Some Studies of Non-Simple Pipe Flows

K.R. SREENIVASAN

SUMMARY A variety of phenomena occurs in pipe flows, especially if we stray away from straight circular pipes of
uniform crosssection, This paper illustrates a few of the complexities arising from two relatively simple changes
in geometry, namely, the sudden expansion and the coiling of a circular pipe.

1 INTRODUCTION

Pipe flows, far from being well-understood and dull,
are very complex and highly interesting, and often show
unexpected behaviours. Consider as an example a low
speed, constant temperature, adiabatic flow in a long
round pipe. The flow may be laminar or turbulent. Text
books assert that, in a region sufficiently far away
from the entrance, the static pressure varies linearly
with the axial distance. Measurements, on the other
hand, show that for air flow in a long, straight and
thin tube (say, 6 mm diameter, 4000 diamcters long),
manometers located at equal intervals along the pipe
length do not show equal readings; they increase with
increasing downstream distance, (For the specific ex-
ample chosen, and for a turbulent flow at a Reynolds
number of the order of 10,000, the manometer reading
over the last 100 diameters may be nearly twice as high
as that, say, between 300 and 400 diamcters.) Further,
the wall shear strvess is not simply proportional to the
pressure drop.

This seemingly puzzling observation is not hard to
understand, however, Without going into details (which
can be worked out rather simply), we may note that,
when the pipe is long and the axial pressure drop is
substantial, the absolute pressure at the pipe entrance
will have to be significantly higher than at the exit.
In the present example, the pressure difference between
the entrance and the exit will be of the order of one
atmosphere. This gives rise to a substantial change in
air density. With density a decreasing function of the
axial distance, the flow will have to accelerate con-
tinuously, thus accounting for the observed behaviours.
Thus, the classical notion of a linear pressure drop

in a long pipe is exact (for gases) only in the limit
of negligible pressure drop!

This is but one example of unsuspected behaviour, In
the remainder of this paper, we shall discuss some
intriguing phenomena arising from two simple changes

in pipe peometry, namely, the sudden expansion and the
coiling of a circular pipe. We shall not dwelt at all
on the complexities associated with flow of non~Newton-
ian fluids.

2 SUDDENLY EXPANDING PIPES

Consider a sudden expansion in a circular pipe shown in

figure 1. Different phenomena occur in different ranges
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Figure 2

of parameter space, where the chief governing para-
meters are the Reynolds number Re, the axial distance

x and the conditions upstream of the expansion. Here,
all Reynolds numbers, unless specified otherwise, will
be based on the diameter D of the downstream section
and the bulk average velocity there., The origin for the
downstream distance will be at the expansion itself.,
All results in this section refer to a diameter ratio
of 2. Exceptions will be noted.

2.1 The Oscillatory Flow Regime

2.1a The Phenomenon: A hot wire located on the centre-
line of the pipe some distance downstream of the ex-
pansion will register, in a certain range of Re and

for sufficiently smooth upstream conditions, oscilla-
tions of the type shown in figure 2, with amplitudes
typically comparable to the average velocity in the
downstream section, These oscillations are remarkable
for their regularity and general repeatability (provi-
ded some care is taken, see below).

d

Figure 1 Schematic experimental configuration

Oscillations seen by a hot-wire located on
the pipe axis at x/D = 11, Re = 750, d = 0,635 cm, L, =
425 d. The uppermost trace is the unfiltered signal,
the mid-trace is low-pass filtered below 10 Hz, the
lowermost trace being high-pass filtered above 10 Hz.

