhbulence are characterized by narrow windows of chaos
interspersed between regions of order. The route to the first appearance of chaos
is much like that envisaged by Ruelle & Takens§ with further increase in Reynolds
number, chaos disappears and a return to three-frequency quasiperiodicity occurs.
This is followed in turn by the reappearance of chaos, a return to four-frequency
quasiperiodicity, reappearance of chaos yet again, and so on. We have observed sev-
eral alternations between order and chaos below a Reynolds number of about 200, and
suspect that many more exist even in the higher Reynolds number region. Each window
of chaos is associated with a near-discontinuity in the vortex shedding frequency
and the rotation number, as well as a dip in the amplitude of the vortex shedding
mode. It is further shown that the dimension of the attractor constructed using time
delays from the measured velocity signals is truly representative of the number of
degrees of freedom in the ordered states interspersed between windows of chaos; it is
fractional within the windows of chaos, and is higher than those in the neighbouring
regions of order. Our measurements suggest that the dimension is no more than ahout
20 even at a moderately high Reynolds number of 10%, and that it probably settles

down at about that value.
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1. INTRODUCTION

a. General remarks

The principal parameter of incompressible viscous flows, in situations free of
body forces, is the Reynolds number, Re. Observations show that for given (fixed or
time-independent) boundary conditions (and external forces if applicable), the flow
is unique and steady for Re < Recr, where ReCr is a certain critical value of Re;
this is the steady laminar motion. As Re increases, the fluid motion may first be-
come periodic, quasiperiodic, and 'eventually' chaotic. (Chaos is defined better in
section 3 and in the appendix, but we shall also loosely use the word to designate
a state in which the details of motion are not reproducible.) This chaotic state is
not necessarily turbulence as generally understood — and we shall discuss this short-
ly — but it is believed that one attains the turbulent state if the Reynolds number
is taken to a sufficiently high value. The goal of the stability theory is to under-
stand how the evolution from the laminar to the turbulent state occurs, while tur-
bulence theories aim at unearthing and predicting the mysteries of the (fully) tur-

bulent state itself.



It is generally believed that the key to both these problems lies in the Navier-
Stokes (NS) equations, and that no additional hypotheses of fundamental nature are
required for describing either the onset of turbulence or its dynamics. Much effort
has thus been spent on mastering the NS equations. However, the difficulties, both
analytical and computational (at high enough Reynolds numbers), remain intimidating.

In the recent past, claims have been made that autonomous dynamical systems

with small number of degrees of freedom, typified by

T = By §i), " (1.1)

where the bi characterize the state of the system (the so-called 'state variables'),
i is a small integer, and Ei are the so-called control parameters (analogous to Re
in the NS equatioms), help us towards attaining both the goals mentioned above. It
is to a discussion of aspects of these claims, via an example of £luid flow behind

circular cylinders, that this paper is devoted.
b. Remarks on degrees of freedom, genericity, and spatial chaos

Several questions arise immediately. One natural question concerns the rele-
vance to fluid flows of low-dimensional dynamical systems. To give some meaning to
the concept of degrees of freedom in fluid flows, let us approximate the velocity
vector uj appearing in the NS equations as

ikex ,
ug =S ase)e~ = (G = 1,2,3), (1.2)
k

where the wave number vector k is an element of a discrete (finite or infinite) set.

The NS equations can then be written formally as

Bai(g;t)

T Re), i = 1,2,....N (large). C(1.3)

= F(ai;

The number of the coefficients a; which, for given boundary conditions for the fluid
flow, are capable of variation in time can now be called the degrees of freedom of
the fluid flow governed by the NS equations (to within the approximation implied in

(1.2) and (1.3)). Since the laminar flow is uniquely specified by the boundary

“(and external force) conditions, this number is zero. If Re increases just past

Recr, only a few degrees of freedom are excited, and hence it appears that, at least
in the positive neighbourhood of ReCr (to be called transcritical region henceforth),
consideration of these few degrees of freedom is adequate.

An interesting hypothesis (which we shall examine in this paper)'is that the
number of degrees of freedom (not necessarily in the sense described above) remains

small even in (certain type of) high Reynolds number turbulence.



Assuming that the number of degrees of freedom excited in the transcritical re~
gion is indeed small, we must ask whether the behavior in this transcritical region
does not depend on the broad nature of the right hand side of equations (1.1) and
(1.3). The most often cited justification for the belief that this dependence is in
some sense of secondary importance comes from the work of Ruelle & Takens [l] and
Newhouse, Ruelle & Takens [2] which indicates that chaos sets in abruptly following
a few Hopf bifurcations, and that this behavior is 'generic' or 'typical'.

The words 'generic' and 'genericity' find their frequent use in the literature
on dynamical systems, and so, it is perhaps useful to discuss the concept briefly.
Ruelle & Takens make this concept quite specific for the vector fields they were
considering, but we shall be content with a rather loose qualitative description..
Consider as an example, a class of functions possessing continuous derivatives up to
a certain order, and satisfying differential equations of the type (1.1). Proper-
ties of this class of functions which are the rule and not the exception, and which
do not depend on the precise nature of the right hand side of (1.1), are called ge-
neric. The conclusions of Ruelle & Takens strictly hold for an idealized mathemat-
ical system, and whether the concept of genericity is powerful enough to embrace fluid
systems is not clear. One should attempt to answer this question by looking at the
specific form of F in (1.3) and/or by observing the actual bifurcations in experi-
ments on laminar-turbulent transition.

Even if the concept of genericity does hold for fluid flows, it is not obvious
that interesting nongeneric phenomena do not occur. To make this notion specific,
let us consider the following rather far-fetched example. Suppose we link (as in our
example above) genericity to the existence of velocity fields possessing continuous
derivatives of a certain order. Those generic properties may be irrelevant to a turb-
ulent boundary layer since one cannot exclude the possibility that at some moment
during bursting near the wall (a key event sustaining turbulence production) this
smoothness condition is destroyed in spite of viscosity. It is therefore sensible to
keep in mind that nongeneric behavior is neither uninteresting nor unlikely, espe-
cially when conditions such as configurational symmetry, vicinity to wall, play an
important role in the evolution of the flow.

