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This paper presents a simple theory for evaluating the several measures used to
characterize the intermittency of fine-scale turbulence, and corroborates the theor-
etical results from comparison with experimental data, some of which are new. The
basic analytical tool is the envelope of the narrow-bandpass-filtered turbulent signal,
defined via its Hilbert transform and the analytic signal. The contribution of thig
paper is twofold. First, it correctly identifies the roles played by the filter charac-
teristics (such as the bandwidth) in determining the intermittency factor, the width
of the active regions (pulses) in narrow-bandpass-filtered turbulent signals, and the
pulse frequency ; it also reveals that all dynamical characteristics of the signal enter
indirectly through the peak pulse frequency and the threshold setting. Secondly, the
theory suggests that, in the far-dissipation range, the most important feature of
signals exhibiting internal intermittency is the stronger-than-algebraic roll-off of the
spectral density in that region; it is argued that this feature of turbulence essentially
determines the peak pulse frequency in that region. The theory is incomplete in that
it does not show how the threshold setting depends on the signal dynamics, but here
the discussion is supplemented by experimental data.

1. Introduction

In a seminal paper, Batchelor & Townsend (1949) made the discovery that the fine
structure of turbulence in high-Reynolds-number flows is both spatially and
temporally intermittent. The experimental evidence at the time consisted of succes-
sively differentiated velocity signals which showed an increasingly ‘binary’ character
with narrow regions of high activity separated by those of relative quiescence.
Batchelor & Townsend’s measurements were confined to grid turbulence and wakes,
but the subsequent experimental work — to name just a few — of Sandborn (1959) in
turbulent boundary layers, of Kennedy & Corrsin (1961) in the free shear layer at
the exit of a square duct, of Grant, Stewart & Moilliet (1962) in a tidal channel, of
Badri Narayanan, Narasimha & Rao (1971) in a fully developed duct flow, Kuo &
Corrsin (1971) in far-field jets, etc., has established that the fine-scale intermittency,
or ‘spottiness’, is a common occurrence in turbulence, and one of its important
attributes.

The recognition of the basic nature of fine-scale (or ‘internal’) intermittency has
led to a profound change in our understanding of small-scale turbulence. It has led
to a modification in a very vital way of the ‘universal similarity hypothesis’ of
Kolmogorov (1941) according to which energy cascade down the wavenumber
spectrum occurs at high Reynolds numbers in such a way that all statistical
information, except for the mean energy-dissipation rate itself, is lost on the
‘universal, isotropic and homogeneously distributed’ small scales of motion.

A lot of work on fine-scale intermittency has occurred, principally in three
different, albeit interacting, directions. The first of them is a group of arguments that
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can be designated collectively as the scale-similarity arguments. The second variety,
which does not recognize the energy cascade explicitly, leads to ‘mechanistic’ models
of fine structure. The third, of course, is the experimental work in turbulent flows.
Bach of these groups deserves to be commented on briefly.

The scale-similarity arguments go essentially thus. Within a given field of
turbulence, consider a cube with sides of length L,, where L, is an integral scale of
turbulence. If we divide this cube into an arbitrarily large number n(3> 1) of smaller
cubes of length L, = L,n3, the simplest picture of internal intermittency implies that
the fine-scale turbulence is not uniformly distributed over all the cubes of linear
dimension L, but only over some of them. Novikov & Stewart (1964) proposed a rather
specific model which envisaged that practically all the dissipative fine structure exists
in only a few of these first-order cubes (say m of them, m < n) distributed in a random
fashion. Further subdivision of these cubes into second-order ones of length
L, = L,n75, it is hypothesized, would show that the dissipation is contained only in
some small number of these second-order cubes, and so on. This is also the so-called
absolute curdling of Mandelbrot (1976). Instead of assuming that some subcubes
contain all the dissipation and some nothing, if one assumes, for a fixed dissipation
rate in a cube of order j, that the density of dissipation rate in each subeube of order
j+11is multiplied by a random variable g, with {g> = 1, then the so-called ‘weighted
curdling’ of Mandelbrot, or the ‘cascade process of eddy breakdown’ of Yaglom
(1966) results. The essence of the argument here is that the probability density
function g is assumed to be independent of § until one reaches sizes where viscous
effect becomes directly important. If log g is assumed to be normally distributed, one
obtains the famous lognormal distribution proposed by Kolmogorov (1962). It should
be emphasized — as has been done on several occasions, for example, by Kraichnan
(1974), Mandelbrot (1976), Frisch, Sulem & Nelkin (1978) — that the lognormal model
is only one of several possibilities with no special merit to it, and that the large
measure of past preoceupation with it is probably unwarranted. It is to be noted that
none of the models discussed in this paragraph makes a direct appeal to the
Navier—Stokes equations.

The motivating factor for the second group of models appears to be the vortex-
stretching phenomenon; there is thus an implied connection here with the Navier—
Stokes equations. The earliest model is perhaps due to Townsend (1951), who,
however, did not incorporate spottiness explicitly. Several years later, Corrsin (1962)
visualized a model in which the fine structure was made up of vortex sheets of
thickness of the order of Kolmogorov’s microscale , with a mean separation distance
of the order of an integral scale of turbulence. Tennekes (1968) pointed out that the
model is inconsistent because it predicts an incorrect order of magnitude for the
energy-dissipation rate, and proposed an alternative model in which the vortex
concentration occurs in the form of tubes (rather than sheets) with diameters of the
order of 9 and spacing of the order of the Taylor microscale A. Neither of these models
predicts the correct dependence of skewness and flatness factors on the Reynolds
number (e.g. Van Atta & Antonia 1980), and so must be considered incomplete if
not incorrect. (We may also note that Mandelbrot (1976) dismisses these models as
incorect; his reasoning is related to fractal dimensions and will not be repeated here.)
Saffman (1968) assumed that vorticity is concentrated in the form of tubes and sheets
with the characteristic dimension of the order of & = (v/a)i, where « is the local
straining rate. If the concentration of vorticity is assumed to occur by the straining
due to large eddies, it follows that & = /L, where @ is a characteristic velocity of
the large eddies. However, in contrast with experimental findings (see e.g. Sreenivasan
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1984), the model predicts a dissipation rate that is strongly Reynolds-number
dependent. To avoid this inconsistency, Saffman further hypothesized that the vortex
sheets and tubes undergo a secondary instability of the Taylor-Gortler type; this
results in the concentration of vorticity effectively into thin sheets of thickness of
the order of , and spacing of the order of §. (At this point, it is worth pointing out
that the fine structure is as often identified with vorticity as with dissipative eddies.
However, regions of strong dissipation do not always coincide with regions of strong
vorticity (see, for example, the direct numerical solution of the Navier—Stokes
equations for the Taylor—Green flow by Brachet et al. 1983). Consequently, it is
possible that slightly different conclusions may arise depending on whether one means
by fine structure dissipative eddies or vorticity-bearing ones. This is not the only
source of ambiguity in the literature on fine-scale turbulence. Experimentally, one
measures most often the characteristics of the rate of strain du/dx — again, regions
of strong Ou/0x do not coincide with regions of strong vorticity (see Siggia
1981) — which itself is obtained by invoking Taylor’s frozen-field approximation;
here w is the velocity fluctuation in the longitudinal (or mainstream) direction .
Alternatively, one also examines the output of narrow-bandpass filters or high-pass
filters set appropriately high. In spite of these ambiguities, one hopes that the main
attributes of internal intermittency somehow come through.)

