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1. Introduction

A. GENERAL REMARKS

It is so often said that turbulence is the natural state of fluid motion that
reports purporting to have observed relaminarization of a tgrbulent flow
were until not long ago greeted with varying degrees of disbelief. Indeed, a
common reaction when the subject was mentioned used to be th.at the
implied transition from disorder to order was thermodynamically impos-
sible! But these reverting flows that we shall discuss below are not closed

Fig. 1. Reversion in a coiled tube. Flow enters at top left, leaves at bottom right: Dye
injected continuously at the fourth coil does not diffuse, indicating }elminar ﬂow,l Dye injected
at entry diffuses rapidly, indicating turbulence (photograph is taken just before this dye reaches
the fourth coil). Inner diameter of tube about 8 mm: radius of curvature about 55 mm. (From

Viswanath et al., 1978.)
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systems; if crystallization is possible out of liquids, so too is relaminarization
from a turbulent state,

Indeed, should there still be any doubters, it is easy to set up simple
experiments showing relaminarization (variously also called reversion, and
inverse or reverse transition). We may begin with two examples of a few
such experiments described by Viswanath et al. (1978). The first is similar to
one made by G. I. Taylor in 1929. Turbulent flow is established in a tube of
about 8 mm diameter, made of some flexible transparent material like tygon.
The tube is then wrapped around a cylinder (say about 100 mim diameter)
ina few coils, and comes out straight again. As is easily confirmed by injecting
dye, the flow can be made to come in and go out turbulent in the straight
sections, while remaining apparently laminar within the coil! Thus, in Fig. I,
the dye continuously injected at the fourth coil does not diffuse at all, in-
dicating laminar flow there; but the dye injected into the straight section
just upstream of where the tube bends into a coil always diffuses very rapidly,
indicating turbulence. The flow similarly becomes turbulent again in the
straight section downstream, although this is not shown in the photograph.

In the second experiment (Fig. 2), we inject a jet of dye vertically upward
from the bottom into a tank of water. If the jet velocity is sufficiently high

FiG. 2. Reversion in stably stratified flow. (2) Cold flow. (b} Flow with top ftluid layers
heated. Note the point of transition to turbulence in the jet (marked T), followed by reversion
(marked R) in (b). (From Viswanath et al., 1978
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recourse to any model for turbulent shear flow. This implies, in particular,
that the turbulent fluctuations need not necessarily have completely vanished
in the relaminarized state: but that, if present, their contribution to mean
flow dynamics (e.g., to momentum transport) is negligible. Under these
circumstances the flow may be called quasi-laminar: it usually carries a
residual turbulence that is inherited from the previous history of the flow,
but has been rendered passive.

We begin by considering (in Sections HL IV, and V) three reverting flows
in some detail, as we believe them to be basic archetypes (Narasimha, 1977).
In the first, turbulent energy is dissipated through the action of a molecular
transport property like the viscosity or conductivity, and the governing
parameter is typified by the Reynolds number. In the second class, turbulence
energy is destroyed or absorbed by work done against an external agency
like buoyancy forces or flow curvature; the typical parameter is a Richardson
number. In both cases experimental evidence indicates that the suppression
of turbulence may go beyond the mere decay of energy to an actual de-
correlation of the velocity components contributing to the crucial Reynolds
shear stress that governs the mean flow.

The third class of reverting flows is exemplified by a turbulent boundary
layer subjected to severe acceleration. Here a two-layer model is suggested.
In the outer layer turbulence is fairly rapidly distorted and the Reynolds
shear stress is nearly frozen; the inner viscous layer exhibits random oscilla-
tions in response to the forcing provided by the residue of the original
turbulence. Reversion here is not so much the result of dissipation or de-
struction of energy (although these mechanisms are also operating), but
rather of the domination of pressure forces over slowly responding Reynolds
stresses in the outer region, accompanied by the generation of a new laminar
subboundary-layer stabilized by the acceleration.

A number of other different reverting flows are then considered in the
light of the analysis of these archetypes (Sections VI to XI). We believe that
this examination sheds considerable light on certain instances of turbulence
suppression which have hitherto been regarded in isolation, and shows how
a combination of different mechanisms is often operating. Nevertheless, it
will not be possible to come to definite conclusions about the primary
mechanism (if there is one) in all cases, either because they have not yet
been studied thoroughly or because they are too complex. It is hoped, how-
ever, that the attempt to take an overall view will reveal where further work
needs to be done. In particular, in some instances of turbulence suppression
(e.g., curvature), the observed effect is much larger than what might be
expected from naive estimates of energy balance. The explanation lies
presumably in the stabilization of the flow; perhaps here one is interfering

with the organization of motion in the coherent structures now believed to
be present in turbulent shear flows—the destruction of phase differences may
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be as important as that of amplitudes. A fuller understanding of the~ nature
of such organized motion is likely to provide more insight into relaminariza-
tion as well. . .

In addition to being an attempt at a fairly comprehensive survey of
relaminarizing flows, the present article includes the results of some pre-
viously unpublished analyses. . ‘ .

We begin with a brief summary of the flow equations to which we will
need to make constant reference in the rest of the paper.

[1. The Governing Equations

It is convenient from the outset to split the flow into mean an.d ﬂuctuatipg
components (the latter denoted by a prime, with a mean that 18 r?ecessarlly
zero). For an incompressible fluid of Constur.ltAdfznsny, all stresses and for.ces
may be expressed in kinematic units by leldmg.7 thrqugh by the de‘nslty,
Vector or tensor notation will be used as convenient; in the 1zttFer case the
convention is adopted that all terms with a repeated Greek suffix are to be
summed over the values 1, 2, 3 for the suffix. 4 ‘ - ’

The equations governing the mean flow of an incompressible fluid may be
written (see, e.g., Monin and Yaglom, 1971, Chapter 6) as

jat

uy _ 0. 2.1

Jx,
ou;  du; u; op , ¢ L ¥ (22)
ety e W () X .
dt ot 0x, 0x; 0ox,

These equations respectively express the laws of .conservation of m%ss and
momentum, with u = (i,) being the mean velocity, p the mean p‘Iessgrej
X = (X,) the mean body force (per unit mass), and v the kinematic viscosuy:
V2 = 9%/0x, 0x,. The quantity — (ujit;), where the angular brackets deno'tc
the mean value, represents the (kinematic) Reynolds stress tensor. An equa-
tion for the components of this tensor may be easily derlveq from the mo-
mentum equation for the total velocity u + u’ (see, e.g., Monin and Yaglom,
1971, Chapter 6):

-~

d ro 7 UL j ’ !
E(uﬁ-u}) = — {uj, axj + <ui X
a

@
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i
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Here [i{—)/] indicates additional terms obtained by switching i and j in
all the other terms on the right.
Considerable insight is often gained by examining the turbulent energy

g =3y = 30,0, = Uy (2.4)

the governing equation is obtained by putting i = j in (2.3) and summing:

{ A
B =y T Xy — e
dt éx,
(i) (i) (iii)
+ W + v ﬂ—(:; ity
0x, Cxy
{iva) (ivb)
¢
R AR 2.5)
(va) (vb)
where
q' = g, — Uy, (2.6)
and

I u,  Cup\[ou, duj
E ==V :"'1 -+ _‘—L = * -+ T""/’ (27)
2 0xg  0x, J\lxp  0x,

represents viscous dissipation, i.e., loss of kinetic energy into heat through
the action of viscosity. Terms (iva) and (ivb) in (2.5) are diffusion-like viscous
terms; the gradient terms (va) and (vb) may be called diffusion by pressure
and turbulent transport, respectively. Terms (i) and (ii) may together be said
to represent “generation”: term (i) is the energy production by the action
of the Reynolds stresses on the mean shear, and term (ii), which we shall call
“absorption™ to distinguish it from the mean flow term (i), represents the
work done against the fluctuating body forces. The nomenclature must not
be interpreted to mean that (i) invariably tends to enhance the energy, or (i)
to diminish it—under appropriate conditions the contrary is indeed possible.
If X" is a conservative body force (like gravity), the absorption term repre-
sents conversion of turbulent kinetic energy to (e.g., gravitational) potential
energy. However, it is possible for the absorption term to represent irrevers-
ible dissipation also; one instance is when X’ is the magnetic force on an
electrically conducting fluid in a magnetic field. In this case X’ depends on
the current and therefore the conductivity of the fluid: the absorption, in
the limit of low magnetic Reynolds numbers that will be discussed in Section
X, represents ohmic dissipation. We will use the same nomenclature for the
corresponding terms in (2.3).
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As is well known, equations like (2.3) for the second-order quantities
{ujyy are incomplete, as they contain third-order quantities like {ugujuyy;
equations for these can also be written down, but they would contain terms
of the fourth order, and so on. Equations for the evolution of moments up
to any given order are not closed, because the basic nonlinearity in the
equations of motion always introduces higher order moments. No complete
theory of turbulent or reverting flows can therefore be constructed solely
from equations of the above type, but much insight can nevertheless be
obtained by their examination.

It is clear from (2.5) that turbulent energy could be altered by the action
of (i) dissipation, (i) production against mean shear, (iii) absorption by fluc-
tuating external forces, or (iv) diffusion (in a generalized sense). It appears
that observations in reverting flows can usually be traced to the action of
one or more of the first three, but there is some evidence (in curved flows,
for example, see Section VI) that changes in the diffusion terms can be
important.