Finally, one must mention the predominant role played by spatial chaos (and
order!) in turbulent flows of fluids. An important characteristic of fluid turbu-
lence is random vorticity, whose presence necessarily implies that the velocity vec-
tor is a random function of position. Autonomous dynamical systems of the type (1.1),
on the other hand, do not contain any space information. While temporal chaos in
fluid turbulence may in some sense be symptomatic of spatial chaos, it is clear that
autonomous dynamical systems have little to say directly about the latter, at least

at the current state of development.

c. 'Closed' and 'open' flow systems
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Notwithstanding these remarks, it is necessary to note that several beautiful
experiments now exist in the Taylor-Couette flow (e.g., Refs. 3, 4 and 5) and the
convection box (e.g., Refs. 5 and 7) which have lent support to the notion that the
behavior of fluid flows in the transcritical region could be similar to that of low-
dimensional dynamical systems. This in itself is undoubtedly remarkable, but it should
be remembered that these two flows are special in the following sense. In all 'closed
flow' systems — of which the convection box and the Taylor-Couette flow are two pop-
ular examples — the boundary is fixed so that only certain class of eigenfunctions
can be selected by the system; this does not hold for another class of flows we may
call 'open flow systems' — for example, boundary layers, wakes, jets — in which the
flow boundaries are continuously changing with position. Thus, while in closed flow
systems each value of the control parameter (for example, the rotation speed of the
inner cylinder in the Taylor-Couette problem) characterizes a given state of the flow
globally, this is not true of open systems. Consider as an example the near field of
a circular jet. For a given set of experimental conditions, the flow can be laminar
at one location, transitional at another and turbulent at yet another (downstream)
location. This usually sets up a strong coupling between different phenomena in dif-
ferent spatial positions in a way that is peculiar to the particular flow in question.
Secondly, the nature and influence of external disturbances (or the 'noise', or the
'hackground or freestream turbulence') is more delicate and difficult to ascertain
in open flows: the noise, which is partly a remnant of complex flow manipulation de-
vices and partly of the 'long range' pressure perturbations, is not 'structureless'
or 'white', no matter how well controlled, Finally, it is well known that closed flow
systems can be driven to different states by means of different start-up processes;
for example, different number of Taylor vortices can be observed in a Taylor-Couette
apparatus depending on different start-up accelerations [8]. This type of path-sen-
sitivity in a temporal sense does not apply to open systems, where the overriding

factor is the path-sensitivity in a spatial sense (i.e., the 'upstream influence').

d. Scope of the paper

On balance, all these considerations suggested to us that it is desirable to
look at some open flows to determine the extent to which dynamical systems can assist
us in our goals of undérstanding transition and turbulence in fluid flows. This is
the motivation for the work described in this paper, which is to be viewed more as a
progress report than as a complete account; obviously much more remains to be done.
Our approach is to select well-known flows and follow the bifurcations as closely as
possible; (We reported some of our earlier work in pipe flows in [9] and wake work

in [10].) Surprisingly, while much work has been done in these flows in the past, an



amazing amount of new information can still be acquired that will facilitate clari-
fying the relation between low-dimensional chaotic systems and fluid flow transition
and turbulence. Part of the reason for this is undoubtedly that the details omne

looks for are often dictated by contemporary concerns.

2. EXPERIMENTS

a. Experimental conditions

Although we have conducted experiments in wakes, jets and pipe flows, we choose
to discuss here only our wind tunnel experiments in two-dimensional wakes behind cir-
cular cylinders. The Reynolds number range covered is from about 30 (slightly below
the vortex shedding value) to about 10*. Two wind tunnels — one of the blower type
and one of the suction type — were used. Nylon threads, stainless steel wires and
aluminium tubes, stretched tightly across the width of the wind tunnels, were used
as wake generators. The aspect ratio varied between about 70 and 2000. The basic

experimental conditions are summarized in Table 1.

U //wake generator

> -
Sy

d ~x/d ~v/d aspect ratio wind tunnel characteristics

(mm)

0.24 5 1 2000

0.24 50 1 2000 suction type; turbulence
level = 0.27 at speeds

0.36 > 1 1330 of interest

4.0 5 1 170

0.36 11 1 70 ‘ blower type; turbulence

level varied from 0.68%
at speeds ® 1 m/s to
0.06% at speeds = 10 m/s

Table 1. The flow configuration and experimental conditions

All velocity signals were obtained with a hot-wire operated om a DISA 55M01 con-
stant temperature anemometer. The speed of the tunnel was monitored with a Pitot

tube connected to a calibrated MKS Baratron with adequate resolution ( and an aver—



ager). The hot-wire and the Pitot tube were mounted on a specially designed slim
holder. -

Some of the data to be presented in this and later sections is in the form of
power spectral density of the streamwise velocity component, u. Nearly all the sig-
nals were digitized at sufficiently high frequency (60 kHz or more) to ensure that,
whenever the signal was periodic, at least 30 digitized points were contained in one
period of the basic frequency (so that it was a good representation of the analog
signal). PFurther, the entire length of the signal (which_contained at least 100 cy-
cles of the basic frequency) was Fourier transformed at once using the Cooley-Tukey
FFT algorithm. The overriding criterion was that the spectral resolution should be
as good as possible (here, between 0.5 Hz and 2 Hz compared with shedding frequen-

cies of the order of 2000 Hz or more) and that one must not miss any low frequency

modulations.
b. The background turbulence

We have worked with varying levels of background turbulence, and found that the
occurrence of different stages of transition reported here is in itself not terribly
sensitive to the turbulence level as long as it is not too high; larger turbulence
levels blur the distinction between different stages and alter the details somewhat
erratically. One should, however, strive to eliminate all strong discrete frequency
components in the background turbulence structure.