The earliest experimental studies are due to Batchelor & Townsend (1949) who
estimated the internal intermittency factor from measurements of the flatness factors
of differentiated or bandpass-filtered velocity signals. The justification for this
procedure was simply that for an ideally intermittent on—off signal which has a
flatness factor K for its ‘on part’, the intermittency factor v is related to the overall
flatness factor I by the relation

F=F/y. (L.1)

If the ‘on part’ is Gaussian, I = 3. In practice, the ‘off part’ is not completely
quiescent, nor is the ‘on part’ Gaussian, and so the intermittency factor can be
inferred from flatness-factor measurements only if the probability distributions of
both states are known. Kennedy & Corrsin (1961) emphasized this, and also showed
that larger derivative flatness does not necessarily imply larger intermittency.
Following this rationale, direct measurements of the intermittency factor have later
been made by Kuo & Corrsin (1971), who also obtained information about the linear
dimension, or ‘width’, of these fine-scale regions. Further information about the
fine structure was obtained by Kuo & Corrsin (1972), who attempted to determine
the geometry of the fine-scale regions by measuring the dependence of the two-probe
intermittency on the spatial separation of the probes. Briefly, their conclusions appear
to suggest a greater tendency of the fine structure to be filament-like in its geometry
rather than blob-like or sheet-like.

The work of Rao, Narasimha & Badri Narayanan (1971) is also of interest here,
Rao et al. systematically examined turbulent velocity signals by bandpass filtering
them at various mid-band frequencies. Their contribution was in devising a method
for counting at high Reynolds numbers (where visual counting becomes very difficult)
the frequency of active regions in narrow-bandpassed signals — the so-called pulses
in the terminology of Badri Narayanan, Rajagopalan & Narasimha (1977) — and in
concluding that the mean spatial separation distance between the pulses is of the order
of the integral scale of turbulence — a result which was qualitatively anticipated by
Batchelor & Townsend (1949). Badri Narayanan et al. (1971) extended these
measurements to other shear flows and arrived at similar conclusions, although their
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measurements in grid turbulence were inconclusive. More detailed measurements of
similar type have also been made by Badri Narayanan, Rajagopalan & Narasimha
(1974, 1977) and Antonia, Danh & Prabhu (1976). These authors also obtained
information on the width of the pulses.

Unfortunately, an examination of these various recent datashows large differences —
real or apparent, qualitative and quantitative — among them. For instance, in the
measurements of Rao et al. and Badri Narayanan et al. the mean frequency of the
occurrence of active regions has tended to be independent of the mid-frequency
setting of the bandpass filter beyond a certain setting; on the other hand, Antonia
et al. did not find a conclusive asymptote, but only a break point above which the
rate of increase of frequency became smaller. Kuo & Corrsin’s measurements,
however, showed that the pulse frequency initially increased as the filter setting was
increased and then decreased. The normalized estimates of the mean spacing between
the pulses determined by the various authors differ among themselves by a factor
of about 10. Further, the fine-scale intermittency factor y as well as the (normalized)
pulse width were found to be independent of Reynolds number by Antonia ef al.,
whereas Kuo & Corrsin’s measurements showed a decrease at low Reynolds numbers
before settling down to a constant beyond a microscale Reynolds number of 350; this
constant, however, was numerically different from the value found by Antonia ef al.
Badri Narayanan et al. found both y and the pulse width to increase monotonically
with Reynolds number.

Evidently either these different authors were measuring different parameters
without explicitly recognizing it to be so, or that extraneous effects distorted the
results in one or the other (or all) of them. An assessment of the various experimental
techniques used in these recent experiments, with a view to consolidating the genuine
common ground as well as isolating points of departure among them, is a major
motivation for this paper. In the course of the work that followed, it became clear
that some of the properties attributed to fine-scale turbulence are also shared by other
bandpass-filtered random processes; at any rate, it did not seem necessary to invoke
explicitly any special dynamical features for explaining some of those observations.
Filter characteristics were also determined to be extremely important. To put these
preliminary conclusions on firmer ground, we undertook to examine a simple
analytical tool with a fairly wide applicability in the study of random signals passed
through narrow-band filters. Corroborating measurements were also made. The net
picture that emerges is fairly simple, and seems to explain rather well most
observations and remove nearly all the discrepancies which seemed to prevail at a
first look.

In §§2 and 3 a description of the analytical method is given, and its performance
is assessed for comparison with the new test-case experiments with an essentially
Claussian process. In §4 measurements (some of which are new) relating to turbulent
signals in boundary layers and flow behind grids are examined in the light of the
results derived in §§2 and 3. Section 5 contains a summary of conclusions which also
assesses the significance of this work.

2. Analytical preliminaries

2.1. Motivation
Foridentifying the high-frequency pulses and determining their statistical properties,
Badri Narayanan et al. (1977) described and used a signal-processing technique. This
technique, also used by Antonia et al. (1976), differs from that of Rao et al. (1971)
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FIGU.RE 1. A schematic of a turbulent signal bandpass-filtered at some midband frequency f,,. The
crossing frequency # as a function of the level [ (that is, the distance from the zero of the filtered

signazl normalized by its own root-mean-square value) is indicated on the left. 4, is the maximum
of A(l).

only in some detail, and bears a close relation to that used by Kuo & Corrsin (1971).
A brief description of this technique will therefore serve as a useful and necessary
starting point.