Most of the fluctuations seen in the last trace are

below 500 Hz. Time scale: from left to right of figure,
5 sec.
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These oscillations have several interesting properties.
First, they appear when Re reaches a value of the order
of 750, with the upper Reynolds number limit depending
strongly on the degree of smoothness of the flow up-
stream of the expansion. If the entrance conditions to
the upstream pipe are sufficiently smooth - say, in a
qualitative way, smooth enough for the laminar-turbulent
transition there to be delayed until an upst eam pipe
Reynolds number of the order of 7500 is reached - the
oscillatory phenomenon seen in figure 2 persists until
an Re of around 1500. For less smooth conditions, the
Reynplds number window shrinks, and the oscillations

may diaappear altogether for certain conditions. In fact,
if small levels of disturbance are artificially created
just upstream of the expansion, or if the tube is
squeezed hard asymmetrically at the expansion, the osci-
llations are disturbed rather strongly. They can even

be controlled at will: for the conditions of figure 2,
inserting a 0.24 mm diameter needle along a diameter
through a hole carefully drilled just upstream of the
expansion destroys the oscillations completely; remov-
ing the needle and resealing the hole restores them
exactly, (The Reynolds number based on the maximum
velocity. in the upstream section and the needle diameter
is approximately 50. The vortex shedding behind this
needle, which we did indeed observe, perhaps creates
enough asymmetry in the flow to prevent the oscillat-
ions from being formed. A slightly thinner needle, say,
of 0.17 mm diameter, does not affect the oscillations,
presumably because,its Reynolds number of 35 being low-~
er than the critical value of about 40 (Kova.znay 1949),
no vortex shedding appears.) Some further observations

on this flow can be found in Sreenivasan & Strykowsky
(1983a).

x/D = 5,8
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Figure 3  Development and growth of oscillations along
pipe axis downstream of the expansion. Signals low-
pass filtered to 10 Hz. Unfiltered signals at x/D of
5.8 and 7 are no different from the filtered ones; at
other x/D, signals do develop an increasingly higher

fFequency content, Time scale: from left to right of
figure, 4 sec.
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2.1b 1In search of an explanation: How do these osci-
1lations arise and what physical phenomenon do‘they
represent? A partial answer can be seen from flgure ?
which records the development and growth of oscillations
along the pipe axis. It is immediately clear that they
do not represent oscillations in mass flux (forz if

they did, oscillations should have been seen with
nearly equal intensity at all x/D) but, rather, may be
representative of the instability developing downstream
~f tha avnangion.

For further clarification, we set up a simple flow
visualization experiment in water. An initial problem
was that any dye-introducing device placed upstream of
the expansion would produce enough disturbance to
destroy the flow oscillations. However, a dye streak
introduced at the inlet to the upstream pipe itself
(much as in the original experiments of Reynolds,1883)
served our purpose quite well. The large area ratio of
the contraction (2150) damped out the disturbances
produced by the dye-injecting needle to sufficiently
small values so as not to be disruptive to the process
that resulted in the oscillations in the first place,

We may summarize our flow visualization results as
follows. The dye streak downstream of the expansion
would remain straight and smooth for x/D of the order
of 5, apparently unaffected by the expansion. There-
after, depending on the precise value of the Reynolds
number (as long as it exceeded a 'critical' value of
about 750) it would develop rapidly growing oscillat-
ions (see figure 4a and compare it with figure 3), and
would abruptly break down at some point; when this
break-down occurred, the dye filled the entire

pipe crosssection downstream, suggesting that the
break-down and reattachment of the oncoming flow occur
essentially simultaneously. Just as abruptly, however,

¥

(a)

()

(e)

Figure 4 Flow visualization results for Re = 800, In
(a), the break-down of the oncoming dye-streak occurs
downstream of the mark indicated by the arrow, while
in (b), this break-down occurs upstream of the mark.
In (c¢), it is seen that the needle placed upstream of
the expansion anchors the break-down point.

the reattachment would move back to a different point
along the pipe, only to move forward to its original
position later. This back and forth movement occurs
essentially periodically, so that if one concentrated
at a fixed observation station along the pipe axis
(such as the mark in figures 4), one would alternately
see an unruffled dye-streak or a situation in which

the mixed~up dye filled the entire crosssection. An
unruffled dye-streak at the observation station implies
a velocity there that is characteristic of the jet-like
oncoming flow from the upstream smaller pipe whereas,
once the reattachment occurred, the flow would fill up
the entire pipe, thus reducing the average velocity,
This is essentially what makes a hot-wire see (as in
figure 2) two different levels of velocity with period-
ic alternation between them. In fact, the upper level
of oscillations in figure 2 corresponds roughly to the
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centre-line velocity in the smaller pipe, while the
lower level approximately to the average velocity that
would result if the flow coming out of the smaller pipe
filled the entire downstream pipe uniformly. Further,
it may be seen that (cf. the uppermost trace of figure
2) the upper velocity level is essentially laminar-
like, while the lower one is turbulent-looking, ref-
lecting the fact that the lower level in the oscillat-
ions of figure 2 represents a turbulent situation
downstream of reattachment.