It is of course possible that the turbulent energy transport described by
Eq. (2.5) is affected by a basic change in the mean flow, governed by (2.1) and
(2.2); e.g., the imposition of a pressure gradient or a new body force may
alter the mean flow sufficiently to cause (as a consequence) significant changes
in the turbulence structure. In principle, the mean flow equations (2.1), (2.2),
and the turbulent transport equations (2.3) and (2.5) are closely coupled to
each other, so either set cannot be considered in isolation. However, there
are situations where changes are faster in some variables than in others, so
it becomes possible to identify rate-controlling mechanisms. We shall illus-
trate this in the following sections.

[I1. Reversion by Dissipation

A. INTRODUCTION

A mechanism that is comparatively easy to understand is the relative
increase in dissipation that occurs when the Reynolds number goes down
in a flow. Consider a two-dimensional parallel or nearly parallel flow with
a mean velocity along the x-axis given by u = u(y) and fluctuating velocity
components /, v’ along the x- and y-axes, respectively. Comparing terms
(ii) and (iv) in (2.5), we find

production of turbulent energy _ — UV 0ufdy (3.1)
dissipation B € ’ '
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we may in general expect this ratio to decrease when the mean flow Reynolds
number Re becomes sufficiently low. If therefore Re decreases downstream
in a flow, we may expect reversion for the same reason that a flow whose
Reynolds number decreases in time will revert.

B. ENLARGEMENT IN DucTs

Experimental investigations of such reverting flows have been reported
by La‘ufer (1962), Sibulkin (1962), and Badri Narayanan (1968). The general
situation in these experiments involves the gradual enlargement of a pipe
or channel from one diameter or width to another, as illustrated in Fig. 3
(for a channel): the angle of divergence is kept sufficiently small to ensure
that no flow separation occurs. In this case the Reynolds number (based on
the section-average flow velocity U and channel half-height or pipe radius a)
goes down from say Re; upstream of the divergence to Re, downstream.
.If, therefore, Re, > Re,, and Re, < Re,,, where Re,, is an appropriate crit-
ical Reynolds number, it may be expected that an approaching turbulent
flow will revert to the laminar state.

This 1s indeed found to be the case: the turbulence decays, and the mean
flow asymptotically approaches the classical laminar (Poiseuille) solution.
However, there are several interesting features in the flow that merit attention.
Experiments show, for example, that the skin friction reaches the laminar
value well before the velocity distribution in the middle reaches the value

Re,= 865 lcmirlmr value
1.5
_,.J,L———“"“""
-////". IE
(o]
n}
f
L e s B —1.0
\o flow ™y
AN . i
5 N -
& LZG
o
A
\o\\
o~ {0 o
3
laminar value
2 |
0 100 200 300

x/a

Fi1G. 3. Variation of center-line velocity U, and skin friction coefficient ¢; in reverting
channel flow. Experimental data from Badri Narayanan (1968).
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characteristic of the well-known parabolic profile (see Fig. 3). An inner layer
thickness, defined by the location of the maximum of the rms value of the
fluctuating longitudinal velocity component, grows downstream like x'/2,
in a manner typical of laminar boundary layers (Fig. 4): there is here an
assumption that the distribution of & is related to that of the mean velocity,

and we shall return to this point in Section V.

1.0 LA S T T T
[ o pipe ,Re,= 690 1/2‘—j1
(Laufer 1962) o O X
" e channel,Re,=865 1
0.5~ (gadri Narayanan o © n
o L 1968) .
>9 |
e -
0.1 1 ) R SO A | i : ]
10 50 100 500

x/la

FiG. 4. Growth of the inner layer thickness during relaminarization due to duct enlarge-
ment: yo is the distance from the surface at which the rms value of the fluctuating longitudinal
velocity component u' is @ maximum. The y, o x*'? line shows the growth rate characteristic

of a laminar boundary layer,

The picture that emerges, of relatively rapid adjustment near the wall
and a much slower process in the outer layer, is consistent with the general
findings in turbulent flow. There is also the suggestion that the process of
| the conversion of the viscous sublayer into an

reversion is associated witt
effectively new laminar boundary layer near the wall, rather like the entry
erting flow is sheared and

region in a pipe, except that the core in the rev
carries the residue of an originally turbulent flow.

We shall now discuss some of these features of the flow in greater detail.

1. Approach to the Laminar Mean Velocity Profile

The state of the flow in an advanced stage of reversion must be capable of
being described by a perturbation expansion on the final asymptotic state.
Downstream of the enlargement in the duct, the effectively new laminar
layer referred to above grows until it eventually fills the duct and establishes
an entirely laminar profile all across. In an advanced stage of reversion where
this has not quite happened, the Reynolds number Us/v based on the

thickness & of this laminar layer is fairly large, and its inverse y = v/ U0 serves

as a convenient small parameter. Outside the layer is a core where departures
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from the laminar profile can be represented by a power series in y say
. b

u(x, y) = up(y) + yuy(x, y) + 0(7?), (3.2a)
o(x, y) = —yvolx, y) + O(y), (3.2b)
w(x, y) = yui(x, y) + O3, (3.2¢)
V(x, ¥) = yvi(x, v) + Oy, (3.2d)

where uo(y) represents Fhe asymptotic laminar state. (This is of course the
reason why the expansions for the fluctuations u’, v’ begin with terms of
order 7.) As we shall see later, the correlation coeflicient

C. = 1/ar, (3.3)

whe — et A Qe " 5 : o :
here 7 . {u'v'), decreases rapidly with increasing x, so that it is possible
to assume it to be small for sufficiently large x. Thus

v=0(%). (3.4)

Finally, assuming dp/dx as given, substituting the expansions (3.2) and (3.4) in
the momentum equation (2.2) for i = 1, we have, to order unity ‘

dpfdx = v(d*uu/dy*),

with the well-known Poiseuille solution

Lol
'OﬁZ\wM/;(' — a*), =y —a. | (3.5)
To order y we have
(“o 3 c/u:) duy ’szul
&) éx oEr”’
or, from (3.5),
ﬁlﬁ[l( 2 4 a?) Cuy Py
2 dx ix ! 757 (3:6)

Writing
),

LA

(X, &) = up(x)ug,(
we get, from (3.6),

du, dx

U (dpfdx)

Whlf):re C is a positive constant. If dp/dx is a constant, as it indeed appears
to be the case (as shown by the constancy of ¢, see Fig. 3) in the later stages
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of reversion, we have

Uy, ~ expl(—ax/2a), (3.7
where o = —2aC/(dp/dx) is another positive constant. According to (3.7),

the deviation of the velocity profile from the Poi§euille value, at any given
y in the core of the flow, decreases exponentially with x. Along thg center'hnes,
for both pipe and channel flows undergoing reversion, the datfx o’f éﬁg‘

show this to be indeed the case-—perhaps surprisingly from as small a down-

stream distance as 20a!

10 T T T
s
K
Z|o .
i * channeL,ReZ—BGS
01
pipe ,Re, =690
J I
0 100 200 300

x/a

M ~, > ine ) Teentt p lue
FiG. 5. Departure of measured mean velocity at the center-line from the Poiscuille va

in relaminarizing duct flow.

The equation for u,, can be written as

d?uy, 1, B 1.8
7{2‘4%(3@ ——/3>*o, (3.8)

20\ atE (39

Equation (3.8) should therefore be solved with the boundary conditions

uy, =0 at &= +a (3.10)

Because the equation as well as the boundary conditions are homogeneftz;lse,
it is clear that nontrivial solutions can exist only for certain values f3, 0

In the later stages of reversion, the laminar boundary

arati ant f.
separation consta f e O ]

layers growing on the two walls will fill a substantial p
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width. As a consequence, u,, is exponentially small in magnitude in the two
laminar boundary layers. It is then clear that to represent u;, reasonably
accurately inside the laminar layers, we require a large number of eigen-
functions which oscillate rather rapidly. To avoid the need for evaluating
these eigenfunctions, we may assume a priori that uy, is identically zero in
these regions and, instead of (3.10), apply the modified boundary condition

uy, =0 —at {=+(a~J). (3.11)

This cannot be strictly correct because it demands an implicit dependence
of u,, on x (since ¢ is a function of x), but should be satisfactory if dd/dx « 1.
In spite of a slight inconsistency, the advantage of using (3.11) instead of
(3.10) is that there is hope that the first eigenfunction represents i, reason-
ably accurately. In any case, it will be sufficient for the purpose of illustrating
the principle of the method of calculation.

An approximate solution to (3.8) can be written (see, e.g., Abramowitz
and Stegun, 1965, p. 688) as

> CZ I C4 ’7 C()
mO=1+p 5t </§2 - 2) T </}3 -3 /3) G

, 15y ¢*
+</3*‘— 112 +~> Pt (3.12)
4 )8!
where f§ is to be determined by imposing the boundary condition (3.11).
Then (3.12) gives the theoretical velocity distribution u,(x, y)/u,(x, a).
Figure 6 shows a comparison of the experimental data with the above
calculations for the reverting channel flow at x/a = 260. For this station,
choosing (from measurement) ¢ ~ 0.4a, we require ff ~ —1.18: the corre-
sponding solution agrees well with the measurement.
As an aside we note that the value of « in (3.7), obtained from Fig. 5 implies
that the separation constant f§ is about — 1.15 for the reverting channel flow.

1.0
® experiment,
Rez= 865
x/a =260
T
FiG6. 6. Distribution of mean velocity in the |~
core in reverting channel flow: departure from 2 305— theory N
Poiseuille solution compared with present theory, :— T
Eq. (3.12). Experimental data from Badri Nara- g
yanan {1968). =
[ =
5 [~}
€ 3
@
Q
0 1
1.0 0.5 0
yla
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We recall that this value of f is obtained from a consideration of u,(x,0)
at several x/a. That this agrees well with the f evaluated from a consideration
of the velocity profile u;{x, y) ata single x/a in a good indication of the con-
sistency of the calculations.