In this technique, a given turbulent signal is filtered through a bandpass filter at
a mid-frequency f,,,. This results in an amplitude-modulated signal of frequency f,,
with the period of modulation corresponding to the inverse of the filter bandwidth
(see figure 1). Regions of activity in this bandpass-filtered signal are designated here
(following Badri Narayanan et al. 1977) as pulses. An envelope is then drawn over
the bandpassed signal and the positive crossing frequency # of the envelope is
determined as a function of the threshold [, say. Clearly, this frequency will have a
peak for some [; we denote the peak frequency in the 4 versus [ curve by i, (see
figure 1). In general, %, is a function of the selected midband frequency f,,. This
exercise is therefore repeated for several values of f,,,, and the variation of 4, with
S 18 determined. For turbulent signals, the measurements of Rao ef al. have shown
that #, increases with f, when f, is low (typically in the energy-containing
frequency range), but asymptotically becomes independent of f,, when f,, is high
(typically in the dissipation range) — a result that those authors attributed to fine-
scale intermittency. In their further work, the asymptotic value of 4, say N,
corresponding to the essentially flat region of the #, versus f;,, curve, played an
important role as the characteristic pulse frequency of the turbulent signal. Because
the mechanics of this signal processing are fairly complicated, it seems appropriate to
understand its details before attempting to interpret the results; this is essentially
the motivation for the discussion in this and the next sections. Neither Rao et al.
nor Badri Narayanan et al. offered any explanation for the behaviour of 4 versus {
or fi, versus f,, curves.

2.2. Theoretical background

Let z(t) be a stationary stochastic process with zero mean, continuous in the quadratic
mean, defined as

a(t) = jo_o elvt d¢(w). (2.1)

" Define the Hilbert transform y(t) of x(t) by

y(t) = — Joj i sgnw e df(w), (2.2)
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where sgn @ = + 1 when v 2 0. It is seen that taking Hilbert transform is equivalent
to a curious kind of linear transformation in which the amplitude remains unchanged,
but the phase gets shifted by +3in depending on the sign of w. By convolution
theorem, it follows that

1
1) = —— xa(t).
yit) = ——xa(t)
Form the complex function

2(t) = a(t) +iy(t).

Now, z(t) is called the analytic signal of z(t). The significance of the analytic signal
is known from communication theory; briefly, it bears the same relation to z({)
as exp (it) does to cost. The original signal x(t) can be recovered from the analytic
signal z(t) by projection on the real axis. For a somewhat elaborate discussion, see
e.g. Bracewell (1965). The envelope E(t) of (t) is then simply defined as the modulus
of the analytic signal z(t). That is,

B(t) = ()] = [22(0) + 520 . (2.3)

To see that this definition is meaningful, consider first some simple cases.
(i) Let x(t) = A cos (v, t+0,), w, > 0, and form the complex function

Z(t) = 4 Ci(u)lt+(},)
with its real part equal to z(t). Clearly
l2(t)] = A4

is the envelope H(t) of x(t). For the function B sin (w,t+0,) it is easily shown that
the corresponding analytic signal is —iBe 1@ t*%) and the same interpretation of the
envelope holds.

(i) Consider z(t) = A cos (w, t+60,)+ B sin (w,t+6,). The analytic signal is given as

Z(t) =4 Oi((ul t+0,) iB Ci(m.2 H-()Z),

whose absolute value defines the envelope of 2(f).
It is not hard to visualize (by actually working out the details) that this is indeed
a meaningful definition of the envelope when, say, 0, +w, > w; —w,.
(iii) Consider a more complicated function
ol

o)
x(t)y= X A, cosw,t+ B, sinw, .
n=20 n=0

By analogy with (ii) above,
o8] 0
2(t) = ¥ A,ent—i T B, et
n=0 7 =0

Again, the envelope is defined as |z|. While this is not easy to visualize physically,
|z| clearly satisfies the mathematical requirements of an envelope.

(iv) Finally, consider a real continuous stochastic process defined by (2.1), which
can alternatively be written as

(>8]
x(t) = j (dA coswt+dy sinwt),

where Aw) = ) —E(—w), pw)=Ii(w)+{(—w))

By analogy with (iii), we have
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where y is defined by (2.2). Again, |2(f)| is defined as the envelope of z(f). For a
physically meaningful picture, it is necessary to restrict x(f) to narrow-band signals,
and, as we shall discuss more fully in §2.3, this is done here.

In particular, let z(t) be a Gaussian process possessing finite first and second
spectral moments m, and m, defined by

m, = fo w'g(w)dw, r=1,2. (2.4)

Here, w = 2nf is the angular frequency and ¢(w) is the power-spectral density of x(f)
defined such that "
f P(w) do = m,, (2.5)
0
where m, is the mean-square value of z(t). For these conditions, it has been shown
(e.g. Cramer & Leadbetter 1967) that the expected number of positive crossings n
of a level [ (normalized by the root-mean-square value of x(t)) of E(t) is given by the
Rayleigh distribution

n(l) = (§/2m)pl e, (2.6)
where? E= g—i—(—%)g (2.7

The peak value of this distribution

n, = max n(l) = n{l)

p
!
is given by ny = (£/2me)t. (2.8)

Thus, all one needs to know to determine n,, for a given Gaussian process x(t) are the
first three moments m,, m, and m, of its real spectral density ¢(w). The crossing
frequency at any level ! follows from (2.6) and (2.8) to be

n(l)/n, = etle ", (2.9)

At any given threshold level I, we can define the width of the active region as the

interval between an upcrossing and a subsequent downcrossing of / by the envelope
E(t) (see figure 1). Then it can be shown (e.g. Cramer & Leadbetter 1967) that the
mean width W, of the active region (that is, the region above the threshold level) is

iven b .
& y W,(l) = (2r /£, (2.10)
Define now the fraction of the total time the signal is active (i.e. enclosed within the
envelope) as the intermittency factor y associated with the signal. Then it follows
from (2.6) and (2.10) that y=Won= ot @11

Note that the intermittency factor y is independent of the form of the spectral density
¢(w). Another convenient relation is
Wyn,l = et~ 0.607. (2.12)
2.3. Bandpass-filtered signals

Although the envelope defined in §2.1 is of general mathematical validity, it is not
necessarily always a well-defined physical entity for wide-band stochastic processes.