Why does the reattachment point move back and forth so
regularly? The answer lies probably in the complex
interaction between the stability of the velocity
field downstream of the expansion and the oscillatory
pressure field further downstream, At this point, our
knowledge of the process is meagre, but a possible
(necessarily speculative) explanation follows,

The velocity distribution downstream of the expansion
would be nearly parabolic in the core, but surrounded by
a region of reverse flow. The resulting complex velo=-
city distribution has several inflexion points, and is
obviously prome to instabilities which are quite possib-
ly excited in phase by the downstream pressure field,
thus providing the mechanism for the regularity of the
oscillations. These instabilities grow and eventually
lead to the break-down of the flow at some point down-
stream, When this occurs, the turbulence that develops
and the consequently increased pressure drop would shift
the reattachment point upstream. One may surmise that
this upstream shift of the reattachment point would
restore the stability of the flow by altering the velo-
city distribution just enough, so that the reattachment
point would now move downstream to its original posi-
tion., This self-perpetuating act repeats itsef indefi-
nitely,

Inserting a small needle slightly upstream of the ex-
pansion (see figure 4c where the head of the needle can
be seen), which in the case of air experiments had the
effect of destroying the oscillations, always resulted
in a premature break-down and reattachment of the flow
at around x/D of 4, Disturbances due to the needle up-
stream, or any other artificially created disturbance,
would hasten the break-down by bypassing the normal
oscillatory growth stage, and anchor the so well the
reattachment point at around x/D =4 that, upstream of
this point, the flow would simply be a laminar 'jet'
of fluid coming from the upstream pipe — here, a hot-
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Figure 5 Oscillograms along the centre~line downstream
of the expansion, Re = 2200.

DISCUSSION ON THIS PAPER WILL BE ACCEPTED
FOR PUBLICATION UNTIL 14 MARCH 1984

wire on the pipe axis would continuously record very
nearly the peak velocity in the upstream pipe — whereas
downstream of this point, it would simply record comn-
tinuously the lower velocity corresponding approximately
to that after reattachment. This is essentially why no
oscillations were seen by the hot-wire.

2,2 The Puff Region

Further downstream of the expansion, the smoothness or
otherwise of the flow in the upstream pipe becomes ir~
relevant, and the Reynolds number and the downstream
distance become the only relevant parameters. The down-
stream evolution of the flow for a fixed Reynolds num-
ber of 2200 is shown in figure 5. The flow is fully
turbulent at x/D of 24, where the uppermost trace was
obtained. With increasing distance, the signal is seen
to build up in isolated regions while, at the same time,
the general lewel of turbulence slowly diminishes else-~
where (see the middle two traces). Eventually, one has
(as in the lowest trace of figure 5) nearly perfect
laminar regions interspersed with characteristic
signatures of structures known as puffs (Wygnanski &
Champagne, 1973). Figure 6 presents the complementary
information, namely, the flow evolution with increasing
Reynolds number at a fixed x/D of 144. Below an Re of
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Figure 6 Oscillograms on pipe center-line. x/D = 144
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Figure 7 Boundaries between the turbulent, puff and

relaminarizing regimes downstream of a sudden expansion.
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about 2000, the flow is entirely laminar; considering
that the expansion renders the flow downstream of it
turbulent irrespective of whether the oncoming flow. is
turbulent or not, the above observation simply means
that the flow is completely relaminarized for Re $2000
(see section 2.3). With increasing Reynolds numbers,
puffs begin to appear more and more frequently, until
eventually (for all practical purposes, beyond an Re of
2700) a fully turbulent flow results from the inter—
action and conglomeration of puffs.