2. The Decay of Turbulence

The precise manner in which turbulence decays in such a reverting flow
raises many interesting questions. Again, in the parallel (or nearly parallel)
two-dimensional shear flow we are considering, with x; = X, X == ), X3 = 2
andu, = u(yonly),u, =v= 0,uy = w = 0,Eq.(2.3) shows that the Reynolds
stress components have the following production terms:

1 au
~2 i

— U — UV ) T

2 < > ay’

52, w20,

Y (3.13)
cy
We shall examine experimental observations in the light of these equations.

Figure 7 shows some representative measurements of turbulence quantities
in a reverting flow in a channel, from the experiments of Badri Narayanan
(1968). It is seen that both @ and © decay exponentially with distance, and
that # decays more rapidly than 7. At Re, = 865, it takes a streamwise
distance of 115a for a halving in 72 at the centerline, but only 75a for 9. The
ratio i/ is around 4 at x = 20a, and increases to 6 at x = 220a; over the
same distance, the ratio has been found to increase to nearly 15 at Re; =
625! Thus, the decaying turbulent flow is strongly anisotropic. From (3.13)
the production of turbulence occurs only in the 12 component; clearly, inter-
component energy transfer is too slow and ineffective to correct the aniso-
tropy.

It is further seen ffom Fig. 7 that the correlation coefficient C, [defined
by Eq. (3.3)] goes down, from a maximum value of 0.36 at x = 20a to 0.13
at x = 180a. This shows that a decorrelation mechanism must be at work,
thus implying a weakening of the nonlinear effects. It is then clear from
Eq. (3.13) that 52 must decay because of dissipation overtaking the produc-
tion. Note that the Reynolds shear stress decreases nearly linearly in X
unlike the turbulent energy components % and %, which decay nearly
exponentially in x.

Finally, we may surmise that the decorrelation of and v fluctuations is
connected with the destruction of the coherent motion in the wall-layer,
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Following Owen, one may put

0 U
G L'y = b, (3.15)

1/2 is the friction velocity, T, is the wall stress and by is taken

where U, = 79
as a constant of order 107 ! (Note that this ignores the decorrelation effect

mentioned above.) The dissipation & is often estimated as

20,0\ 2 ~2
o= 15 <<(.;u> > — 15v %, (3.16)
Ox A

where A is the Taylor microscale; the expression assumes that the small
eddies responsible for dissipation are isotropic, following Kolmogorov’s
famous postulate. Owen replaces (3.16) by

¢ ~ byvq/a’, (3.17)

where b, is taken to be a constant of order 10; the crucial assumption is
made that A is proportional to a. Ifg*isa characteristic value of g, the energy

equation (3.14) then takes the form

dg* N A, 1 i
T
ax 1 < ' Re ¥ Re, Re)’

whose solution is
A(X: - Xo) 1 1
* [ AT A I — 3.18
d exp[ a <Re Re. /|’ (3.18)

where A, A;, A;, As, and xo are all some constants. Owen finds that the
experimental evidence is not inconsistent with the above expression.

This analysis is however not entirely satisfactory. The decorrelation men-
tioned earlier shows that {u'v") does not decay in proportion to ¢ but much
faster. Because of the large anisotropy the usual estimate (3.16) for dissipation
is likely to be in error; furthermore, experiments show that /. does not remain
constant during decay (at any rate as estimated from the v data), but rather
tends to increase like @i~ (Laufer, 1962), so that g is proportional to {i% rather
than @i2. (It is however possible that the dissipation will be governed by the
microscale in the normal direction, which could well be limited by the

dimension of the duct.)

Figure 8 shows the channel data of Badri Narayanan (1968) plotted

against 1/Re. The data do not lie too convincingly on a straight line, as they

should if (3.18) were valid.
On the other hand, a good fit to the data is a law of the type

i ~ exp[ — B(Re., — Re)’(x — xo)/a),  Re < Reg, (3.19)
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The reason for this is that there is apparently only a slight difference between
production and dissipation in the flow even at Reynolds numbers well
below the critical. Consequently, the flow is nearly in a state of equilibrium;
and both spectra and intensity distributions show a universal similarity
during decay (Laufer, 1962). We next discuss this briefly.

4. The Turbulent Spectrum

In all the experiments reported (Laufer, 1962; Sibulkin, 1962; Badri
Narayanan, 1968), the measured spectral density of «' at the centerline
exhibits an approximate similarity over the entire wave-number range,
when normalized by the centerline velocity and the turbulence integral
scale |. This is an unusual simplicity, considering that even in homogeneous
turbulence no such similarity over the entire wave-number region is found
(see, e.g., Batchelor, 1953) during the major part of the decay process. Further-
more, the observed spectral similarity* in reverting flows is of the type
e~ %2 where k, is the component of the wave-number vector in the direction
of the man flow. This suggests considerable nonlinear interaction among
wave numbers, and in this sense the decay process is not entirely viscous-
dominated: if it were, the situation would be diffusion-controlled as in the
“final period” of decay in homogeneous turbulence, where the spectral
density exhibits a similarity of the type ¢~ P¥ (Batchelor and Townsend,
1948). We have however already seen in earlier sections that intercomponent
correlations become increasingly less important with increasing downstream
distance.

Another pointer to the importance of the nonlinear mechanism in spectral
energy transfer is that, during a major part of the process of decay, the
Reynolds number Re,(= @id/v) increases downstream. For example, in
Laufer’s (1962) reverting pipe flow, Re; increases by a factor of nearly 2.5
from x/a ~ 25 to x/a ~ 100. However, the quantitative significance of this
observation is doubtful because of the increasing anisotropy of the tur-

bulence field.
C. OTHER INSTANCES OF REVERSION BY DISSIPATION:

There are a large number of situations where the variation of flow param-
eters increases dissipation and so suppresses turbulence. The decrease in

* There are two consequences of this similarity. First the two-point double-velocity corre-
lation (u'(xo) (xo -+ x)) decreases rather slowly with distance (like x~2 at large x). No
measurements of this correlation have been made, however, in this class of reverting flows.
Second, the spectral similarity implies that the ratio A/l is a constant during decay. This con-
gtant is about 1 in Laufer's experiment and about 1 in Sibulkin’s and Badri Narayanan’s

experiments.
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Reynolds number can occur either due to an increase in the cross-sectional
area of.a single duct carrying the fluid, as in the flows studied above, or by
branching. An interesting example of the latter is in the human lungs ’where
Reynolds numbers (based on diameter) vary from about 3100 in the grachea
to 1230 in the segmental bronchi (Owen, 1969). Although the bronchial
tubes in the upper airways are too short for developed flow to be obtained
the decrease in Reynolds numbers is such that well before the very ﬁné
bronchial tubes are reached, the flow will have reverted to the laminar state.

'Another example of dissipative reversion occurs in a pipe of uniform
diameter containing an orifice, say for metering fluid flow. There is a certain
ngnolds number range in which turbulence arises just downstream of the
orlﬁce even when the approach flow is laminar, as the free shear layers
springing from the orifice lip are highly unstable. Further downstream of
Fhe orifice, however, this turbulence must be suppressed as the flow reverts to
its original laminar state. Measurements by Alvi and Sridharan (see Alvi
1975} show how the orifice characteristics are affected by the sequence o;‘
events going through transition in the shear layer followed by reversion
downstream to fully turbulent flow everywhere (Fig. 10). In particular, the
so-called settling length, defined as a measure of the distance downstream
of the orifice required for the reestablishment of the pressure gradient
cbaracteristic of fully developed flow, increases rapidly to more Ehéll] 20
d@meters as the pipe critical Reynolds number of about 2300 (based on
d{ameter) is reached; this is a simple consequence of the slowness of the
d1§sipative reversion process that we have already noted above. Once the
C.rxtical Reynolds number is exceeded the settling length drops steeply to
six to seven diameters, characteristic of fully developed turbulent flow.
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FIG: 10.  Variation of selected flow characteristics for a sharp-edged orifice with approach
flow pipe Reynolds number. (Data from Alvi, 1975.)
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Other characteristics of the orifice, like the discharge coefficient, also show
the effects of reversion at the appropriate Reynolds numbers, but these are
much less pronounced.

Other forms of dissipation arising from different molecular transport
properties (e.g., thermal or electrical conductivity) may also bring about
reversion. Magnetohydrodynamic flows provide some interesting examples,
but they are sufficiently complex to demand separate attention, and so are
discussed in Section X.

[V. Reversion in Stably Stratified Flows
A. INTRODUCTION

As noted in Section I, the possibility of the suppression of turbulence in
the presence of a stabilizing density gradient has been known for a long
time. However, although it is almost 60 years since Richardson proposed a
criterion for the phenomenon in 1920, no full-fledged theory exists yet.
Physically, the presence of a lighter fluid on top (ie., lighter than when the
fluid is in hydrostatic equilibrium) means that rising fluid has to work
against gravity, and so turbulent energy could be converted into gravitational
potential energy. It is such energy absorption that leads to the reversion
shown in Fig. 2.

Such stable stratification can be observed frequently in the atmosphere.
For example, following sunset on a day during which sunshine has produced
much convection, there can be sudden cooling of the ground by radiation
(see, e.g., Scorer, 1958, p. 209), producing stable density gradients and a
suppression of turbulence; this phenomenon can be recognized by the
appearance of clouds with flat, smooth tops, similar to that in Fig. 2. Similar
effects may take place following a sharp cooling shower of rain (Fig. 11),
and may also occur during a solar eclipse, which we shall discuss in Section

IV.C below.