+ Noting that ¢(w) = 0 for all w, straightforward application of Schwarz’s inequality shows that
£ = 0 always.
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On the other hand, for narrow-bandpass-filtered random signals, it is a perfectly
realizable entity (see figure 1); this is precisely why the envelope defined through the
analytic signal becomes a useful tool in internal intermittency studies. Our concern
is essentially with the narrow-bandpass-filtered signals, say £(¢; 4;f,,), obtained by
passing the signal 2(t) through a bandpass filter of constant fractional bandwidth 4
set to a midband frequency f,,,. We can now treat the bandpass-filtered signal & as
a new stochastic process, whose spectral density is the same (except for the scaling
factor) as that of the original unfiltered signal z(t) in the narrow bandwidth chosen,
and zero everywhere else. It follows that the quantities corresponding to (2.3), (2.4),
(2.7)-(2.9), (2.11) and (2.12) are

Bty = [8(t)] = [£2(t) + 2O B, (2.13)
o (1454)

m, = J w'P(w)dw, r=0,1,2, (2.14)
(um(l—%A)

s 2\ 2
(-2
My My
Ay = (£/2me)k, (2.16)
D)/, = lexp [—3(*~1)], (2.17)
y = exp (—iP¥), (2.18)
W, iyl = e, (2.19)
Here ¢p(w) is the spectral density of the unfiltered signal x(¢) from which £(t) is derived
from bandpass-filtering around the midband frequency f,, = w,,/2n; and [ is the
crossing level normalized by the root-mean-square of the bandpass-filtered signal
#(t; 4; f). All the variables defined in (2.13)—(2.16) depend in general on both 4 and
fm,> but this dependence will not always be explicitly mentioned. The symbol ~ will,

however, be used consistently to denote quantities associated with bandpass-filtered
signals.

3. Results for bandpass-filtered random Gaussian processes

3.1. White noise
White noise, for which ¢(w) = constant, is quite often adequately described by a
Gaussian probability density function. When bandpass-filtered, the spectral density
is ideally a constant within the bandwidth and zero everywhere else.t It follows from
(2.14), (2.15) and (2.16) that

J%% = <&>é ~ 0.44. (3.1)

From (2.19) and (3.1) we have
W, fo, 41 = (6/n)t ~ 1.38. (3.2)
Finally y = et (3.3)

Equation (3.1) shows that, for a given bandwidth, the peak pulse frequency #,
increases linearly with the midband frequency and, for a given midband frequency,

t Since the filtering operation is linear, the probability density of the filtered signal is also
Gaussian.
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Freure 2. The pulse frequency # in filtered white-noise signals as a function of the level of
crossing {; the bandwidth 4 = 0.52; + , fm = 500 Hz, measured Ay, = 110 Hz; O, @, f,, = 1000 Hz,
Ay, = 208 Hz (filled and unfilled cireles correspond to either side of zero of the filtered signal);
A fa = 2500 Hz, 4, = 585 Hz; ——, equation (2.17).

increases linearly with the fractional bandwidth. 1t follows from (3.2) that, for
fixed fractional bandwidth 4 and level [, the width W, of the active regions in the
bandpassed signal is inversely proportional to the midband frequency. Interestingly,
it is seen from (3.3) that vy is independent of f,, and the bandwidth 4.

Before we attempt to confirm these results by experiment, it is necessary to
establish the meaning of the parameter 4 used in (3.1) and (3.2). In this theory, 4
is the width of an ideal narrow-bandpass filter, which is assumed to have a perfectly
sharp cut-off characteristic. In practice, however, no bandpass filter has this perfect
cut-off. Several equivalent ideal bandwidths can be defined for such filters (see e.g.
Bendat & Piersol 1971, p. 277) if the transfer function H(f) is known. Here we shall
assume that 4 corresponds to the so-called half-power bandwidth. That is,

4= (fz ""fl)/jma

where f, and f, are defined by the equations

LH(f) [ = LH(f,) 1P = 31 H(fin) I

We shall now adopt this definition and show that it is adequate for our purposes here.
Other definitions of 4 make no essential difference.

Figure 2 shows a plot of 74/#,, versus [ for white noise from a commercial random-
noise generator (VEB Schwingungstechnik Akustik, type NRG 201) filtered by a
Krohnhite filter (model 3202) at three midband frequencies of 500, 1000 and 2500 Hz.
The curve is symmetrical with respect to { = 0 as the data for f,, = 1000 Hz explicitly
show. The Rayleigh distribution (2.17) is found to be in excellent agreement with
measurements. In figure 3 measured values of 4,/ .. 4 are plotted for several values
of fi, and two values of 4. For the present experiments, 4 was determined by
measuring the response of the filter; for the data of Rao et al., although the authors
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Fiaure 3. The peak pulse frequency in filtered white-noise signals as a function of midband
frequency f,, and bandwidth 4: O, present data, 4 = 0.52; +, Rao ef al. (1971), 4 = 0.17; ——,
equation (3.1).
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Freure 4. The mean pulse width in filtered white-noise signals as a function
of f, 4 and [: symbols as in figure 2; , equation (3.2).

did not explicitly mention the bandwidth of the filter they used, we have used a
A = 0.17 appropriate to their filter. It is seen that the ratio is a constant very close
to the theoretical value given by (3.1). Figure 4 shows a plot of W, f,, 4l for several
bandpass-filtered Gaussian signals; although the uncertainty in measuring W, for
large [ results in considerable scatter, it is clear that the trend is correctly predicted
by the theory. Finally, figure 5 bears out (3.3) rather well.

In conclusion, we have demonstrated that the theoretical approach does indeed
work in the expected manner.

3.2. Non-white signals
For later discussion, we consider here other Gaussian random processes whose
spectral densities are not flat. Our concern will be the peak frequency #,, especially
its asymptotic value N as f, >0c0 (see §1). Other parameters are given by
(2.17)—(2.19).
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Freure 5. The (internal) intermittency factor y as a function of the crossing level [ for filtered
white-noise signal: +, f,, = 500 Hz; @, 1 kHz; A, 2.5 kHz; 4 = 0.52 in all cases; , equation
(2.18).