By obtaining similar traces at different x/D, one can
construct a map marking boundaries between the turbu-—
lent, puff and relaminarizing regimes (see figure 7).
Similar maps have been constructed before for other
cases by Wygnanski & Champagne (1973) and Champagne &
Helland (1978). The map is self-explanatory in the
region x/D 2 100. In the region marked 'incipient
puffs?] one cannot see a distinct puff-like structure,
but can recognise something similar (see the second
trace from above in figure 5) which will evolve into
puffs further downstream. Turbulence level downstream
of the expansion seems always to decrease for a certain
initial distance; whether it continues to decay or not
depends on the Reynolds number. Crosses in the figure
indicate the x/D positions where the minimum in the
mean-square level of turbulence occurs for a given Re.
The line joining the crosses thus demarcates the region
of decaying turbulence to its left from that of in-
creasing and stable levels of turbulence to its right.

It is known that puffs once formed may either merge
with each other or split to form more than one (Wygnan-
ski et al., 1975), depending on the Reynolds number. An
equilibrium puff is one that does neither, and sustains
itself indefinitely; it occurs around an Re of 2200. In
structure, an equilibrium puff consists probably of
several toroidal vortices (Rubin et al., 1980), and its
occurrence follows a Poisson distribution rather well,
Recently, Bandyopadhyay & Hussain (1983) seem to have
identified the regeneration mechanism that allows the
equilibrium puff to survive indefinitely in spite of
the continually occurring turbulent energy dissipation,
It appears that when the laminar flow from upstream of
a puff enters it — figures 5 and 6 show that the puffs
are relatively slow moving and have sharp upstream in-
terface — rather well-organized vorticity is generated
(much as in an axisymmetric jet) which breaks up into
small-scale turbulence subsequently. In the incipient
stage, one surmises that this same process of regene-
ration must gradually start to occur after being
initiated via statistical fluctuations.

2.3 Relaminarizing Regime

For Re s 2000, the measured mean velocity profiles
acquire increasingly laminar-like shape with increasing
downstream distance. One expects that for large x/D,
the theoretical Poiseuille flow will be established
asymptotically., AL any station downstrecam of the eox-
pansion where the measured velocity distribution u(x,r)
— r being the radial distance from the centre-line —
has not quite reached its asymptotic shape, one can
write:

u(x,r) = u.(r) + Eu (x, r) + 0(g?),
v(x,r9 ev (x r) + 0(e?),
plx,r) = pO(X) + €p1(X T) + 0(&:2), (1)

where u.(r) and p (x) are the asymptotic velocity and
pressure distributions, and u,,v, and p, are the depart-
ures of the axial and normal velocity components, res-
pectively, and of the pressure from the asymptotic
distributions., (Note: v. = 0.) We have retained only
g-order terms, which implies that (1) can be expected

to hold only sufficiently far from the pipe expansion
where departures from the asymptotic state are small.

The parameter £ is the inverse of the characteristic
Reynolds number based on' the thickness of the inner
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laminar layer developing (in some asymptotic sense) .
from the expansion itself, and the average velocity in
the pipe. It is these layers that grow and eventually
merge to form the asymptotic shape of the velocity
profile (Narasimha & Sreenivasan, 1979), the process .
being much like that in the entrance region of a strai-
ght pipe (Goldstein, 1938).

For the fluctuations too, we may write:

u' o= Eu; + 0(e?2); v'= ev; + 0(e?), (2)
the expectation being that in the asymptotic state the
fluctuations are zero. We may now write the Reynolds

shear stress T as
T=-u'v = cT(GV) = CT[O(EZ)] s (3

where c_ is the correlation coefficient , .the tilde
denote root-mean-square values, and the last step in
(3) follows from (2). Measurements show that during re-
laminarization of this type, not only do the fluctuat-
ions decay with distance but also become decorrelated
(see, for example, Badrinarayanan, 1968); that is, ¢
tends to zero as x/D » ® or € » 0. It is thus reasonable
to take c_ = o(1), so that, from (3), we may write

T = o(e?), (4)

or, that T is higher order in smallness than €?. Using
(1),(2) and (4) in the Reynolds averaged continuity and
momentum equations, we obtain, to 0(1):