B. ANALYSIS

The effects of stratification can be approximately analyzed by making
what is known as the Boussinesq assumption, according to which the only
effect of density changes is to provide an additional body force, the fluid
being otherwise incompressible—effectively therefore its mass remains con-
stant but weight changes. (See a discussion of this assumption in Monin
and Yaglom, 1971, Chapter 6.) There is now therefore a body force in Eq.
(2.3), represented by

X' = —kpgb', 4.1)
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where k is a unit vector along the vertical, g is the acceleration due to gravity
and b’ is the fluctuating part of the specific volume p~!. ) ’

Consider now a steady mean flow u(z) along the x-axis, with the z-axis
being vertical and the flow assumed homogeneous in all horizontal planes.
The relevant generation terms in (2.3) are then respectively as follows (see
also Stewart, 1959):

12, 1o aLl

sU° —u'w'y E (4.2a)
3020, (4.2b)
FW7—gplb'w', ' (4.2c)
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In addition, we may derive from the energy equation the generation terms
for the specific volume fluctuation b and the flux (b'w'):

b1 —(b'w (_;1; (%) (4.3a)
- L, d /1
— (bW pgh? + W? i <E> {4.3b)

It is interesting to note that there is a produc?ion from 'mteractlo(ril \fv11th
the mean flow only for the component &, but this productxpn df:pgn s afs?
on (w'w’. In turn, (u'w’> can be produced through the mter(}ctmgcgo:
and du/dz; however W, not being directly produced by mean flow in etrh h,
must be sustained by transfer of energy from the other componentsb r<t)ut§}gl

the action of pressure (see discussion in Batchelor, 1953, p. 84, a Oltl)/ />e
mechanism). If, however, W is suppre;‘sec_ilfhr]oug(? the Zﬁoyancy term {b'w’,

c oduction of ## and {(uw'w"> will also diminish.

tht; rillleeafurre of the ratio of the energy so'absorbed by buoyancy_ fgrczs to
the production through the mean shear is the so-called flux Richardson

number,

_ pglb'w
Ry = {u'w'y dufdz

_g T'w) (4.4)
T uw Yy dufdz’

where T’ = Tp'/p is the temperature fluctuation in a perfect gas, mc;l;rlli
the reasonable assumption that in low-speed flows the relative pre
stuati ‘/p is negligible. .

ﬂu;;ur;l;;%nﬂig) prodﬁcgon and viscous dissipation are approx%matetzly 5311:;1{
as they are in many shear flows (see, eg, the energy balance 11{1 tg eLllr ulen
boundary layer, presented below in Sec@on \./,'B,l), then.,ablie fl v );GSSion
loss to buoyancy can affect turbulence intensities appreciably; supg Ho58)
of w? quickly diminishes the other components as.well. "l"ownsheﬁnd P,
has made a detailed analysis of the energy balance in such straéx ;: thaﬂ
and shows that the critical flux Richardson number R, must be e;,st e
1 a5 otherwise it is impossible to find a real turbulence intensity t aamre
gz’itisfy the equation for turbulent energy as ws‘,ll as thqt for temtpeerCtion
fluctuations. Experimental observations, to be dlSCLlS,SCd n thebnex ds being:
show that Rf,, is in fact much less than Townsend’s upper lz)L}[n , ne
only 0.1 or less. Ellison (1957) has presentf‘:d an anal‘ys1s t ad sugug o
Rf,, ~ 0.15, and further that density and velocity fluctuations are' ecoup

rather than destroyed under stable conditions.
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Before examining the experimental evidence, it is worth noting that, if
the energy and momentum fluxes in (4.4) are respectively proportional to
the gradients of 1/p and u (through appropriate eddy diffusivities of heat
and momentum, say K, and K,,), we can write

K, gd(1/p)/dz
R =%, Tua)y

o Kh

Km I{l’, i (45)

where Ri is known as the gradient Richardson number. In an atmosphere
at rest, hydrostatic equilibrium requires dp/dz = —pg, and if entropy were
constant the temperature would decrease with altitude at the so-called dry
adiabatic lapse rate dT/dz = —g/c,, where ¢, is the specific heat at constant
pressure. (The temperature of a parcel of dry air would change at this rate
if it were to move vertically at constant entropy.) The temperature gradient
that is relevant for stability is therefore the excess over the adiabatic lapse
rate, ie, (dT/dz) + (g/c,), or the gradient of the potential temperature
T + gz/c,. The appropriate definition of Ri in this case is thus

Ri g (dT/dz + g/c,)
T (dufdzy®>
Note that if the gradients in these definitions are estimated in terms of
characteristic velocity and length scales U and L, Ri is proportional to
gL Ap/pU?, which is often called a bulk Richardson number and resembles
an inverse Froude number,

A large number of experimental observations quote a critical Ri rather
than a critical Rf, presumably because the former is easier to measure. The
significance of Ri,, is, however, less certain because of the variability of the
ratio K,,/K, [see (4.4)] with stability conditions. Even so, the observed
values of Ri, also seem to be fairly low.

We may note in passing that Miles (1961) showed that the sufficient con-
dition for an inviscid stratified flow to be stable is that Ri > 4+ everywhere
in the flow,

{4.6)

C. EXPERIMENTAL OBSERVATIONS

Apart from the early work of Prandtl and Reichardt (1934) and the
interesting measurements recently reported by Nicholl (1970), there have
not been many detailed turbulence measurements in stably stratified tur-
bulent shear flows. By using a hot wire at two widely different temperatures,
Nicholl was able to measure both the turbulent intensities and the fluctuating
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ements were made in the boundary layer on
the roof of a wind tunnel, a step change in the ‘surface temperz’it;r.e, rr‘x‘f:lg%
it about 100°C hotter than the free stream, subjected an approa; mgf ol
turbulent boundary (at a momentum thlckr}ess Reynol'ds num erl\fl‘a;wre~
600) to a stable stratification beyond a cer.tam sﬁreamwme ls’tatlvo(ri). Measre
ments 74 cm (about 259) downstream oftln.s station sh.owAa’ dilge e feration
of the mean flow near the wall, an apprecm.bleAd.rop in i, '(m adn mtcr e
T in the outer layer (Fig. 12). The increa.se inT1s prcsumdblyd u}iz oesumng
vertical motions induced by the dehceleratlont neargii};leezurliltceer:;intgli rNiChOll
i i e displacement of the outer strea . , _
lfgffrfssr?(;nsi:;iﬁcait changes in either the shear stress or the heat flux cor

relation coefficients,*

temperature T’. The measur

iy T
T aw wT

flow with uniform velocity and density gradients
he other hand an appre-
g Ru.

* Measurements by Webster (1964), ina ‘ v t
at a Reynolds number that was perhaps not high gnough, show o;x e ncrensin
ciable drop in these correlation coefficients (in particular the heat flux one
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Townsend (1958), making an analysis of these (then still unpublished) mea-
surements, plotted distributions of the local gradient Richardson number
(4.6) across the boundary layer. The scatter in estimates of Ri was so large
that Townsend felt “only the most docile reader would agree . .. that the
mean values [of Ri] in the outer parts of the layers are all less than 0.1in.”
But using mean gradients, Townsend concluded that the Richardson number
Jjust before collapse of turbulence was less than 0.1; indeed, in one of the
experiments, at Ri >~ 0.022 the collapse of turbulence was nearly complete.

In an interesting study of the wake of a circular cylinder towed in stably
stratified salt water (Rt =~ 0.15), Pao (1969) observed that the turbulence
created in the near-wake region died away sufficiently far from the cylinder.
At a distance of 110 diameters, for example, both large- and small-scale
turbulence had collapsed, and the residual motion (as observed by shadow-
graph pictures) consisted exclusively of periodic internal waves.

Ellison and Turner (1960) examined the behavior of a layer of dense salt
solution introduced through a slot in the floor of a sloping rectangular
channel in which there was a main turbulent flow. When the main flow was
uphill, the stabilizing effect of the density gradient caused a suppression of
the spread of the salt solution. Ellison and Turner showed that their observa-
tions on the transfer coefficients of salt and momentum were consistent with
a critical value of about 0.15 for the flux Richardson number.

Similar interesting observations have also been made in the atmosphere.
Measurements of velocity and temperature distributions across inversions,
explicitly showing the disappearance of turbulence, have been reported by
Businger and Arya (1974). They estimated Ri,, to be about 0.21. Lyons et al.
(1964) have reported atmospheric measurements in which turbulence always
existed for Ri = 0.15, but was completely absent when Ri > 0.5; presumably
the critical value is somewhere in-between.

Another illustrative case is that of a total (or nearly total) solar eclipse.
As a result of the sudden cessation of the incoming solar radiation, the ground
cools off faster than the air above it, and a stable temperature gradient gets
established relatively quickly near the ground. If this cooling of the surface
continues, the depth of the stably stratified layer grows, and reaches a height
where, presumably, a critical value of Ri is reached. This then results in a
sudden decay of turbulence. Measurements made recently during a total
(R. Luxton, private communication, 1976) or near-total solar eclipse (Antonia
et al., 1979) essentially confirm these expectations (Fig. 13).* An interesting
feature of these measurements is the nearly constant time lag between the
decay of temperature and velocity fluctuations. The reason probably is that

* Unfortunately, the final stages of the eclipse (which lasted roughly from 1500 to 1700 hr)
gradually merged into the normal sunset period, so the return to normal sunny conditions were
not obtained.
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Fi6. 13, Decay of velocity and temperature fluctuations during a nearly total solar eclipse
(data from Antonia et al. 1979). Note how the velocity fluctuations lag behind the temperature
fluctuations by a nearly constant time interval (about 50 min).

the temperature fluctuation starts decaying almost instantaneously in
response to the cessation of solar radiation, while velocity fluctuations start
decaying only after the stably stratified layer has been established and has
grown to the height above the ground of the measurement station (~4m
in this case).