Figure la shows a typical power spectral density of u in the freestream at Re =
60. (The ordinate is the logarithm to base 10 of the power.) The 'noise' (though
devoid of any discrete peaks) does not appear to be 'white' but has a much larger
low frequency component. Figure 1b shows the power spectral density measured with
the flow completely shut off, but the hot-wire and other electronic instruments op-
erating the same way as before. It is clear that the anomalously high low frequency
content is not representative of the flow itself, but of electronic and computer
noise. Allowance should thus be made for this fact in the interpretation of the

spectral data to follow.

3. RESULTS FROM SPECTRAL MEASUREMENTS

a. Route to chaos: the first appearance

Figure 2 shows the logarithm (to base 10) of the normalized power spectral den-

sity of u at a Reynolds number (based on the freestream velocity and the diameter
of the cylinder) of about 36, which is approximately the onset value for vortex shed-

ding. Notice that the instrumentation and other noise level is around 1078, while
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and digitizer, plus freestream disturbances, Re = 60; (b) instrumentation and

digitizer noise only with no flow.
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FIGURE 2: Normalized frequency spectrum of u at Re = 36. Note that the power P is
plotted on a logarithmic scale (to base 10). The peak at f17¥ 590 Hz corresponds to
the vortex shedding, and the subsequent strong peaks above the noise level are simply

harmonics of fl'

the peak of the spectrum (marked fl), corresponding to the basic vortex shedding fre~

05 about 7% orders of magnitude higher

quency behind the cylinder, is at round 10
than the noise level! The sharpness of the peak (as well as of the other peaks to
the right of fl which are the harmonics of fl) is excellent.

At a somewhat higher Reynolds number of 54, there appear a number of peaks in
the spectrum (figure 3a); as shown in the expanded version (figure 3b) all the peaks
can be identified precisely in terms of the interaction of the two frequencies — the
basic vortex éhedding frequency fl and another incommensurate frequency f2‘

At an Re = 66 the spectrum (figure 4) shows broadened peaks with no overwhelm-
ingly strong discrete components — quite a different situation from that of figures
2 and 3. One might say, in the language of dynamical systems, that chaos has set in!

The sequence of events leading to chaos are so far literally like that envisaged
in the Ruelle~Takens-Newhouse (RTN) picture of transition to chaos, and so, a brief
digression roughly describing this picture is quite useful. (The appendix is an in-
troduction to the basic terminology.) With increasing Re, the steady laminar motion
loses stability and becomes periodic with frequency fl (say); the power spectral den-
sity will have (as in figure 2) a peak at fl (and its harmonics), and the phase dia-
gram will show a limit cycle behavior. Loss of stablility of this new state yields
a quasiperiodic motion with two independent frequencies, fl and (say) fz. The spec—

tral density will now show £ f, and various combinations mfl s nf2 (as in figures

1’ 72
3a, b), and the phase portrait will be a two-torus., Further increase in Reynolds

number yields a quasiperiodic motion with three frequencies (three-torus). New~-
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FIGURE 3: (a) Normalized frequency spectrum of u at Re = 54, In (b), the frequency
range 0-2200 Hz is expanded. All significant peaks in (b) are simple combinations of
the vortex shedding frequency fl (corresponding to the most dominating peak), and an-
other incommensurate frequency f2. After satisfying ourselves that there are no sub-
harmonics of fl (and that 119.02 Hz is unrelated to the line frequency or spurious
oscillations of the cylinder) we have picked f2 by hypothesizing that the peaks near-—
est f. must be £, * f

1 1 2°
nificant peak as shown in (b) — actually to 4 or 5 decimal places for reasons we do

The value of f2 thus obtained accounts for every other sig-

not understand! At least part of the reason for the relatively low noise level (com-

pared with figure 2) is the increased signal level.
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FIGURE 4: The first appearance of chaos at Re = 66. The broadband nature implies
chaos; onset of chaos does not rule out the existence of spectral peaks. (Note: This
does not signify some high order quasiperiodicity as dimension and entropy calcula-

tions of section 4 show.)

house, Reulle & Takens [2] argue that even a weak nonlinear coupling (of a certain
variety!) among the three frequencies is likely to result in chaos or a strange at-
tractor (see appendix), one of whose symptoms is an increased broadband content (see
figure 4). This contrasts the classical picture of Landau, according to which turbu-
lence is the asymptotic state of increasingly higher order quasiperiodicities.

Phase diagrams provide complementary information on the sequence of events lead-
ing to chaos. To construct phase diagrams, it would seem that one would require the
measurement of N independent variables (in general, a hopeless task!), but embedding
theorems like those of Takens {[11] justify the use of a single measured variable.

From the measured local velocity u(t) — for example — one constructs a d-dimensional
diagram from the vectors {u(ti), u(ti + T), ween u(ti + (@Dt i=1, ..o, T
being a time delay whose precise value in a certain wide range seems to be immaterial.
According to the embedding theorems, the phase diagrams constructed in the above man-
ner will have essentially the same properties as the one with N independent variables,
as long as d > 2N + 1 (although exceptions to this now commonly assumed philosophy
are not hard to concoct). In practice, d is increased by one at a time until the

*
properties of interest become independent of d.

% .
About two years ago (October 1982) when we first started constructing phase dia-
grams in this manner, we were unaware of any literature on embedding theorems,
but were guided solely by elementary ad-hoc considerations.