2 d
d ug . l duO p

dr? r dr dx

o

I

U » u (@)

whose solution, as expected, is the classical parabolic
distribution. To order £, we get:

1 Ju (5)

T 5E ( L) =2 8n2 <n
where 1 =rt/at, and & = xa/Re; ou1dn = 0,
n(3uy/on) C exp(-2XE) ¢(n), we can write (5) as:

9" + A(1-n/mo =0, (6)

Putting

#

with ¢(0) 0 and / ¢ dn = 0. Our interest is in the
first odd elgenfungtlon and the corresponding eigen-
value for (6).

1.0
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Figure 8 Exponential approach to the asymptotic
state. ®,%X,A: sudden expansion data from Sibulkin
(1962); D/d = 4.5, 0, gradual expansion, Laufer (1962).
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There are some nice consequences of this analysis.
First, a characteristic value of u,, say u which

is the centre-line value of u,, should deca? exponent-
ially with x. Figure 8 shows %his to be true to a good
approximation. Interestingly, the exponential decay
which, by virtue of having retained only two terms in
(1), could a priori have been expected to hold only for
large x/D, holds true quite close to the expansion, esp—
ecially for low Reynolds numbers. Second, the rate at
which u max decays is inversely proportional to the
Reynolds number. (That is, if u " exp (~mx/a), the
product mRe should be a constaném§§dependent of Re.)
Figure 9 shows that this is true not only for the sudden
egpansion case but also for gradual expansions and
bifurcating pipes. Finally, figure 10 shows that the ex~-
perimentally determined distribution of u,/u agrees
quite closely with the approximate eigenf&ncg?gﬁ :
Again, the theory holds for x/D as low as 8.

3 FLOW IN HELICALLY COILED PIPES

F%ow in‘curved pipes ~ which encompasses the topic under
Q1scu531on—— has been a subject of numerous investigat~
ions, but it appears that even some of the gross pheno-
mena.have not been understood. Our intention here is not
to discuss curved pipe flows exhaustively — a recent
survey by Berger et al,(1983) does this very well -

but to point out a few interesting results.
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Figure 9
Sudden expansion: @, Sibulkin, A, present, ®, gradual
expansion, Laufer. ¥, branching pipe, Lynn & Sreeniva-
san (1982).
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Figure 10 A comparison with theory of the departure of
the measured distribution from the asymptotic parabolic
profile. Sibulkin: 0, x/D = 8; A,17;3,35. Present: ®
x/D = 17,5,
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for (6).

Consider a long straight section of a smooth pipe follow-
ed by a coiled section; following the coil is another
long straight section (see figure 11). Several phenomena
we want to discuss are related to the question of tran-
sitional Reynolds numbers in this set-up, and we shall
mention this first.

Since we made no special attempt to keep the flow in
upstream straight section unusually disturbance-free,
the onset of transition occurred there at a Reynolds
number of about 2300. Typically, this manifests itself
in the form of puffs, and transition proceeds with in-
creasing Reynolds numbers much as in figure 6. As deter-
mined from intermittency measurements, transition

to turbulence is complete around an Re of 3200. This
holds up to the entrance to the coil. Once inside the
coil, the nature of transition depends, even at a fixed
axial distance and for a given radius ratio (that is,
the ratio of the radius of the pipe to the radius of
curvature of the coil), strongly on the precise locat-
ion in the pipe. It is not easy to determine, or even
define convincingly, the onset of transition to turbu-—
lence (although a preliminary attempt has been made by
Sreenivasan & Strykowsky, 1983b), but two limiting
situations can be defined relatively unambiguously: the
upper Reynolds number limit for the existence of a ste-
ady laminar flow ('steady laminar limit') and the lower
Reynolds number limit at which the flow is turbulent
everywhere in a given crosssection of the curved pipe
('turbulent limit')., Notice that in the special case

of the straight pipe the steady
with the onset of transition to
the turbulent limit retains itg

laminar limit coincides
turbulence; of course,
meaning throughout

The product mRe in relaminarizing pipe flows.

of the completion of transition to turbulence.