V. Reversion in Highly Accelerated Flows

A. INTRODUCTION

We now examine a class of reverting flows that do not seem to belong
entirely to either of the other two types we have described until now, namely,
a turbulent boundary layer subjected to a large favorable pressure gradient
or acceleration. In their well-known work on transition from laminar to
turbulent flow, Schubauer and Skramstad (1947) and Liepmann (1943, 1945)
had already observed how a favorable pressure gradient could suppress
incipient turbulence. But the first evidence that a fully turbulent flow sub-
jected to large accelerations may revert to a laminar state appears to have
come from experiments at high speeds, such as those of Sternberg (1954)
at the shoulder of a cone-cylinder junction and of Sergienko and Gretsov
(1959) in an axisymmetric supersonic nozzle. Indeed, Sternberg’s remark-
able report must have inspired many of the studies that followed in later
years. Although we shall defer discussion of high speed flows until Section
V,C, it is worthwhile to take a quick look at Figs. 14(a) and (b) which show
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Fi1G. 14. (a) Schlieren photograph of flow past a boat-tailed step. Note how, downstream
of the Prandtl‘Me-yer corner, a thin streak representing a laminar subboundary-layer grows
undemeath the thick remnant of the original turbulent boundary layer. (From Viswanath
and Narasimha, 1975.) (b) Key to Fig. 14(a).
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(among other things) the behavior of an initially tqrbulent boundary layer
as it negotiates a Prandtl-Meyer corner in supersonic flow. The photograph,
which is a schlieren from Viswanath and Narasimha (1975), shows clearly
the generation of a thin new boundary layer downstream of the corner—a
layer that measurements of quantities such as wall tefnperature‘ and surface
heat flux show to be essentially laminar. This new laminar layer 1s embedded
underneath the remnant of the original turbulent boundary lflyer. '

It is, however, the flow at low speeds that has been.elxtenswgly studied
in recent years and we examine these first. (For a critical review of the
experimental data, see Sreenivasan, 1972)

B. Low Speep FLows

1. General Remarks

To fix our thoughts, consider the situation in which a fully turbulent
boundary layer develops at constant pressure up to the point Xo, beyond
which a steep favorable pressure gradient is imposed. Observation shoyvs
that downstream of x, the boundary layer thins down; eventually the velocity
profile departs from the well-known law of the wall, the shgpe factor (H)
increases, the skin friction coefficient (c;) drops, the relapve tur.bulence
intensity goes down, and the flow becomes effectiv.ely laminar. Figure ‘15
demonstrates how complete such reversion can be, in terms of the velocity
profile. ‘ .

Many detailed studies of such flows have been made In [hﬁ.? 1.115t 15 years,
but different workers have used different methods for rccognlz}xlg.the onset
of relaminarization, and proposed different parameters as criteria for the
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F16. 15. Relaminarization in accelerated boundary layer flow: velocity profiles just before
and after acceleration, shown in inset. (Data from Ramjee, 1968.)
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occurrence of reversion (see Table 1: some of the symbols used here will
be defined as we proceed). The large majority of these proposals involve
the viscosity of the fluid, and so can be interpreted as some kind of Reynolds
number: the differences therefore lie in the choice of length and velocity
scales. The original flow being turbulent, it offers both the free stream velocity
U and the friction velocity U, as velocity scales, and because the perturbation
is a function describing the pressure distribution p(x), many choices are
possible for the scales that may form the Reynolds number. One of the most
widely used parameters, namely

K =vU/U% U =dU/dx, (5.1)

where U(x) is the free stream velocity, carries no information at all about
the boundary layer whose reversion is the object of study: it is purely a
free stream parameter (and, for that reason, a very convenient one to use).
Various combinations of K and the skin friction coefficient ¢;, of the form
K" with nvarying between 3 and 3, have also been suggested (Back et al.,
1964; Launder and Stinchcombe, 1967), but it is clear that the general
approach has been, “Seck the Reynolds number.”

The difficulties with some of these proposals have been discussed by
Narasimha and Sreenivasan (1973). It is eminently reasonable that departure
from the standard log-law in the wall layer depends on the pressure gradient
non-dimensionalized with respect to the wall variables,

Ap = vp JU3, Py = dp/dx, (5.2)

as suggested by Patel (1965). However, as pointed out by Narasimha and
Sreenivasan (1973), this parameter reaches a minimum upstream of where
Pateland Head (1968) infer reversion to have occurred—so that the suggested
critical value for —A, has already been encountered once, and exceeded,
before reversion apparently occurs. (Note that in favorable pressure gradients
px < 0.) The same objection applies also to the later proposal of Patel and
Head (1968), which replaces dp/dx in (5.2) by dt/dy:

v 01 53
There is in this case the further difficulty of measuring or estimating dt/0y
in relaminarizing flows.

While these parameters are certainly useful in indicating when the flow
begins to depart from the standard constant-pressure laws, we must recognize
that such departures may not necessarily imply reversion, although they
must certainly precede it. Such “standard” laws are often based on assump-
tions (e.g., matching similarity solutions) that are only asymptotically valid
atlarge Reynolds numbers, if not on fairly specific models (e.g., mixing length)
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whose limitations are well known. It is possible that such departures merely
indicate that these assumptions are not valid or that the flow is abnormal
in some sense, rather than that there is reversion.

If the criterion for reversion is a Reynolds number, it is implied from our
discussion in Section I1I that viscous dissipation exceeds production. Mea-
surements of the turbulent energy balance in an accelerated boundary layer,
reported by Badri Narayanan, et al. (1974), show however that the dissipation
always remains smaller. Figure 16 compares the energy budget at a station
where K ~ 2.8 x 10~ with that at zero pressure gradient, K = 0. All con-
tributions to the budget are nondimensionalized here by the outer scales
U and 4, it is seen that while both production and dissipation are reduced
in these units, their distributions across the boundary layer remain similar,
and dissipation remains smaller. Certain changes in advection and diffusion
may be noticed, but, except possibly in the region y/8 < 0.1 which is not
covered by the measurements, the observed phenomena cannot be attributed
to dissipation.

We need to consider also whether energy production decreases because
of a favorable pressure gradient. From (2.5), it can be shown that the relevant
terms in two-dimensional flow are

D

U

: (5.4)

q: — Uy M (a2 — )
Oy

\,’

joh
=

the last term is negative if @ > #, du/éx > 0. In the energy balance measure-
ments cited above, this term was found to be negligible. More generally,

3 T
(')9 2 —
; x =—20.5 cm
T o1 K=0,Re,=1860 -
lo]
S )
- S — Fig. 16. Turbulent energy balance in constant
2 ] // production pressure and accelerated boundary layers; all terms
; - H dissinati scaled on outer variables U, &. (Data from Badri
3 u’ T 'Ss'pal on Narayanan et al, 1974) K =0 at x = —20.5 cm,
-2 ——advection g _ 98 x 10"atx = 15 cm)
- diffusion
AEmO 1 x=15cm "
5 = K=2.8x10", Rey=640
Q
AN
2T
0 0.5 1.0
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one may define, in analogy with the flux Richardson number (4.4), a param-
eter that measures the ratio of the “absorption” to the production:

L= (f% — %) Suféx
T =YDy du/dy (5-52)
At v+ = 15, where the production in a constant-pressure boundary layer
1s largest, the value of this parameter is estimated by Back et al. (19651) to be

o 2voUu K

¥ :EE: 44 o (5.5b)

_This shows that for y to be of order unity, K would have to be about 10™4;
in the many flows where reversion has been observed at K ~ 3 x 10"6’
the absorption could clearly have been no more than a few percent wheré
the production is largest. (This conclusion may not be valid in the outer layer;
see Section V,B3) ’
Fin_ally, we may note that in accelerated flows there is no evidence of
any significant decorrelation among the components contributing to the

Reynplds shear stress; Fig. 17 shows that over much of the boundaryvlayer C
remains constant at about 0.5 in zero as well as favorable pressure gradientsﬁ

1.0 T T T T T
| kx10% [Req ||
- o7 0 1860 | -
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> W o
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< 0.5~ ®0 O 0®0 ® ]
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F1G6. 17. Shear stress correlation coefficient at two stations (same as in Fig. 16)in a reverting
accelerated boundary layer. (Data from Badri Narayanan er al, 1974)) N

From considerations such as these, Narasimha and Sreenivasan (1973)
were led to propose that reversion in such flows is primarily the result of
the domination of pressure forces over nearly frozen Reynolds stresses
rather than of absorption or dissipation, although these could contributé
(especially the latter near the wall). They noted first that the completion of
the process of reversion has a fairly definite meaning, for it certainly occurs,
for the mean flow, when the net effect of the Reynolds stresses is negliOible:
Random fluctuations inherited from previous history will remain, I;utothey
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are no longer relevant to the dynamics of the flow, which under these circum-
stances may be said to have reached a quasi-laminar state.