() @(f) = ¢f ", n > 0, and ¢ independent of f. For this algebraic cut-off, it follows
from (2.15) that
£~ [, (3.4)

so that, from (2.16), i ~ fm- (3.5)

N, is thus undefined.
(i) @¢(f) =ce ™, a > 0. For this exponential roll-off, the corresponding results
(spelled out in more detail here for future use) are

2 2078 1.52 2e7¢
e=2h-E] a =t (3.6)

(1—e%)? o (1—e7%)?
where § = af, 4. As f,, >0, £ and #, tend to finite limits. It follows that
o 1.52
N, = — (3.7)

(iii) As simple generalization of (ii) consider
$ ~ [T,
The detailed expressions for £ and #,, are complicated, but it not hard to show that
N, = 1.52(2r+1)}/p. (3.8)

(iv) As another generalization of (ii) consider
[e9)
¢ = Elare“/}rf, By > /))rwl;
-

it is easy to show that Np =1.52/4,.

This follows from (ii) because, for larger f, other terms involving £, (n > 1) becomes
unimportant faster than the first term a, e /.

4 FLM 151
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(v) Consider

P(f) = cf e T (3.9)
In this case, we have, for large f, ,

£>1 forallr,
so that Np = 1.52/p4.

4. Bandpass-filtered turbulent signals

For reasons that will become clear in §4.2, it is useful to consider the data in
turbulent shear flows separately from those in grid-generated turbulence.

4.1. Turbulent shear flows

Figure 6 shows the variation of 7/7,, as a function of the level I normalized by the
root-mean-square of the bandpass-filtered signhal. A variety of signals at different
Reynolds numbers has been included here: those of Rao ef al. were obtained by
filtering at different midband frequencies the streamwise velocity fluctuation u in the
inner layer; the present results are for « at y/8 = 0.3 (at one midband frequency)
and y* & 5 at several midband frequencies. In the present experiments, the velocity
fluctuation u was obtained with a 5 pm diameter DISA hot wire operated on a DISA
55MO1 constant-temperature anemometer. (Note: As no information is available on
the root-mean-square value of the bandpass signals in the data of Rao ef al., the plots
are adjusted such that /4, = 1 when [ = 1. For the present results, however, { was
obtained from direct measurement.) Interestingly, these data have essentially the
same behaviour as suggested by (2.17); further, this behaviour is common with
turbulent signals in other shear flows (e.g. turbulent jets).

The mean width W, of the pulses has also been measured in several flows. Figure 7
is a plot of Waﬁpz as a function of the Reynolds number R, in these flows.
(R, = w'A/v, where 4’ is the root-mean-square streamwise velocity, A is the Taylor
microscale and v is the kinematic viscosity.) The relatively large scatter is not
surprising considering the nature of these measurements, but it is clear that no
apparent trend exists with R, or with respect to the nature of the shear flow. In fact,
the mean value of Wa T [ data (0.55+0.09) is within 10 % of the value of about 0.607
given by equation (2.19). Figure 8 shows that the y versus [ relation is described by
(2.18) reasonably well.

What we have shown so far in this section is that the behaviours of the parameters
A/ Ty, W, T [ and y can be explained quite well by our analytical procedure, which
does not at all invoke the dynamics of turbulence. It is thus clear that if these
quantities, normalized in the above manner, are to be indicators of internal
intermittency at all, that property must come entirely through [, the level of crossing
(or, the threshold setting), the only one parameter on which depend the three
quantities mentioned earlier. The picture is not complete, of course, until we can
determine the precise way in which the peak pulse frequency 7, which we have used
for normalization above, depends on the dynamics of the signal. Two crucial questions
then are as follows. (@) What is the relation between the signal dynamics and the
‘correct’ threshold setting in internal intermittency measurements? (b)) What aspects
of signal dynamics are relevant to the determination of the scaling parameter 7, ?
We shall relegate the discussion of (a) to §5, and consider (b) below.

For a Gaussian process, the factors influencing 7, are (see (2.14)—(2.16)) the filter
bandwidth 4, the midband frequency f,, and the spectral density ¢(w). It may be
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Fioure 6. The pulse frequency 4 in filtered streamwise velocity fluctuations in turbulent boundary
layers, as a function of the level of crossing {. Present data: V7, y/8 = 0.3, Ry = 7260, f,, = 5 kHz;
%, fm =128 kHz; A, 1.6 kHz; +, 2 kHz; ©, 3.2 kHz. For the last four sets, y* x5, Ry = 1580.
Data of Rao et al. obtained in the inner layer, Ry = 9450: A, f,, = 2 kHz; A, 4 kHz; @, 6 kHz;
x, 8 kHz; O, 10 kHz. , equation (2.17).
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Ficure 7. The mean pulse width in filtered turbulent signals on various shear flows, plotted as a
function of the microscale Reynolds number. Present data for filtered « in turbulent boundary
layers: [B,[ = 0.4; 0,7 = 1.6, both for f,, = 1.28 kHz, y* ~ 5 and By = 1580; O, =1, f,, = 5 kHz,
y/8 ~ 0.3, Ry =7260. Data of Badri Narayanan et al. for « in turbulent boundary layers: x,
y/8 = 0.4, By = 1900-5500. Data of Antonia et al.: @, u; A, temperature fluctuation, both in the
atmospheric surface layer; @, u, y/6 = 0.12, R, = 5850. Where unspecified, f;, is not accurately
known. , equation (2.19).
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F1cUrES8. The (internal) intermittency factory asa function of the crossing level [/ for filtered u-signals
in turbulent boundary layers: @, R, = 1580, y* ~ 5, f,, = 1.28 kHz; O, R, = 7260, y/8 = 0.3,
Jm = 5 kHz; , equation (2.18).

thought a priori that certain other factors (such as non-Gaussianity) would have to
be included when dealing with turbulent signals. However, the success we have so
far had with the theory suggests that it is worth evaluating 7, without considering
these extra ‘complications’, and so we pragmatically take from measurements the
spectral density ¢(w) of the particular signal under question, and evaluate 7. If the
#i, so evaluated (for given f, and 4) differs substantially from measurement, some
of the features excluded at this stage from the theory may be inferred to be important.
In the absence of any substantial disagreement, we should conclude that the
important aspects of turbulence dynamics (only in so far it relates to #,!) somehow
enter essentially through the spectral density, and that the other features like
non-Gaussianity are not in themselves critical. (We should like to add, even if
somewhat unnecessarily, that non-Gaussianity is of undoubted importance in many
other aspects of internal intermittency, such as the flatness factor and the skewness.
It also enters (via the choice of the most appropriate threshold setting) in the
determination of # and Wa; see §5.)