Figure 12 shows both steady laminar and turbulent limits
for the set-up shown in figure 11. (The data correspond
to a pipe which was 173 diameters long upstream of the
coil, had 20 1/, turns in the coil and was 937 diameters
long in the downstream straight section. The diameter

2a was 0,635 cm, and the radius ratio a/R was 0.058.

The fluid was air. All transitional Reynolds number

data were determinred with a hot-wire.) One effect of

the coil is to increase both the steady laminar and
turbulent limits up to the end of about three turns or

downsiream
X straight section
[
)
———— .
i 2a / helical coil
{ — D)
I
upstream straight
section
2R
Figure 11 Schematic of the experimental set-up.
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Figure 12 The steady laminar and turbulent Reynolds
number limits for the set-up shown in figure 11.
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so; thereafter, some asymptotic state seems to have
been reached. In this asymptotic state, the flow re-
mains laminar and steady for Reynolds numbers up to
about 4800, and does not become fully turbulent until
an Re of 7900 or so is reached; clearly, the gap bet-
ween the two curves is larger inside the coil than that
at the entrance to the coil. Perhaps surprizing is the
behaviour downstream of the coil: while the turbulent
limit drops as expected, the steady laminar limit does
not, but stays approximately at the same elevated level
as in the coiled section, In other words, the onset of
turbulence has been permanently raised to an Re of

4800 in contrast to about 2300 in the upstream section!

Why does the flow remain steady and laminar for higher
Reynolds numbers in the coiled section than it usually
does in the upstream straight section? Can the asymp-
totic values of the two limiting Reynolds numbers be
increased indefinitely? What makes the flow remain
steady and laminar for Reynolds numbers as high as it
does in the downstream straight section? Can that too
be increased indefinitely? These are some of the obvi-
ous questions that come to our mind., In what follows,
we shall. attempt at least partial answers to these
questions drawing largely from our continuing study of
this flow,

3.1 Stabilization Effects and Relaminarization

Within the coil, the flow near the inside wall sees a
convex curvature whose effect has long been known to be
stabilizing, However, the concave curvature associated
with the outside wall is known to be destabilizing, and
so, the explanation for the net stabilization effect
observed in the present circumstances is a bit subtle.
The clue lies in the behaviour of the mean velocity
distribution. Essentially because of the centrifugal
forces, the peak of the velocity in the plane of the
helix moves to the outside; typically for a radius ratio
of about 0.058, the peak occurs at a distance from the
outer wall of a tenth of the pipe diameter. Over the
bulk of the profile from the inside to the peak, the
sense of the mean flow vorticity is the same as the
'angular velocity’in the pipe, so that, by Rayleigh's
criterion — for a statement of the criterion most
appropriate in the present context, see Coles (1965) —
the flow is stable. There is however a small region
near the outside wall where the mean vorticity and the
'angular velocity' vectors are oppositely aligned. But
this region is quite thin for fairly large curvatures,
and the governing instability there is of the boundary
layer type. This 'boundary layer' too will be stable
unless the Reynolds number based on its thickness is
above the appropriate critical value; then and only
then will the onset of instability and possible tran-
sition to turbulence occur, This explanation, in spirit
due essentially to Lighthill (1970), cannot be complete
because of the three-dimensionality of the velocity
field but appears very reasonable,

One consequence of these stabilization clfects is that,
in a certain Reynolds number range (for the conditions
of figure 12, 2300 & Re £ 4800), a turbulent flow enter=—
ing the coil can be expected to become laminar at some
point in the coil. That does indeed happen, as can be
seen from the oscillograms of figure 13. The flow,which
begins its journey in a fully turbulent state at the
inlet to the coil, has become completely laminar by
about two turns in the coil. In fact, near the inside
surface, the flow has lost most of its turbulent
characteristics only half a turn into the coil!

s

3.2 Radius Ratio and Other Effects

Wg set up several coiled pipe flows in order to deter-
mine the effect of radius ratio on the asymptotic values
og the steady laminar and turbulent limits discussed
with respect to figure 12. Since the parameter govern-
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Figure 13 Typical oscillograms of hot-wire traces
during relaminarization. Re = 3450, a/R = 0,058, The
numbers marked in the middle of the figure correspond
to the number of turns into the coil.
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Figure 14 Asymptotic values of the limiting Dean

numbers in the coiled section, measured at the end of
1 . .