2. The Mean Flow

In this approach, we first formulate such a quasi-laminar limit for suffi-
ciently large values of a pressure gradient parameter

o dp

A=—2
7o dx’

(5.6)
where § is the boundary layer thickness and 7, the wall stress in the boundary
layer just before the pressure gradient is applied. The two-dimensional tur-
bulent boundary layer equations

-~ -~

du v _

AT T AT =Y

éx  dy
du du dp *u ot

(5.7)

P o I o )

u.......
0x ay dx Oy

) ~_
275y
then split, in the limit A — oo, to an outer inviscid but rotational flow

Cu cdu  dp

U—+v—= ——, (5.8a)
ox dy dx
and an inner viscous flow governed by
du du d 0*u
MT+UT*:“*£+V-**2‘, (5.8b)
ox dy dx Jy

ie., there is a laminar subboundary-layer underneath a sheared inviscid
flow. The boundary conditions for the two equations have to be obtained
by the method of matched asymptotic expansions. Solutions are quite easily
worked out for any given initial flow (Narasimha and Sreenivasan, 1973).

These solutions turn out to be remarkably effective in describing the flow
parameters, but before showing this, let us note two very simple consequences
of (5.8a), which implies the conservation of total head and vorticity along
each streamline in the outer flow. From the former, it follows that the velocity
at the edge of the inner layer, say U(x) [the inner limit of the solution of
(5.8a)], increases downstream sufficiently rapidly that the difference U(x) —
U(x) decreases. To conserve vorticity, therefore, the boundary layer must
thin down. Correspondingly, also the outer edge of the (whole) boundary
layer must be a streamline, and the entrainment must vanish (to the lowest
order in A™Y, of course). Thus the total mass flux in the boundary layer,
proportional to U(§ — 6*) where 3* is the displacement thickness, must also
remain constant; as 6* is quite small compared to ¢ in flows of this kind,
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it follows that the boundary layer Reynolds number Ud/v should not show
large streamwise variations. Thus we have a flow in which different Reynolds
numbers behave in different ways: Ux/v increases, Uf/v (§ = momentum
thickness) decreases, Ud/v varies little, and A, ' first decreases and then
increases!

All of these deductions are largely verified by experiment: Fig. 18a,b show
representative comparisons for various boundary layer mean flow param-
eters. The good agreement seen here demonstrates the value of looking at
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FiG. 18. (a) Streamwise variation of boundary layer thickness and the Reynolds number
Ud/v (arbitrary units) in reverting accelerated boundary layer. (b) Streamwise variation of
boundary layer Reynolds number and shape factor: comparison between experiment (Badri
Narayanan and Ramjee, 1968, run 3) and theory. (From Narasimha and Sreenivasan, 1973)
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reversion as the generation of a new laminar boundary layer, rather as in
case depicted in Fig. 14. 4 ‘

th?l';xetr;orziiion regaiding wall variables, like the §kin 'fri.ctlon arﬁ heatt ﬁux,
is slightly different. Figure 19 shows how the skin friction coe czegl }rlses
at first as the free stream accelerates, exactly as any reasonabi? turbu gnce
model suggests [in the present case, th¢ method of Spence (1956) .hz?s‘ \;en
used to provide estimates]. However, it is observed that. thereafte(r (t lilﬁd(., ’es
a maximum and plunges steeply down, in accordance with Fhe quasi-laminar
theory, whose predictions are in excellent agreement with me?suremf}r;;
especially beyond the point where A ~ 50. Still further dO\ivns‘triam, as !
pressure gradient falls, ¢; rises once more as th‘e flow goes ba; to tt}l}rlu-
lence—note the last experimental point in the diagram! A de?aﬂed stability
analysis (Narasimha and Sreenivasani .1973). shows that this retrgnytr;n
occurs very near the point where instability mlght' be expected to setn 13, 16,
inner laminar boundary layer. Clearly, the maintenance of an e'ﬁ"ecm’ej\
laminar inner layer in spite of the highly disturbed state of the flow above it
must be attributed to the strong stabilizing influence thh; favorgble pr'esvsur.e
eradient. Corresponding, the slightest sign of instability in the mner ldyq 1;
;Il that is required to trigger sufficient energy production to cause quic

retransition.
U /[ “l@ experiment,
Spence / Blackwelder &
Kovasznay (1872)
3b——-% !
=
x 2 quasi-taminar |
Pral theory
1L i
—150
oL /\
/ \ {100
L / \ A
i / \ 50
* *
A* K A H ‘R\
TS u 0
g 10 1 12
x (m)

L TP : ayer: com-
Fic. 19. Variation of skin friction coefficient in a relaminanzing ‘boun(dfdi}y Id‘yneorevems
Lo S laming ' Mz the abscissa denote location of tollowing :
arison with quasi-laminar theory. Markers on det ) i B~
Zif‘zon 0%75' K* K =3x 107% A*:A =50; H*: minimum in H: R: retransition to
b, = UL - = N 7

turbulence. (From Sreenivasan, 1974.)
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3. The Turbulence Quantities

An interesting part of this quasi-laminar theory is the ability to predict
the turbulence quantities during decay. Consider first the inner layer. Very
close to the surface, there is a spanwise structure in the turbulent flow; the
length scale of this structure is of order 250v/U, during reversion, according
to the measurements of Schraub and Kline (1965). Although this length
could be small compared to the boundary layer thickness, it is about 10
times larger than the height where the intensity i is a maximum. It is therefore
conceivable that the fluctuating motion in the inner layer is approximately
two-dimensional.

We assume further that it is quasi-steady, which is again plausible as the
high-frequency components of the motion are known to decay fast (Launder,
1964). Now the development of steady perturbations on a laminar boundary
layer has been studied by Chen and Libby (1968); by solving the appropriate
eigenvalue problem, they find that, if the basic flow belongs to the Falkner—
Skan family U, ~ (x — x¢)™, the maximum value of the perturbation velocity
decays like

Ugfx — xg) #1ma (5.9)

where 4, = 4,(m) is the lowest eigenvalue for the flow. Higher modes decay
faster. We may now expand the velocity fluctuation u' (x,, : y) at some initial
Xo In a series of the Chen-Libby eigenfunctions. The first term in this ex-
pansion, corresponding to the lowest mode, will eventually dominate the
higher modes decaying faster, so that the fluctuation intensity 7 finally obeys
the inverse power law suggested by (5.9). In those experiments where the
above Falkner-Skan assumption is a reasonable approximation for the
inner layer, the decay of i is indeed found to follow (5.9); Figure 20 shows a
comparison.*

In other words, the fluctuating motion in the inner layer appears to be a
random low frequency oscillation excited by the ambient turbulence.

Although the basic assumptions of this section cannot all be rigorously
Justified, experimental data show that it contains a large measure of truth.

In the outer layer, conditions are closer to what is known as rapid dis-
tortion theory (e.g., Batchelor and Proudman, 1954), in which both inertial
and viscous forces are ignored. Sreenivasan (1974) has estimated that the
time of flight of a particle through the region of pressure gradient in reverting
flows (e.g., those reported by Badri Narayanan and Ramjee, 1969; Black-
welder and Kovasznay, 1972) is a fifth to a tenth of a characteristic time scale

* The same theory also predicts that the location of the maximum @ scales on the thickness
of the inner laminar layer: this is also borne out roughly by experiment (see Narasimha and
Sreenivasan, 1973).
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TABLE 11

RELATIVE RAPIDITY OF DISTORTION IN VARIOUS Frows
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for the energy containing eddies; the distortion is therefore relatively rapid,
certainly more so than in many grid turbulence experiments set up to study
rapid distortion, as the accompanying Table II shows. Figure 21 shows a
comparison of the observed variation of 7 in a rapidly accelerated flow with
that predicted by a straight application of the rapid distortion theory of
Batchelor and Proudman (1954) for initially isotropic turbulence. The as-
sumption of isotropy in calculating the effect of rapid distortion on each
component of the energy yields reasonable results even when the turbulence
is not strictly isotropic, as Sreenivasan and Narasimha (1978) have shown.

Rapidity
Source Type parameter”

MacPhail (1944) Grid turbulence 0'290—5?—./83
Dryden-Schubausr (1947) Grid turbulence .
Hall (1938) Grid turbulence 0.83
Townsend (1954) Grid turbulence }0
Uberoi (1956) Grid turbulence 3‘3
Ramjee et al. (1972) Channel flow 2.5
Badri Narayanan and Boundary layer .

Ramjee (1969) flow 100

Blackwelder and
Kovasznay (1972)
Crow {1969)

Boundary layer
flow

10—1'\11/1) 1.0 OA measurement
Blackwelder
! =
by 5)"o 05 & Kovasznay(1972)
o rapid distortion
0.02- - theory
T
[e]
>
|z
= 0.01- .
o —
X,=9.88m
o v ! ]
S.5 10.0 10.5 1.0

: 2
Sonic boom propagating 10% or more

x(m)

Fi1G. 21, Variation of turbulence intensity in outer layer. Measurements of Blackwelder
and Kovasznay (1972) compared with rapid distortion theory; ¢ = stream function.