First, we show in figure 9 the #, measurements in boundary layers; other flows
are known to be no different. As discussed in §1, the peak pulse frequency #,, initially
increases with increasing midband frequency, and appears to settle down to a
constant value in the far-dissipation region. This is a typical result; more data can
be found in Rao et al. (1971). The nearly linear initial rise of 7, with f,, is not surprising
in view of the relatively flat spectral content in that frequency range (see (3.1)), but
an interesting feature is that i, settles down to a constant fraction of the Kolmogorov
frequency f,, for f../f, 2 0.5. Rao et al. interpreted this constancy of #, with f,, for
large f,, as follows. Whenever a wideband signal is passed through a narrow-band-
pass-filter of bandwidth 4f,, the output of the filter is an amplitude-modulated signal,
with the characteristic modulation frequency proportional to Af,, itself. Since the
resultant modulation is what one identifies with pulses, it is clear that the pulse
frequency 7, should be proportional to 4f,,, or proportional for f,, itself since 4 is
a constant). In general, therefore, #,oc f,,, a result that we have shown, both
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Ticure 9. The (normalized) peak pulse frequency as a function of the midband frequency fp; dat.a
for turbulent boundary layers: O, Badri Narayanan et al. (1974), /6 = 0.4, B, = 3000; A, Ant(.)ma
etal. (1976), y/8 = 0.12, R, = 5850; %, present, y/d = 0.3, By = 1580; ——, theoretical calf}ulatlons
using (4.1). f, is the Kolmogorov frequency given by U/2ny, 5 being the Kolmogorov microscale.

analytically and experimentally, to be true for white noise. (This is true .also for a
Markov process whose spectral density asymptotes to a power-law roll-off; see (3.1)
and (3.5).) The fact that 7 settles down to a constant was thus attributed by Rao
et al. to genuine internal intermittency. o
With this in background, it is now appropriate to consider what a priori
considerations in the theory would have suggested that #,— constant as f,, ~c0. We
recall from section 3.2 that the only spectral shapes for which 7, - constant as f;;, = o©
are ¢ ~ fre ™ ¢ ~e % and ¢ ~ fTe 7. Within the framework of the theory, we
thus conclude that the approach of 7, to a constant implies that the roll—pﬁ' of ¢(f)
should be faster than algebraic.t It was pointed out several years ago by Kraichnan
(1967) than a faster-than-algebraic decay in the far-dissipation range implies strong
intermittency, no matter what the Reynolds number. Kraichnan’s point was simply
that, given a stronger-than-algebraic decay of the spectral density, the existence of
the mean square of all velocity derivatives implies that the spectral density at any
fixed wavenumber in the relevant wavenumber range comes from a few exceptional
regions only — a typical attribute of fine-scale intermittency. More recently, Frisch
& Morf (1981) have also reached essentially the same conclusion, based on a more
quantitative analysis in the complex domain of the nonlinear Langevin equation.
To carry further the notion that the internal intermittency and the stronger-
than-algebraic decay in the far-dissipation range are tied together, we shall now
calculate the actual numbers in the (7, fy,)-relation shown in figure 9. Obviously, the
notion derives stronger support if we can also quantitatively predict the observed
(foyy, frn)-Telation. o
A brief digression is necessary. Stewart & Townsend (1951) have shown that in grid
turbulence the measured one-dimensional spectral density preserves its shape in the
dissipation range when normalized on the Kolmogorov velocity scale and lengthscale.
t In fact, we can be somewhat more specific and exclude the case ¢ ~ f*e~% on the grounds
that the results become meaningless for 7 < —0.5 (see (3.8)), and it is in practice not possible to
fit a curve f"e~* to the measured spectral density of n 2 —0.5.
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The conclusion empirically holds true for shear flows also. We have examined in the
Appendix all the high-frequency spectral data in boundary layers as well as grid
turbulence, and borrow from there the result that the self-preserving shape is
satisfactorily described by the (empirical) expressions
% ~ exp<—~12.7i> for 0.1 <
v Jy
f

~ exp(—S.S;) for 0.5 <
Y

L <0,
f Vi
<! <15,
LT

where v is the Kolmogorov velocity.

We may now complete the 7, calculations in the range 0.1 < f/f,, < 1.5 using
(3.6).17 It is seen from figure 9 that the data from all the sources are in reasonable
agreement with this theoretical calculation. We shall return to a discussion of this
result in §5. (More recently, Antonia et al. (private communication) have produced
fiy, data which tend to asymptote at around f/f, & 1.0 before sharply increasing again.
Spectral measurements show that noise effects become important around Sy

4.2. Grid turbulence

Consider the Kuo—Corrsin data of 1971. They measure both the intermittency
factor y and the mean width W, of the high-frequency pulses. In determining these
quantities, the threshold (equlvalent to our [) was set to different values for each
set of (W y)-measurements, but the precise value of [, one of the important
parameters in our theory, were not recorded. Thus the best we can do is to evaluate
it from our theory using one of the measured quantities W, ory, and predict the other.
If the prediction is reasonable, we conclude that the data are consistent with the
theory. Clearly the comparison between theory and experiment is not as complete
as in the case of boundary layers; this, of course, is the reason for considering
grid-turbulence data separately.