Figures 5, 6 and 7 show respectively the plot of u(ti+ T) Vs u(ti) at Re = 36,
54 and 66, and can be considered as projections of the phase diagrams on a two-dimen-
. sional plane. The limit cycle behavior at Re = 36 is evident, the scatter visible
in the figure being partly due to experimental noise (see figure 2) and partly due
tothe jitter in the signal. Further, a Poincaré section reveals no discernible

structure. The situation is thus basically periodic.
0 06

. -0.086 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

u(ti)

FIGURE 5: The phase plot from the velocity signal u at Re = 36, showing limit cycle

behavior. The time delay T = 10 sampling intervals; the starting point t; is arbitrary.

At Re = 54, although the projection of the phase diagram is complicated in ap~
pearance*(figure 6a), a Poincaré section (figure 6b) yields a limit cycle, reinfor-
cing the fact that only two degrees of freedom are present. On the other hand, not
only is the projection of the phase diagram at Re = 66 complex (figure 7), but also
its Poincaré sections (not shown), no matter .how defined. This, as well as the frac~
tional dimension of the attractor (see section 4a) show that the signal is indeed
chaotic.

(As equally valuable measures of chaos, one could evaluate the Lyapunov exponent
(characterising the exponential divergence of nearby trajectories) or the Kolmogorov
entropy (which, for typical systems, equals the sum of positive Lyapunov exponents).
Limitations of various kinds have prevented us from measuring the Lyapunov exponent
— such measurements for a Taylor-Couette flow have been made by BrandstHter et al.

' [5] — but we do discuss some entropy measurements in section 4d.)

%
Note that the trajectory resides most often in the upper right quadrant, but only
rarely strays away into the lower left quadrant. This behavior in the phase plane
can be related to the finite skewness of the signal.
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FIGURE 7: The phase diagram for Re = 66. T = 10 sampling intervals. The continuous

curve is now the result of joining successive data points (done for clarity).

This progression towards chaos — underlying the possible presence of a strange
attractor — proceeds much like that proposed by Newhouse, Ruelle & Takens [2]. It
is thus extraordinary that the 'generic' behavior indicated by Ruelle & Takens for an

I' idealized mathematical system should have a nontrivial bearing on a rather complex
fluid dynamical system!

It should be noted that few would feel comfortable in designating as turbulent
the signal we have recognized as chaotic. Clearly, to the extent that a turbulent
flow must possess spatial randomness, we cannot say much of value as to whether the
flow at Re = 66 ié turbulent or not without a global survey of the flow field at this
Reynolds number. TFurther, if one defines turbulence as a high Reynolds number phe-
nomenon (as is often done!), it is tautologicall§ true that the signal does not re=-

present turbulence. Further, a look at the signal (figure 8) would prevent someone

II’ 0 0.05 o1
time(sec.)

FIGURE 8: The signal u(t) at Re = 66.



with an everyday familiarity with high Reynolds number turbulence from accepting it
as turbulent. Nevertheless, we would iike to suggest that the signal shown in fig-
ure 8 is indeed random (for example, in terms of algorithmic complexity required to
specify it [12])with a well-defined probability density (see figure 9; for a Compar—‘

ison with similar data at 'large'Reynolds numbers in the far wake, see Thomas [13]).

0.35 /\
/‘H"H"’"'-o-‘w*\
++ +*
0.3
0.25 : 3 +
* +
E M"’/[ \*-0-
0.2 * ’ +
-
+ N
/ ™ Gaussian \ ++

FIGURE 9: The measured probability density of u at Re = 66. The abscissa is the
amplitude about the mean normalized by the root-mean-square of the signal, and the
ordinate is the probability demsity. The signal has a skewness of near zero and a

flatness of about 2.4.

What this means is that even atlow enough Reynolds numbers, the interaétion of only
a  few degrees of freedom leads to randomness! It is also pertinent to point out
that at least in some respects the signal of figure 8 resembles a narrow band pass
filtered turbulent signal at high Reynolds numbers. (Perhaps the word 'preturbu-
lence' also used commonly in dynamical systems literature, is sufficiently useful to

designate the signal such as the one shown in figure 8, and its dynamics.)
b. Chaos and its aftermaths

No qualitative change occurs between Re = 66 and about 71. Soon thereafter the
system becomes reordered. For example, the spectral density at Re = 76 shows (essen-
tially) nothing but discrete peaks again (figure 10a). These peaks, shown in detail
in figure 10b, can all be identified with great precision as arising from the inter-
action of thfee irrational frequencies. (That there are definitely three independent
frequencies can also be seen from Poincaré sections (not shown here) and the dimen-

sion of the attractor discussed in section 4b). After a small increase in Reynolds
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FIGURE 10: Reordering at Re = 76, (a) The measured power spectral density of u, and
(b) its details in the frequency range 0-1250 Hz. Note that all peaks above noise
level can be represented by combinations of three frequencies fl’ f2 and ’f3. This
conclusion can certainly be influenced by the finite FFT resolution, but our belief

in the accuracy of this statement comes also from dimension calculations (section 4).



number to about 81, ome can see the onset of the broadband spectral content (figure

11), and we may consider chaos to have set in again!

0 500 1000 1500 2000 2500

Frequency {(Hz)

FIGURE 11: Chaos at Re = 81, fl is the vortex shedding frequency.

The system reorders itself around an Re of about 90, and we have discussed else~
where [10] that this reordered state is quasiperiodic with four frequencies. (That
this is the case will be demonstrated also by dimension measurements in section 4d.)
Chaos sets in again at an Re = 140, followed by yet another reordering around an Re
= 143, 1In fact, this sequence of return to chaos and reordering continues for much
higher Reynolds numbers although it becomes progressively more difficult with in-
creasing Re to distinguish ‘experimentally between the two states.