20 turns for all radius ratios.

ing the dynamic similarity in curved pipes is the so-
called Dean number (White, 1929), :

De = Re(a/R)""°, (7

the data obtained were plotted (see figure 14) as the
Fimiting Dean numboera  apainot the radias rario a/R, It
i scen that the iwmiting Dean numbers (whose meaning
is the same as that of the asymptotic limiting Reynolds
numbers of figure 12) increase with increasing tightness
of the coil until an a/R of 0.04. Thereafter, we note
that steady laminar flow cannot be found for Dean num-
bers above about 1100, however large the radius ratio.
(This constancy in the steady laminar limit for the
Dean number actually implies a decrease in the corres-
ponding Reynolds number for increasingly larger a/R;
see equation (7).) On the other hand, the turbulent
limit appears to increase monotonically (in terms of
both the Dean and Reynolds numbers) with the radius
ratio.

If we replot the data of figure 14 in terms of Reynolds
numbers instead of Dean numbers (Sreenivasan & Stry-
kowski, 1983b), it can be seen that the lower curve of
figure 14 shows a peak for a/R of 0.039 and Re of 5400.
This simply means that the most stable conditions
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obtain for a radius ratio of 0.039 and the highest
Reynolds number for which a steady laminar flow is
possible in the asymptotic state in the coiled pipes is
5400. This appears to be so independent of how large
the critical Reynolds number is upstream of the coil
(or, how smooth the inlet is to the upstream straight
pipe); our data at this point are not extensive but
seem enough to hold this view. We therefore conclude
that, if we can maintain the flow upstream of the coil
steady and laminar for Re 2 5400, it actually loses
its stability upon entering the coil — a notion that
seems to have been ruled out in the long history of
curved pipe flows! Curvature in this case is not al-
ways stabilizing!

3.3 Unsteady Laminar Flow in Tightly Coiled Pipes?

For convenience, we shall call coiled pipes with a/R
higher than about 0.04 (corresponding to the flat low-
er curve in figure 14) as tightly coiled pipes. We
shall now qualitatively examine the nature of the flow
with increasing Dean number for a typical tightly
coiled pipe. Figure 15 shows several oscillograms, all
obtained at the end of 10 turns of a coiled pipe with
radius ratio 0.1. It is useful to note that the traces
look much the same over most of the crosssection of

the pipe, except perhaps in the vicinity of the outside
wall in the plane of the coil. It is clear that, while
the flow loses its steady characteristics in the neigh-
bourhood of a De of 1100, it is still laminar-looking
up to a much higher Dean number (see the second, third
and the fourth traces in figure 15). We therefore make
a hypothesis that the stable laminar state yields to
another laminar state, with transition to turbulence

If an intermediate unsteady laminar state does indeed
occur, it is clear that theoretical analyses of the
laminar motion must somehow jncorporate this at large
Dean numbers. This failing may well be the chief reason
why, Van Dyke's (1978) extension to De - ® of Dean's(1927)
analysis of laminar motion in curved pipes, while being
technically sound, yeilds results with qualitatively
incorrect dependence of friction factor on the Dean
number. We may also note that Van Dyke's friction fact-
ors are lower than the experimentally measured ones,

as should indeed be expected if the present discussion
is correct.