Two possibilities arise. One of them is to assume that the intermittency factor y
is given, and evaluate [ from (2.11), which gives

[=(—2Iny)} (4.2)

Using this 7, and the theoretical prediction of A Al from (3.6) and (4.1), we can evaluate
from (2.12) the mean width W, of the active regions. The other possibility is to assume
W, as given, and evaluate Zfrom (2.12) using the theoretically determined 7,,; we can
then predict y from (2.11). We have done both.
Figures 10 (a,b) show the measured values of the intermittency factor y and the
w1dth W, of the pulses. From these two, one can compute the pulse frequency
'y/W also plotted in figure 10 (c). The unbroken lines in figures 10(b, ¢} are the
thcoretlcal calculations for W, and #, obtaining [ from the measured y; that in
figure 10 (a) represents the actual smoothing we have used for y in getting ! from (4.2).
The dashed line in figures 10 (a,c) are the theoretical calculations for y and 4, with [
obtained from the measured W,, which itself is represented by the dashed line in
figure 10(b). It is seen that the agreement between the experiment and either set of
calculations is only qualitatively correct. We believe that part of the reason for no
better quantitative agreement rests with the limitations of the procedure we have
been forced to adopt, namely to assume that one or the other of the two measured
parameters is precise. If we assume, for example, that neither of the measured

T Itisnecessary to patch smoothly around f,, /f, = 0.5 the results from the two expressions (4.1);
no formal matching is possible.
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Freure 10. ( ) The intermittency factor, y; (b) the normalized width W, wy, of the ‘pulses
(wy = 27f); (¢} the pulse frequency A (=y/W,) for grid turbulence. Data from Kuo & Corrsin

(1971) Ry, = 110 Sfm = 5900 Hz. amd —— are theoretical predictions explained in the text.

parameters is correct to better than 10%, we can in fact produce a better overall
agreement by ‘splitting the difference’ between y and W,. Our objective is not to
suggest that the measurements are inaccurate, but to point out that realistic
uncertainties could affect the quality of our comparison in figure 10.

Finally, we have formed the product Waﬁp [ for the Kuo-Corrsin data at the three
Reynolds numbers of their measurement; the objective is to compare this product
with prediction from (2.12). In forming this product, W, was taken from measurement
directly and { was obtained from measured y using (4.2). The peak pul% frequency
#, was obtained in two steps, first by getting 7 from measurement (= y/ W,) and then
converting it to 7, using the theoretical ratio #/#,; since the mldband fr(,quen(’y S
was set equal to f,,] in these measurements, 7/7, ~ 1 (see figure 9). Thus we took
Ay = = v/ W,. The product W, iy [ given in table 1 shows that the agreement with
the theory is not unreasonable.

In sum, we believe that the grid-turbulence data are also not inconsistent with the

theory.

5. Discussions and conclusions
It is useful to summarize our results here. We have shown in §§3 and 4 that

[, = fu(), Wy, =f(D), v = £,
where f,, f, and f; are known functions only of the threshold setting [. Thus the two
basic characteristics of an intermittent signal, namely # and W (note: y = nW) are
dependent only on [ and the characteristic pulse frequency #,. All the dynamical
characteristics of the signal, as well as the filter settings (such as the bandwidth and
the midband frequency), enter only indirectly in so far as they determine [ and g
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W, i, 1
Ry Experiment  Theory
50 0.46
73 0.57 0.605
110 0.61

Tasre 1. The product W, 7, [ from the grid-turbulence measurements of Kuo & Corrsin
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Ficure 11. The effect of midband frequency f,, and the filter
bandwidth 4 on the peak pulse frequency #,,.

Let us first consider 7. The effect of filter characteristics on 7, can be illustrated
by taking the spectral density ¢ to be given by exp{—a(f/f,)}; when f/f, is not too
small, this is typically the form we discussed in §4. Figure 11 shows the variation
of the peak pulse frequency 7, as a function of f,, and 4. Notice that, the larger the
bandwidth, the earlier in f,, is the aymptotic state reached. (This is to be expected
because larger values of the bandwidth imply that the tail end of the spectrum
representing the intermittent region is incorporated for lower settings of the filter
midband frequency.) It is clear that, even if one measures the peak pulse frequency
for the same signal at the same f, one can come up with different values for 7,
depending on the filter bandwidth. On the other hand, the asymptotic value Np of
iy, is independent of the filter bandwidth (see (3.7)). We conclude that N is a very
important characteristic (because it is determined completely by the signal dynamics
in a way we can determine; see below) of internal intermittency in the far-dissipation
region.

Regarding the dynamical aspects of the signal that go into determining #,, we have
shown that 7, measurements in the far-dissipation region can be explained correctly,
provided the spectral density in the far-dissipation range is assumed to have a
stronger-than-algebraic roll-off. The question that naturally arises is whether this
requirement on the roll-off characteristics of ¢ is merely an artifact of our having
persisted with Gaussianity assumption for the filtered version of u(t),T knowing full

1 We would like to emphasize that our theory does not assume that u(f) is Gaussian, but only
its narrow-bandpass version is. Narrow-bandpass filtering introduces considerable smoothing, and
a smoothing of a non-normal stochastic process makes it tend towards normality. Probability
density measurements of narrow-bandpass-filtered turbulent-velocity signals actually show that
the departures from Gaussianity are significant only towards the tails; these departures, while being
crucial for the flatness factor and the skewness (for example), do not seem to be important in the
context of the intermittency measures we have considered.
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well that it cannot be completely correct. We do not have a conclusive answer,
because for no other probability distribution can the results be made as explicit as
has been possible here. There exist several pointers, however. First, Kraichnan’s
conclusion that internal intermittency implies a stronger-than-algebraic spectral
roll-off did not have to use normality assumption in any way. This suggests to us
that the complementary conclusion, that only the stronger-than-algebraic spectral
roll-off will reproduce the observed (7, f,,)-relation, may also be independent of the
normality assumption. Furthermore, our limited experimentation suggests that a
small perturbation on a Gaussian process does not matter much for the internal
intermittency measures discussed here. Together, they lead us to believe that the
assumption of GGaussianity in our theory is probably only incidental, and simply the
most convenient; it follows that the stronger-than-algebraic decay of ¢ in the
far-dissipation range may be a genuine characteristic of internal intermittency.
Perhaps, this is characteristic of all intermittent nonlinear processes. The work of
Frisch & Morf (1981) has gone farthest in elucidating this point. These authors have
shown, with particular reference to the nonlinear Langevin equation, that the
exponential nature of the spectral density in the far-dissipation region can be related
to the singularities of the equation in the complex plane. Whether the Navier—Stokes
equations are singular in the complex plane is, however, an open question.