Two related points of importance emerge. First, there do exist quasiperiodic
motions with three or four independent frequencies; just like Landau's quasiperiodi-
cities, the Ruelle-Takens picture of transition is also not the whole story. Second,
transition to turbulence (at least in the temporal sense) is characterized by regions
of chaos interspersed between regions of relative order. Each of these deserves at

least a brief discussion.
c. Note on quasiperiodicities with more than two frequencies

We have shown that the route to the lowest Reynolds number chaos occurs in our
experiments precisely as postulated in the RIN picture of transition. On the other
hand, our experiments also show that quasiperiodicities with three (and possibly
four) frequencies do exist. This type of disagreement with the RTN scheme has been
noted earlier in the Taylor-Couette flow [14] and the convection problem [15]. It
is thus pertinent to inquire whether there are (in some sense) exceptional conditions
to be satisfied for the RIN scheme to hold. Greborgi et al. [16], who address this
question in a specific numerical experiment, suggest that the three frequency quasi-
periodicity is indeed quite likely to occur in practice, and that the special pertur-

bation required to destroy this state (as in the RIN scheme) is unlikely. Haken [17]



discusses this issue at some length and concludes that if the frequencies possess a
certain kind of irrationality with respect to each other (or, more precisely, the
so~called Kolmogorov - Arnold - Moser condition holds), bifurcation from a two-torus
toa three-torus is possible. Both these discussions are strictly relevant to systems
with no externally imposed noise (or fluctuations), a condition that does not strict-
ly obtain in experiments (especially open systems). Our own experience is that the
precise nature of even small amounts of noise (some of which is controllable in our
wind tunnels and some of which is nof!) has an influence on the evolution of the
system (for a brief discussion of this influence, see subsection 3e). It is not

hard to visualize that in our experiments the detailed conditions of intrinsic noise
itself could have altered from before to after the first occurrence of chaos. Clear-

ly, this is an area for further work, both experimentally and theoretically.
d. Windows of order and chaos

Figure 12 summarizes the changes occurring in the low .end of the Reynolds num-
ber range we have considered. The shaded regions indicate windows of chaos, and the
question marks indicate the uncertainty and difficulty in quantifying what we believe

are reordered states.
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FIGURE 12: Window of chaos and order

At least two questions arise: What is the mechanism that permits the reordering
of a chaotic state? What determines the length and location of the windows of chaos?
Qur understanding of these matters is rather limited, but even within these limits,
some comments seem called for. Let us consider the first question now, and relegate
the second one to the next subsection. The observed alternation between chaos and
order has been known to occur in several low-dimensional dynamical systems; for ex-
ample, Lorenz equations [18], and spherical pendulum [19]. In these systems, the
occurrence of reordering is independent of external noise. The numerical experiments
of Matsumoto & Ysuda [20] show that chaotic orbits could be unstable to external
noise, and noise addition to deterministic chaos (i.e., chaos characteristic of de-
terministic dynamical systems) yields an ordered state in some cases. They specifi-
cally consider the so-called Belousov-Zhabotinskii (BZ) reaction and some variants

of the logistic model. Roux et al. [21] find windows of chaos and order in their.



experiments on the BZ reaction.

In experiments on open systems, it is hard to ascertain whether the return to
order is tied intimately to external noise or the increased degrees of freedom asso-
ciated with the appearance of chaos itself. In any case, the analogy between this
situation and increased eddy viscosity in turbulent flows appears to be more than
superficial: addition of high frequency modes results‘in a lowering of an effective
Reynolds number and increased stability of the flow.

Though we have not made detailed spectral measurements at higher Reyﬁolds num-
bers, it is our contention that the succession of order aﬁd chaos in a wake continues
indefinitely even at very high Reynolds numbers (with the caution that order must |
now be interpreted to mean spectral sharpening). Roshko [22] pointed out several
years ago that order reappears in the Reynolds number range of 10%. More recently,
the fluctuating lift force measurements of Schewe [23] on a circular cylinder showed
that the spectral density of the 1ift coefficient was broad at Re = 3.7x10° (upper
end of transition) and became increasingly narrow until, at Re = 7.1x10°%, it was
quite sharp, rather like a narrow-band-pass filtered signal. Although the fluctua-
ting lift force can at best be related to the squared fluctuating velocity filtered
via the transfer function corresponding to the response of ﬁhe circular cylinder,  its

behavior is nevertheless indicative of the flow itself in the vicinity of the cylinder.
e. The vortex shedding frequency and windows of chaos

Consider now the variation of the vortex shedding frequency fl with Reynolds
number (figure 13). The frequency does not vary monotonically with Re but shows sev-
eral more or less distinct breaks. Such breaks have been noted before [24,25,26],
and perhaps most convincingly demonstrated in a beautiful experiment by'Eriehe [27].
Friehe varijed the Reynolds number continuously at a small rate and obtained on an
x~y plotter the frequency-Re variation directly. Although the appearance of the
breaks has been disputed [28], our own data, presented here and elsewhere [10], sup-
port the conclusion that discontinuities do indeed appear.

Our interest here is in pointing out that the occurrence of these breaks coin~
cides with the windows of chaos. To establish the connection better, we may consider
in figure 14 the details of the break marked A in figure 13. Just upstream of the
break, the spectral density is quite ordered (four-frequency quasiperiodicity) while
it is broadband until the end of the break region coinciding with the upper end of
the window of chaos; to the extent we can ascertain, the frequency spectrum shows a
reordering immediately after the break.

The data shown by crosses in figures 13 and 14 were all obtained from one ex-
perimental run. In a repeat of the experiment the following day (for example) we
found the same general features, except that chaos set in at different Reynolds num-~

bers; the windows of chaos were also of different widths. The filled circle in fig-
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FIGURE 13: Variation of vortex shedding frequency with Re. Notice discontinuities,

and their coincidence with windows of chaos, as illustrated near A.
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ure 14 was obtained in a second series of experiments. It is seen that this point
falls below the first set of data at the same Re, but it falls on the backward extra-
polation of the line corresponding to the reordered state (Re > 143) in the first
set. It is hard to tell the differences between conditions in the two experiments
without extensive documentation, but there are reasons to believe that the second
experiment was conducted in a somewhat noisier environment. We thus speculate that
the location as well as the widths of the windows of chaos are to some extent deter-
mined by noise characteristics — in a way that is not well understood at present.