A simple approximation to the dynamics of such rapid distortion of a
sheared flow is obtained by ignoring all viscous and nonlinear terms (in-
cluding in the latter the pressure diffusion term also) in the stress transport
equation (2.3), and considering the limit when the strain ratio (U—-UYUS
is small. (This implies that in the outer flow du/dx > ¢u/Cy.) We then obtain
(Sreenivasan and Narasimha, 1974)

in the atmosphere

@ Defined as l/fi;, where [ is a characteristic size of efnergy—bearmg
eddies, 1; is the time of flight of a fluid particle through distortion. Esti-
mates of parameter from Sreenivasan (1974).

d_, ou Ju

— {jc = _2*2 el oot

o 2 + [ T éy:!’ (5.10a)
d 2 fu

— 4 = 2/;2 .

dt ax’ (5.10b)
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%Wz -0, (5.10¢)
4d.—0 (5.10d)
dt )

———i vy = !:17‘2 g], (5.10e)
dr oy

where the terms in square brackets are one order higher 'in the strain ratio.
To the lowest order, therefore, i goes down by the working of the pressure
oradient against the normal Reynolds stress, & goes up for the same reason;
and W, q, and the shear stress are frozen along each strgamhne. To the next
order, there is a small production of both @ and 7. Experiment shows reason-
able agreement with these predictions. In fact, recent measu_rements in such
a reve;ting flow (Badri Narayanan et al., 1974) show, cgn51§tent1y, a small
drop in &, a small increase in ¢ and hardly any change in ether the stress
—<u'v"y (Fig. 22) or (as we have already noted) the correlation coefficient

C..
T T T T T T T T T T w T
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v | 100
a | 300
e | 400
A | 600 _
0.041— T T _6'
S je—— K= 2.8x10 ”’1
0 ° o °© o o o o
E 0.03F v °
~~ v v v v
< i
3002 @ a o s s
I ® ° L] a °
° _
0.01+ A A ° o
A JAN A °
o 2, %
0 P TN WS W : TS| L
-02 ~01 0 o1 02
x (m)

Fi1G. 22. Variation of Reynolds shear stress in accelerated bou‘nda-ry la){er (measuremfer;ts
by Badri Narayanan et al., 1974). Stream function ¢ in arbxtrary units, in which the e;xigegc t oef
boundary layer is at approximately y = 700. (Note that in the?se accelerated flows the edge
the boundary layer is itself a stream line to a good approximation.)

A combination of such a rapid distortion theory in the outer layef, Wl‘th
an eigenfunction theory in the inner layer, produces turt_)uler}ce %nv,ens%ty
predictions in good agreement with observation for the longitudinal mtenery
(Fig. 23). The theory is not quite as successful for the normal component, 10
this as in other rapidly distorted flows.
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F1G. 23, Comparison of measured # distribution (Badri Narayanan and Ramjee (1969),
run 3), with calculations using rapid distortion theory in the outer layer and eigenfunction theory
in the inner layer (From Narasimha and Sreenivasan, 1973)

We may in summary divide the flow in highly accelerated boundary layers
nto different regions as shown in Fig. 24. Region I is fully turbulent; region
11 is quasi-laminar—in the outer layer it is valid almost from the beginning
of the pressure gradient at x,. Thus, in a narrow but justifiable sense reversion
in the outer flow can be said to occur almost immediately after the accelera-
tion at x,. (It is this kind of behavior that makes the proposals listed in Table

7 N N
* max.quasi-laminar ¢ Je———
& /p P e
/
c pYi L7-< ~
lU'm’ i
4

-

; A quasi-laminar
theor
fully tur buten/t/ y Ux)
U

|
H”N

quasi-laminar
{outer)

retransition

Xa /reverse transitional x

fully turbutent quasi—laminar (inner)

Fi6. 24.  Flow regimes in reverting boundary layer subjected to acceleration. The variation
of true ¢; (shown hatched) is predicted closely by fully turbulent theory up to the point A*
(corresponding to Ap = —0.025), and by quasi-laminar theory after the point A*, corresponding
to A = 50. The gap between the two theories is patched by a region P of constant ¢;. (From
Narasimha and Sreenivasan, 1973.)
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I seem like an excessive preoccupation with the Reynolds number.) There is
only a small bubble-shaped region (numbered II) near the wall where neither
the fully turbulent nor the quasi-laminar solution is valid. It 1s only this
region that needs to be modeled more elaborately; but it does not strongly
affect many important mean flow characteristics (e.g., the various thick-
nesses), which can be determined without invoking specific models for turbu-
lence. The reason for such success is chiefly that the turbulence, especially
in the outer region, is distorted rather than destroyed by the acceleration,
and the Reynolds shear stress is nearly frozen. The reversion observed is
thus essentially due to the domination of pressure forces over the slowly
responding Reynolds stresses in an originally turbulent flow, accompanied
by the generation of a new laminar boundary layer stabilized by the favorable
pressure gradient.

4. Burst Parameters

Kline et al. (1967) have suggested that relaminarization in accelerated
flows is associated with the cessation of turbulent bursting. They have cor-
related the rate of occurrence of bursts per unit span, F [ measured by Schraub
and Kline (1965) in a boundary layer subjected to a “strongly favorable
pressure gradient”], with the acceleration parameter K, and deduced by
extrapolation a critical value K, ~ 3.5 x 107 % at which bursting ceases. In
coming to such conclusions, the burst parameter has to be assessed against
an appropriate scale; Kline er al. (1967) suggest a wall scaling

F, = Fy2UJ?,

but Narasimha and Sreenivasan (1973) have shown that an equally appro-
priate scaling is _
F=Fvo*UU,,

based on the argument that while the lateral spacing of bursts scales on
wall variables, the temporal rate scales on outer variables (as shown by Rao
et al., 1971). Further, Narasimha and Sreenivasan (1973) found that, whatever
scaling is used, the burst parameter falls exponentially in A over the whole
range covered by the available data (Fig. 25); no critical station in the flow
can be identified, nor can an obvious extrapolation to F = 0 made. This, of
course, is consistent with our earlier description of relaminarization in ac-
celerated flows as an asymptotic process. In particular, in the experiment
reported by Schraub and Kline (1965), the skin friction coefficient was still
rising at the last measurement station in the flow, and the parameter A had
not exceeded 30, suggesting that reversion was not complete in the sense of
Section V,B,2. It would therefore appear that there is an exponential decrease
in the bursting rate in an accelerated turbulent boundary layer before the
wall variables begin to assume quasi-laminar values.
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from Schraub &
Kline (1965)
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Fi1G. 25. Burst parameters in accelerated flow: F = number of bursts per unit time, unit
span. (From Narasimha and Sreenivasan, 1973.)

There is unfortunately no direct evidence on the effect of a favorable pres-
sure gradient on the time rate of occurrence N, of bursts at a given point in
the flow. Badri Narayanan et al. (1974, 1977) report an average frequency
(say N,) for the occurrence of high frequency pulses in filtered ' signals,
obtained according to a technique developed by Rao et al. (1971). These
measurements show that the parameter N, 6/U decreases with downstream
distance in the region of strong acceleration. This is consistent with the
conclusions of Kline et al. if N, ~ Ny, as Rao et al. found in the constant-
pressure boundary layer. However, as no estimate of the spacing of the
wall-layer streaks was obtained by Badri Narayanan et al., F* cannot be
estimated and hence no direct comparisons can be made.

A rapid (although not catastrophic) drop in the bursting rate is also
significant from another point of view. With the cessation of eruptions from
the inner layer, and also of the sweeps from the outer layer, there is little
or no interaction between the two layers. It thus appears quite justified to
ignore the usual transfer processes between the two layers, as is implicitly
assumed in the quasi-laminar theory of Narasimha and Sreenivasan (1973).

Simpson and Wallace (1975) and Simpson and Shackleton (1977) have
recently reported certain measurements that must be mentioned here. These
authors evaluated the frequency (say N,) corresponding to the peak in the
first moment nF  (n) of the spectral density F,(n) of the streamwise velocity
fluctuation «, and assume that N, =~ N,. This assumption was based on
the work of Strickland and Simpson (1975) in a constant pressure boundary
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layer, where N, itself had in turn been inferred from an assumed correspon-
dence with the second peak in the short-time autocorrelation function of
the wall shear stress. Simpson and Wallace and Simpson and Shackleton
also obtained an estimate of the average spacing of the wall-layer streaks.
Based on these assumptions it is possible to estimate a parameter equivalent
to F mentioned above. In the accelerated flow, it was found that this quantity
actually increases downstream, contrary to the trend that one expects from
the other measurements.

Perhaps these measurements are too indirect to provide a convincing
indication of the behavior of the burst rate in accelerated flows: there is
need for further work before any firm conclusion can be drawn.

C. Supersonic FLows

These ideas that have proved so successful at low speeds appear to work
well at high speeds too, although here detailed turbulent structure measure-
ments are rarely available: the one exception is Morkovin’s (1955) work on
the interaction between an expansion fan and a turbulent boundary layer
on a flat plate. In the Prandtl-Meyer flow past a corner, Sternberg (1954)
found a significant drop in the recovery factor downstream; others have
found marked changes in boundary layer velocity profiles (Vivekanandan,
1963), in base pressure in sharply boat-tailed bases (Viswanath and
Narasimha, 1972), and in heat transfer rates (Zakkay et al., 1964).

The basic idea in Section V,B,1, namely, that during high acceleration
the Reynolds stresses over a large part of the boundary layer have little
influence on mean flow development, should be valid with even greater
force in supersonic flow past an expansion corner, where the pressure
gradients are extremely large. Indeed the parameter suggested there as
relevant, namely A = — p, 5/1,, takes on a simpler form in supersonic corner
flow. For, the interaction of the expansion fan with the boundary layer
spreads the pressure drop Ap (here considered positive in an expansion, for
convenience) over a few boundary layer thicknesses. The extent of this
region appears to be relatively insensitive to the total corner flow deflection,
from the work of Ananda Murthy and Hammitt (1958). Thus, p, is of order
Ap/s, and A is of order Ap/t,. This reasoning suggests that reversion will
occur if Ap/z, i1s sufficiently large. (An alternative approach is to realize
that in Prandtl-Meyer flow p, is nearly a Dirac delta function, and a mean
value of A would be proportional to Ap/z,.)

To test this argument, all available experimental data were examined by
Viswanath and Narasimha (1975), taking reversion to have occurred if there
is evidence either of the growth of a thin new shear layer from the corner,
or of an appreciable change in the associated flow characteristic downstream
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(e.g., turbulence intensity in boundary layer or base pressure). This definition
1s not as precise as one may desire, but nothing better is possible at present,
and it certainly seems appropriate for engineering calculations.