3.4 The Downstream Straight Section

We may now return briefly to the flow in the straight
section downstream of the coil. We recall from figure
12 that the Reynolds number corresponding ta the steady
laminar limit stays essentially at the same elevated
level as in the coiled section. We have found this to
be true (Sreenivasan & Strykowsky 1983b) for coils with

several other radius ratios too. This seemed surprizing
at first, but is natural upon recollecting that the

critical Reynolds number for a pipe flow (i.e., the
Poiseuille flow), as determined theoretically from
linear disturbance theory, is strictly infinite., In
practice, the flow undergoes transition at finite and
variable Reynolds numbers depending on the level of
disturbances. Because of the continual dissipation of
turbulence and other disturbances in the thin boundary
layer-like regions, it is possible that the coiled
section acts like a very successful filter that removes
the most critical disturbances, or at least diminishes
their amplitude, alters their frequency content, or
both, in such a way that the remainder of the disturb-
ances does not become critical until after a fairly
high Reynolds number (depending on the radius ratio

of the coil, Aumber of turns, etc.) is attained. The
picture is made more complicated by the fact that there
is a strong swirl at the inlet to the downstream
straight section, and the boundary layers that get
established in the developing region may in fact set
the upper limit to the transitional Reynolds number
there. These and other questions cannot be settled
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Figure 15 Oscillograms of hot-wire signals, a/R = 0.1.
The gain for the top four traces is the same, but it
increases by 2 each time for the following two traces.
The time scale is the same for all traces.

without careful and quantitative studies, but it may

be relevant to point out that an artificial disturb-
ance, created immediately after the flow exits from the
coil by inserting a fine needle across the pipe dia-
meter (recall the arrangement in section 2.1), does

not affect the transitional Reynolds number in the
downstream straight section, On the other hand, the
same needle, when inserted further downstream (say,

%x/D of 100), results in a precipitous drop in the
steady laminar limit to around 2200,

Finally, we may note that the gap between the loss of
steady laminar motion and the completion of transition
to turbulence is relatively quite small (of the order
of 0.5% of the steady laminar limit) in the downstream
straight section. This catastrophic transition, not
uncommon in pipes with relatively smooth inlets — the
coil seems to serve much the same purpose indirectly —
is quite different from that characteristic of the

The Institution of Engineers, Australia



1 7
0 2 6 8
3 5
U NT| 4

L

! L1 L1 1 1
0O 1 23 4 56 7 8
NUMBERED LOCATIONS IN INSET

Figure 16 Transitional Reynolds numbers in a 'heat-
exchanger-type' pipe configuration shown in the inset,

process in the upstream straight section with no
specially smooth inlet, and is marked by the appear-
ance of the so-called slugs (in contrast to puffs up-
stream) which are regions of turbulence filling the
entire pipe section comparable in length to the pipe
length itself, characterized by relatively sharp lami-
nar-turbulent interfaces at both the front and back
ends., (For a discussion of slugs, see, for example,
Pantulu(1962), Lindgren (1969), Wygnanski & Champagne
(1973), etc.)

4 SOME OTHER EXAMPLES

In addition to the two non-simple pipe flows discussed
in the previous sections, we have also examined in
varying degrees of detail:

(a) pipe flow with a right angle bend,

(b) pipe flows which bifurcate into two equal
or unequal branches, and

(c) typical heat exchanger pipes in which the
flow reverses direction every half a turn: see inset
to figure 16,

In engineering practice, these and other configurations
are widely used. Several important gross parameters
have been measured for a long time, and a number of
working engineering correlations relating to their
performance have been in existence also for a long
time. But a more detailed look at any of these confi-
gurations reveals many interesting and unexplored
facets. (Sce, for example, Tunstall & larvey (1969)
for a very curious phenomenon associated with sharp
bends in fully developed pipe flows.) Perhaps, we are
saying nothing but atiesting to the obvious reality ol
the fascinating science of fluids!

We close our discussion of non-simple pipe flows with
some data on the transitional Reynolds numbers measur—
ed in an example of (c) above. Again, we have plotted

in figure 16 the two limiting Reynolds numbers (recall
bur dipcussion with respect to fipgre. 312} as a function
of powitisny 1t Ly seen that. the gwo limiting Reynolds
numbers first increase for the first half a turn or so,
just as they do in the coiled pipes, but thereafter,
follow the geometry of the pipe in some rough sense. The
important point to note is that the onset and completion
of transition occur around the same values common in
straight pipes with disturbed inlet conditions. Clearly,
this fact is important in heat exchangers and the like
where it is no surprise to find this configuration,
rather than a helically coiled pipe, in common use.
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