It is interesting-to note from figure 14 that the raﬁio f2/fl (the so-called
rotation number), where fZ is the second largest independent frequency, changes its
value abruptly across the narrow windows of chaos. Figure 15 is a plot of the rota-
tion number with Re. It is seen that the number changes abruptly across all the win- ‘

dows of chaos, but only slowly within regions of order.
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FIGURE 15: The variation of the rotation number with Reynolds number
f, The amplitude of the vortex shedding mode and chaos

Since reordering is associated with the reemergence of stronger spectral peaks,
it is natural to expect that there must be some relation between the amplitudes of the
various modes and the occurrence of order and chaos. Figure 16 shows the amplitude of
the vortex shedding mode (or the fl frequency) as a function of velocity. (The ampli-
tude Al is expressed as a fraction of the freestream velocity U, but is given here to
an arbitrary scale.) It is clear that O indicating order coincides with a loéal peak
in Al’ C indiéating the onset of chaos coincides with a local minimum, and, finally,
RO indicating reordering coincides with the reappearance of a peak. Except for the

first time that reordering occurs, every successive reordering is associated with a
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FIGURE 16: The amplitude of the vortex shedding mode as a function of Re. 0 is or-
der, C chaos and RO is reordering; within a window of chaos, O and RO may in general

indicate different states of order.

general lowering of the amplitude of the vortex shedding mode.

4, RESULTS FROM THE DIMENSION OF THE ATTRACTOR
a. The dimension

It is clearly worth inquiring whether there is any property of the attractor
that successfully describes in some way the many subtle changes that occur in the
frequency spectra and the related properties discussed in section 3. It appears
that there indeed is such a quantity, namely the dimension of the attractor. Loose-
ly speaking,ﬁhe dimension of the attractor is related to the number of degrees of
freedom — and hence its importance. The concept of the dimension is highlighted in
studies of dynamical systems, and we may briefly digress here to discuss its meaning
before presenting results from our measurements. It should be pqinted out that, a-
part from our own earlier measurements of the dimension for turbulence attractors
[9,10], such measurements have been made by others in the Taylor-Couette flow [5]
and in the comvection cell [29].

 Let us consider an attractor (constructed as already discussed in section 3)from
a measured temporél signal u(t) that is embedded in a (large) d-dimensional phase

space. Let N(g) be the number of d-dimensional cubes of linear dimension £ required



to cover the attractor to an accuracy €. Obviously, making € smaller renders N larger,

but if the limiting quantity

D = 2im  log N(g) 4.1)
£>o 1
Log ()

exists, it will be called the dimension of the attractor. An important characteris-
tic of a strange attractor is that D is small even though d is large. We should be
interested in knowing whether transitional and turbulent signals have this property.

To see what the dimension means, let us write (4.1) as

N(e) ~ €725 (4.2)
that is, if one specifies D and the accuracy € to which we need to determine the at-
tractor, we automatically know the number of cubes required to cover the attractor.
The only missing information will now be the position of the cubes in the phase space.
Thus, D can be considered as a measure of how much more information is required in
order to specify the attractor completely; the larger the value of D, the larger is
this missing information,

In general, the dimension D, as defined in (4.1), is fractional for strange at-
tractors, and it has been called the fractal dimension by Mandelbrot [30] who has
contributed a lot to our understanding of the quantity. As defined in (4.1), D is a
geometric property of the attractor, and does not take into account the fact that a
typical trajectory may visit some region of the phase space more frequently than
others. Several measures, taking this probability into account, have been defined
— and are believed to be closely related to the dynamical properties of the attrac-
tor. The most well-known among them are:

(a) the pointwise dimension

(b) the Crassberger—Proccacia dimension.
If the attractor is uniform, that is, every region in the phase space is as likely
to be visited by the trajectory as every other, then the above two measures equal D
defined by (4.1). Otherwise, they are generally smaller than D.

Let Se(x) be a sphere of radius € centered about a point x on the attractor,
and let U be the probability measure on the attractor. Then, the pointwise dimen-

sion is defined [31] as

oim L1o8 u[Sa(x)]

= ero log € (4.3)

or uls (01 - ¢dp (4.4)

Grassherger & Procaccia [32] have defined another measure V which is related to

the dimension of the attractor, as well as the entropy (see section 4d). The pro-



cedure for computing v is as follows:

(i) Obtain the correlation sum C(¢) from:

N
fLim 1 -
C(e) = Nooo N2 '254 H[e- ]gi - gj]] (4.5)
i=3=1
i#3

where H is the Heaviside step function and u, - Sj is différence in the two vector
positions u, and Sj on the phase space. Basically, what C does is to consider a win-
dow of size €, and start a clock that ticks each time the difference u; - Ejl lies
within the box of size €. Thus, one essentially has

2im . 1

c(e) = Nooo N2 {number of pairs of points (i,j) with lgi - Bj[ < e},

(ii) Obtain v from the relation [32]

c(e) ~ eV as evo. (4.6)

In practice, not all components of u are known for constructing the phase space,
but perhaps only one component, say u As we discussed in section 3, one constructs

a d-dimensional 'phase space' using delay coordinates

{um(ti), um(ti+T), cees um(ri+(d—l)T)}, i=1, ...,k,

where, again, T is some interval which is neither too small nor too large and k is
large (in principle, infinity!). Since one does not a priori know V, one constructs
several 'phase spaces' of increasingly large value of d and evaluates V for each of
them; v will first increase with d and eventually asymptote to a constant indepen-
dent of d. This asymptotic value of vV is of interest to us as a measure of the di-
mension of the strange attractor.