If it is true that A, can also be considered a known quantity, it follows that the
only parameter that sets apart different signals as regards their intermittency
characteristics is the threshold setting [. The most important question in internal
intermittency measurements is therefore: ‘What is the correct threshold setting that
one should choose?’ A complete theory should of course reveal how [ must depend
on the dynamical characteristics of the signal itself (and the filter settings); the
present theory is incapable of providing an answer to this question, precisely because
the dynamical considerations we have ignored all along will certainly become
important here. Several considerations go into the determination of the correct
threshold level, but the most important step is clearly subjective.} Therein lies the
weakness of all internal intermittency measurements involving the frequency of
pulses, intermittency factor and the pulse width.

In spite of this subjectivity, it is useful to take guidance from typical measurements
and discuss how the ‘correct’ values of the threshold  may depend on the dynamical
characteristics of the signal. Figure 12 shows the empirically determined threshold
for filtered turbulence signals. Assuming that the subjective judgement that goes into
determining these data is correct, the figure shows that [ increases with increasing
midband frequency (i.e. the signal becomes more and more intermittent at smaller
and smaller scales). For white noise, on the other hand, ! does not depend on f,, and
v is therefore independent of f,,,. »

Because of the subtle influences that various factors have on internal intermittency
measurements, and because of the extreme sensitivity of the results on the threshold
setting, it is not surprising that different authors have arrived at different values for
the several measures of intermittency, often with conflicting conclusions (see §1).

+ Briefly, one generates an indicator function /(1) that isa random square wave such that I(t) = 1
whenever the signal exceeds the chosen threshold, and zero otherwise. One then compares I(¢) with
the filtered signal to determine whether the threshold chosen is ‘correct’. This last step is crucial
but subjective. For the correct setting y = I(¢). This technique, originally used in the outer-layer
intermittency measurements in free shear flows, is due to Townsend (1948). Other sophistications
introduced later (see e.g. Kuo & Corrsin 1971; Hedley & Keffer 1974) do not eliminate the need
for the final subjective comparison of I(t) with the original signal.
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Frevre 12. The experimentally determined threshold setting as a function of the midband filter
frequency. Data for u in a turbulent boundary layer, R, = 1580, y/8 = 0.3.

What we have shown is that, if all factors are properly taken into account, the
seemingly confusing picture becomes quite clear. Part of the contribution of this paper
is in sorting out this confusion by way of determining the precise roles of each of the
parameters entering the problem.

I cannot exaggerate the impact on this work of a brief conversation I had some
eight years ago with Professor R. Narasimha. I should also like to thank Professor
R. A. Antonia and Dr D. Britz for their most penetrating comments on an earlier
draft. Thanks are due to Dr H. Oertel of DFVLR, Géttingen, for the hospitality
extended at his institute while the manuscript was being completed. During part of
my stay at DEVLR, I was awarded a fellowship from the Alexander von Humboldt
foundation.

Appendix

Figure 13 shows some high-frequency spectral data of « in turbulent boundary
layers; also plotted are data for a high-Reynolds-number (Re = 500000) pipe flow
of Laufer (1954). It is clear that a reasonable degree of self-preservation exists in the
Kolmogorov variables (although the details of Kolmogorov’s arguments cannot be
expected to hold in shear flows).

Except for our own data in figure 13, the other two sources of data are quite old.
Relatively more recently, Comte-Bellot & Corrsin (1971) have obtained high-frequency
spectral data in grid turbulence for two Reynolds numbers and at several locations
behind the grid. We have plotted their data in figure 14, again normalizing by the
Kolmogorov scales. They too confirm an excellent tendency towards self-preservation
note that the energy scale spans about eight decades in this region. Except for the
last two points of Klebanoff’s data, figures 13 and 14 are quite comparable where
they overlap.

To determine the best exponential fit for ¢, we have plotted in figure 15 data from
both figures in the form In (¢/v*y) versus f/f,. We can see that the two expressions
given in (4.1) fit the data well in the respective ranges.

High-frequency spectral data are difficult to obtain accurately, and are plagued
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Freure 13. Self-preservation of the high-frequency end of the spectral density in shear-flow
turbulence. Boundary-layer data from Klebanoff (1955). E; = 75000: O, y/d = 0.05; A, 0.20; x,
0.58. 7, pipe-flow data from Laufer (1954), R, = 500000, y/a = 0.074, where a is the pipe radius.
X, present data, B, = 1580, y/0 ~ 0.3.

by uncertainties such as noise and effects of the finite length of the hot wire. It is
nevertheless heartening to note that all the data agree within reason. Most sets of
data in figures 13 and 14 were corrected for electronic noise and ‘empty tunnel
disturbances’, but none was corrected for the finite-length effects of the hot wire.
Comte-Bellot & Corrsin (1971) note that this last correction was within the measure-
ment scatter. i

The precise value of the coefficient a in ¢ ~ exp{—a(f/f,) corresponding to the
second expression in (4.1) determines in our theory the asymptotic value N, of 7,
A 209, change, for example, in the value of @ (should such a change be necessitated
by improved data that may be acquired in future with more sophisticated instrum-
entation) will produce a 20 %, variation in N, p- but this does not affect our conclusions.
In fact, a 20 9% larger a will produce a better fit to our own 4, data in figure 9, as
well as to the Kuo—Corrsin data in figures 10.

The observed universality of the spectrum when plotted in the Kolmogorov
variables suggests (see (2.7) and (2.8)) that 7,,/f, must be a unique function of fin/f,
for f,,/f, not too small. That, of course, is why we plotted data in figure 9 the way
we have. Considering the difficulty in making the 7, measurements, figure 9 can be
considered to support the contention.



102 K. R. Sreentvasan

10% T T f‘r T T H T

10 [

P ﬁpw

w’&gﬁ -

x Ry &

107 |- =

px W0

107 - N

107

> "+ F ole

ot

1075 - N

1078 | Lo v i
1073 1072 107! 1 10
1,

FigURE 14. Self-preservation of the high-frequency end of the spectral density of the longitudinal
component of velocity in grid turbulence. Data from Comte-Bellot & Corrsin (1971).
UM/v =3.39%x10% O, x/M =42; x,98; A, 171 UM/v = 1.69x10*: ¥, x/M = 45; W, 120; +,
210; @, 385. v is the Kolmogorov velocity scale and f, is the Kolmogorov frequency.
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Freure 15. The exponential fits to the tail-end of the Kolmogorov-normalized spectral data.
[ represents the mean of the grid-turbulence data of figure 14; other symbols as in figure 13.
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