We have computed both dp and v as described above, using the streamwise velo-
city fluctuations u up to an Re of 10*, and the delay coordinates. Our confidence
in the numerical values of these measures of dimension is very good when they are
less than about 5 or 6, but becomes increasingly shaky at higher values. However,
we do bhelieve that they are reasonable, judging from their repeatability and the sev-
eral precautions we have taken (such as taking the proper limit as €>o and using, in
a couple of cases, double precision arithmetic in our computations). It would be
interesting and useful to evaluate the dimension at high Reynolds numbers, but such
calculations are likely to be of uncertain value (unless perhaps some carefully se-
lected combination of experimental and computational conditions obtains): with in-
creasing Re, the newly excited degrees of freedom can be expected to be of smaller

and smaller scales, and to properly accommodate them in the dimension calculations



requires that one must in practice look at increasingly smaller values of € (see e-
quation 4.6). Such efforts will very soon be frustrated by instrumentation noise

and digitizer resolution problems.
b. Data for Re < 100

It is convenient to consider first the data for Re f 100 (figure 17). Concentra-
ting on-the data in the ordered statesonly, we may conclude the following. At Re =
36, where there is only one independent degree of freedom (corresponding to the peri-
odic vortex shedding) — see figures 2 and 5 — the dimension of the attractor turns
out' to be about 1. When only two frequencies are present (figures 3 and 6) at Re =
54, the dimension is about 2. At Re = 76 where there are three dominant frequencies
(figure 10), the dimension is three to within experimental uncertainty. Lastly, at
Re = 91 where there are four frequencies present, the calculated V is very close to
4., Thus, to within computational uncertainties, it is seen that the dimension of

the attractor is a reasonable representation of the number of degrees of freedom.
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FIGURE 17: Variation of the dimension of the attractor with respect to Reynolds num-
bers. Note that the dimension is about 1 when there is only vortex shedding (Re =
36), about 2 when there are only 2 frequencies (Re = 54), about 3 when there are 3
frequencies (Re = 76), about 4 when there are 4 frequencies. The dimension jumps to

higher noninteger values in the windows of chaos.

Now getting back to measurements in the windows of chaos, it is clear that the



first appearance of chaos at Re = 66 is characterized by a jump in the dimension (to
about 4.4 from 2 characteristic of the two-frequency quasiperiodicity), followed by
a return to a value of 3 in the region of three-frequency quasiperiodicity. Similar-
ly, the dimension of the attractor in the second chaotic window is about 4.8. As we
discussed earlier, the dimension of the attractor in the chaotic windows is a frac-

tion.
c. Higher Reynolds number data

Figure 18 shows the results of the dimension calculations up to an Re of about
10*. Both Vv and dp increase to about 20 or so at an Re of lO", although the increase
is not always monotonic. In fact, our calculations seem to suggest that the dimen-

" sion settles down to about a value of 20!
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FIGURE 18: Dimension data for Re up to 10°.

If it is true that the dimension of the attractor retains, even at high Reynolds
numbers, its meaning as'én indicator of the number of dynamically significant degrees
of freedom, common wisdom tells us that the dimension of the attractor should gen—
erally increase with Re. In contrast, the dimension does not increase continuous-

[ u

. 9 -
ly; further, its value is far lower than Re , which is the classical estimate (see
Landau & Lifshitz [33])for the number of degrees of freedom in a turbulent flow. It

may be that the constancy of the dimension at higher Re is simply an artifact of re-



solutfon and computational prohlems, but if the result is genuine instead, it should

provide an incentive for a suitable reformulation of 'turbulence problem'.
d. The Kolmogorov entropy

The Kolmogorov entropy has the property that it is positive for a chaotic sig-
nal, zero for ordered signals and infinite for a random signal with a space filling
attractor. As already mentioned, there are conjectures that the entropy equals the
sum of positive Lyapunov exponents, and hence, unlike the dimension D, is a dynamic
measure of unpredictability of the motion.

Suppose the d-dimensional phase space housing the attractor is partitioned into
boxes of size ed. Let p(ii, iz, ey id) be the joint probability of finding u at
' time t = T in box il, u at time t = 2T in box iZ’ ..... , u at time t = dT in box id.

The Kolmogorov entropy is then defined [34] as

Lim fLim Ldim 1 . ,
K== 100 dww dr E p(ll,...ld)ln p(il,...id). (4.7)

il""id

Grassberger & Procaccia [35] have defined a quantity K2 which is close to K and fur-
ther has the property that Kz > 0 is a sufficient condition for chaos. Without going
into too many details, we follow [35] and note that it can be computed by first ob-
taining C(g) as in Eq.(4.5) in section 4a for various d, and forming the ratio

1

Cd(e)
K2,d(€) == n

T T ® o

where Cd indicates C for dimension d. In the limit,
Lim
d-eo K2,d(€) ~ K2'
£r0

Table 2 gives Ky for Re = 66 and 81 within the first two windows of chaos.

For comparison, the table also lists Ky for the Hénon map from [35].

Signal K2
u at Re = 66 ~ 0.22
u at Re = 81 ~x 0.24
The Hénon map 0.325 £ 0.02

Table 2: The Kolmogorov entropy



5 DISCUSSION OF RESULITS

We have shown that several features of transition to turbulence behind circular
cylinders are in essential agreement with the behavior of low-dimensional dynamical
systems. We emphasize that many details discussed above in the near-wake region hold
also at around x/d = 50, although less conspicuously.

One particularly important feature of this work is the discovery of windows of
chaos interspersed between regions of order: these latter regions are three and four-
frequency quasiperiodicities in the low Reynolds number range up to about ;40 (possi~
bly even higher!). Not all observations we have made can be understood within the
present framework of chaos and dynamical systems, but we find it amazing that the
dynamics of. fluid motion which we believe are particularly governed by the NS equa-
tions should be at all represented by extremely simple systems. One aspect of this
work is the fine resolution (in Reynolds number, frequency domain, as well as in the
phase space) with which measurements have been made. It seems to us that even finer
resolution, especially within the windows of chaos and regions bordering them, will
perhaps disclose even more interesting aspects.

We have shown that, during early stages of transition, a strong connection (spec-
ulated previously, but never shown to be true conclusively) exists between the dimen-
sion of the attractor aﬁd the degrees of freedom as inferred from power spectral den-
sities. Provided this interpretation is true also in windows of chaos and (moderate-
ly) high Reynolds number turbulence, our results suggest that the degrees of freedom
are not too many even up to Reynolds number of the order of 10%. Our numerical cal-
culations based on Schewe's data lead us to expect that the dimension of the attrac-
tor, as computed according to (4.4) and (4.5), is not high even at higher Reynolds
numbers corresponding to the fully turbulent state (Re :3106). If the attractor is
sufficiently low-dimensional, a clever projection of it can perhaps be used to our
advantage. (If tﬁe attractor dimension is even as high as 20, however, no matter
what projection one devises, it will perhaps look uniformly dark!) At this stage it
is not clear how one could use this information, but, without entering into a detailed
discussion, we may point out that it lends credence to concepts embodied in renormal-
ization group theory, slaving principle, or, closer to home, large eddy simulation
or orthogonal decomposition techniques.

We thus believe that there is much that we can learn about transition and turbu-
lence from chaos theories. In the immediate future, these theories provide a strong
motivation for looking into newer aspects of fluid flow phenomena; discoveries of
close correspondence between fluid flows and low-dimensional chaotic dynamical sys-—
tems will undoubtedly prove useful in the sense that the rich variety of results from
dynamical systems can be brought to bear on fluid flow transition and, perhaps, even
turbulence. In the long run, the hope is that they will help us in coming to grips

with the eternal problem of turbulence, namely, the enormous amount of 'information'
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that seems to be available to us! Perhaps we can then model, even at high Reynolds
numbers, at least local behaviors by low~dimensional dynamical systems.

Do we then conclude that the key to the understanding of transition and turbu-
lence lies totaily in low-dimensional dynamical systems? We think that such state-
ments are optimistic at best and misguided at the worst. Apart from the fact that
the spatial structure of turbulent flows, which is their single most important char-
actertistic, lies outside the scope of dynamical systems theories — at least as they
stand today — there is a lot that they do not or, perhaps, cannot, tell: for example,
they do not tell us anything about the origin and physical structure of the various

bifurcations that can occur, or how the drag coefficient varies with Reynolds number.

'To answer these and similar questions of practical interest, we suspect that we have

to revert to the NS equations!

One final comment should be made. It would be useful to make a concurrent flow

visualization study and relate the various findings reported here to the spatial char-

‘acteristics of the flow. It is unfortunate that we cannot use much the extensive

flow visualization observations made by others (for example, Gerrard [36]) because

the details from one experiment to another do not precisely match.
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APPENDIX
Let b,, b,, ..., b_ be the state variables of the system (1.1). In.an n-dimen-
1 2 n
sional space spanned by bl’ b2, vees bn’ each point determines the state of the sys-—

tem completely at a given time, t. As t evolves, we obtain a continuous sequence of
points which form the trajectory of the system. As t>®, the bi's need not go to in-
finity, but may terminate (in two dimensions) either at a node or a focus or om a
limit cycle or, in higher dimensions, on to a more complicated object. This object
on which the trajectofy terminates is called an attractor if all other trajectories

starting near the said trajectory converge to the same object as t=>®. (That is, the



attractor is the limit set of a representative point in phase space. Thus, an attrac-
tor attracts all nearby trajectories.)

If the system is stable and steady the attractor is a point — a node if the mo-
tion is critically damped (figure Al) or a focus if the motion is damped but oscilla-
tory (figure A2). If the system executes a periodic motion, a limit cycle is obser-
ved in the phase plane (figure A3). Quasiperiodic motion with two incommensurate
frequencies results in a two-torus (see figure A4), with the entire surface of the
torus covered hy the trajectory eventually. A projection of the torus on to a plane
may have different shapes depending on the orientation of the plane, but it is clear
that a section of the torus, say, by the plane A in figure A4 (the Poincaré'seétion)
will yield a limit cycle. To obtain such a section in practice, one has to intercept
the trajectory each time it crosses the plane (or 'sample' the system at the frequency
fl and at fixed phase), and plot b, and b, (say) corresponding to these periodically
sampled data. The phase portrait corresponding to the quasiperiodic motion with three
frequencies is a three-torus, and so on,

The attractor has been called a 'strange attractor' if (roughly speaking) it is
a complex surface repeatedly folded onto itself in such a manner that a line normal
to the surface intersects it in a Cantor set. That is, if one successively magnifies
regions of this intersection which appear, at some level of resolution, to be entire~
ly '"filled', one sees regions of 'emptiness' interspersed between regions of 'occupa~-
tion'. One cannot test this property of the strange attractor directly if it is con-
structed from experimental data (because of noise and the finite resolution of the
instrumentation), and so, one uses several of its other properties to determine its
occurrence. For example, any two neighboring trajectories on the strange attractor
will diverge exponentially apart for small t (the so-called sensitivity to initial
conditions, measured by positive Lyapunov exponents or the Kolmogorov entropy): the
so-called dimension of the attractor (see section 4) is generally a non-integer; the
spectral density of the temporal signal used to construct the attractor will have
broadband components orders of magnitude above the instrumentation and other noise

levels.
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FIGURE Al: stable node.
(point attractor)

FIGURE A2: stable focus.
(point attractor)

FIGURE A3: Tlimit cycle.

FIGURE A4: two-torus.
(perspective view)
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