Using estimates of 7, from Tetervin (1967), Narasimha and Viswanath
(1975) have plotted these data as shown in Fig. 26 (which is their Fig. 1 with
some additional data). Here points are shown (i) as filled symbols where
authors reported indication of reversion, (ii) as filled, flagged symbols when
reversion is inferred by us, and (ii) as open symbols when no evidence of
reversion can be found. It is seen that all points above the line Ap/t, = 75
show reversion, those below Ap/ty = 60 show no evidence of it, and in-
between there are both types. It thus appears that reversion occurs if Ap is
more than about 70t,. Once again, this is clearly a case of reversion by
domination of pressure forces over the Reynolds shear stress.

PAL
®A3

T T

;

Ap 75

el

2 4 =
“10 - T 60
<3

nonreverting 4

ggg’ ///// eritical region
VF2
3
10 ~
VF1
1 A S T B ! I L 1 i
50 ’ 100 500
: To(PCl)

FiG. 26. Pressure drop and wall stress just upstream of corner in supersonic flow past an
expansion corner. Filled symbols indicate reversion reported by authors; filled, flagged symbols
reversion inferred by us; open symbols no evidence of reversion. Code for experimental points:
A, Ananda Murthy and Hammitt (1958): B, Bloy (1975); C, Chapman et al. (1952); F. Fuller
and Reid (1958); M, Morkovin (1955); N, Viswanath and Narasimha {1972): S, Sternberg
(1954); V, Vivekanandan (1963). {(After Narasimha and Viswanath, 1975.) The numerical suffix
in each case indicates the experimental run.
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As pointed out by Sternberg (1954), we may expect that turbulence passing
through the expansion fan will be rapidly distorted. Interestingly, as the
streamlines spread apart during acceleration in supersonic flow, the turbu-
lence is stretched along as well as normal to the flow, leading to a reduction
in the turbulent intensity. Such reductions have recently been measured by
Gaviglio et al. (1977) in their study of a supersonic near-wake; their obser-
vations are consistent with the criterion proposed by Narasimha and
Viswanath (1975).

D. CONCLUDING REMARKS

One striking feature of reversion in highly accelerated flows is that it is
not catastrophic, but rather gradual and asymptotic. No unique “point of
reversion” can be identified, as it can in direct transition (Narasimha, 1957;
Dhawan and Narasimha, 1958). Nevertheless, the process is more rapid than
dissipative reversion; typically, in many flows, the shape factor H may reach
a minimum in a streamwise distance of the order of 10-20 initial boundary
layer thicknesses from the commencement of acceleration, and a maximum
in an additional distance of a similar order. There can, of course, be con-
siderable variation in these distances.

We also note that the two pressure gradient parameters K, A introduced
above are related to each other through the Reynolds number Re; = U d/v:

A = 2K Re,/c;. (5.11)

Most laboratory experiments are carried out at about the same Re; (of order
10%); it is thus difficult to discriminate between the various criteria that have
been listed in Table L. If A governs the completion of reversion, as argued
by Narasimha and Sreenivasan (1973), then according to (5.11) the value of
K required for reversion should decrease as Re; increases. Although there
is as yet no convincing evidence for this prediction, some support is available
from certain experiments reported by Nash-Webber and Oates (1972) on
nozzle boundary layers. They found that an increase in blowing pressure
from 5 to 20 in. Hg abs. (which roughly doubled the Reynolds numbers)
brought down the K at the beginning of reversion (identified as the point
of minimum H) from about 5.7 x 1076 to about 2.3 x 107° (see Fig. 7 of
their paper). This is the trend predicted by the “domination” theory.*

* The final diagram presented by Nash-Webber and Oates appears to contradict this, as
the boundary of the laminarizing region in the K~Re plane shows K increasing with Re. However,
this region is inclusive, in the sense that reversion does not necessarily occur at the boundary,
but somewhere within it; hence a relation between K and Re ar reversion cannot be inferred
from the diagram.
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.This seems to imply that relaminarization should be easier to achieve at
higher Reynolds numbers, but note that it would be harder to maintain it,
because the Reynolds number of the laminar subboundary-layer would be
correspondingly higher and so retransition would also be quicker!

VI. Curved Flows

A. RapiaL PoiseuiLL:E FLow

Consider the flow between two parallel disks, with fluid coming in at the
center and moving radially out, as shown in the inset to Fig. 27. If U is the
mean velocity at radius r, 2a is the separation between the disks and Q =
4nral the total volume flow of the fluid, the local Reynolds number of the
flow varies inversely with the radius:

Re(r) = al(r)/v = Q*afr,  Q* = Q/dnva, (6.1)

JH_—Z_O ® o 0 Kreith (1965)
<= i = o Moller (1963)
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FiG. 27. Transition/reversion boundaries in radial Poiseuille flow. - -~ indicates the
Re — r/a relation for a given Q*.
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where 0* is a dimensionless flow-rate number. It may thus be expected that
an incoming turbulent flow will relaminarize as its Reynolds number drops
downstream.

Reversion has indeed been observed in such flows, but the phenomenon
does not appear to occur at a fixed value of the Reynolds number, and so is
rather more complex than may be imagined at first sight. The observed
critical Reynolds numbers can in fact be very low: they vary from around
400 in the experiments of Moller (1963) to as low as around 15 in those of
Kreith (1965). (Kreith does not quote this value, which is inferred by us
from the data presented by him.)

Moller judged reversion by the agreement of measured pressure loss with
laminar theory; when this is obtained reversion is complete, and so must
have been initiated at a location far upstream where the Reynolds number
would have been higher. This argument is plausible because of the slowness
of dissipative reversion noted in Section III. Moller in fact concluded that
the observed critical Reynolds numbers were not far different from those in
channel or pipe flows. However this is contradicted by the very low values
observed by Kreith (1965).

An alternative explanation is suggested by Chen and Peube (1964). They
note that in laminar flow, according to the calculation of Peube (1963), an
inflexion point is present in the velocity profile up to a critical radius
given by

rija = 0.762Q%*1/2 or Re; = 1.72r,/a. (6.2)

Flow at r < r; is therefore highly unstable, and could become turbulent even
at very low values of the Reynolds number. Correspondingly, the value of
Re at reversion may also be expected to be relatively low. Chen and Peube
therefore suggested a criterion for reversion in terms of r;/a.

To test the Chen—Peube hypothesis, Kreith (1965) made experiments
under different flow conditions in the following way. He placed a hot wire
at various radial distances halfway between the disks and slowly varied the
volume flow rate until, at a given location of the hot wire, the low underwent
transition from laminar to a turbulent state. A good fit to his measurements
shows that the radius r,, at which this transition occurs is related (to within
experimental error) to the corresponding mass flow rate Q by the equation

roja = 0.260%12, (6.3)

This relation, although obtained by examining the laminar to turbulent
transition at a given radius, holds also for reversion; if the hot wire is moved
radially outward, (6.3) gives the critical radius at which turbulent fluctuations
Just cease to exist (or, in some sense, reversion is complete). Kreith's criterion
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(6.3) implies that r, ~ Q'/%, whereas a simple constant-Reynolds number
criterion implies [from (6.1)] that r., ~ O.

To see more clearly how the criteria differ we note that, putting (6.1) in
{6.3), we get

Yool 2~ 0.26(47) 2 Uafv ~ 0.91 Re or Re,, =12 /a. (6.4

In the Re ~ (r/a) plane shown in Fig. 27, this plots as a straight line; the
same diagram also shows how Re varies with r for given Q*. According to
Kreith’s criterion, reversion should occur when the curve for given Q*
intersects the line (6.4); furthermore, as 0% increases the correspondi;g
critical Reynolds number increases without limit.

However, there should be a critical Reynolds number above which the
flow will be turbulent even in the absence of an inflexion point, as in
plane Poiseuille flow. The value of this critical Reynolds number for radial
Poiseuille flow is not known, but it is reasonable to take it to be of order
1500, as in plane flow (Section III), as the velocity distribution assumes the
parabolic form asymptotically.

Based on this argument, we suggest that the region in which the flow will
revert is bounded by (6.4) on one side, and by a constant critical Reynolds
number above, as shown in Fig. 27.

Experimental data from Moller (1963), Kreith {1965), and Chen and Peube
(1964) are also plotted in Fig. 27. Unfortunately none of these points cor-
responds to sufficiently high O*, which is therefore an area that needs further
investigation.

To summarize, the radial geometry could produce an unstable mean flow
whose critical Reynolds number is lower than in plane Poiseuille flow. For
sufficiently large dimensionless flow rate 0¥, however, the critical Reynolds
number should reach a constant value independent of Q*. Reversion in this
flow is therefore essentially dissipative, with a Reynolds number criterion
that is a function of the flow rate parameter.

B. Convex BouNDARY LAYERS

In the last 10 years many detailed studies have been made of boundary
layer flow on surfaces with streamwise curvature. One measure of the curva-
ture is the parameter k5, where k™! is the radius of curvature (considered
positive when convex) and § is the boundary layer thickness. When x 6 is
small, the mean flow may be represented by writing Egs. (2.1} and (2.2) in a
locally Cartesian coordinate system with x along the (curved) surface and y
normal to it; the major effects of curvature then appear in these equations
as additional terms, comprising a source of strength —8(xvy)/éy and body
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force (— xuv, ku®) along the streamwise and normal directions respectively
{So and Mellor, 1972). As a consequence of the centrifugal component xu?,
there is a normal pressure gradient, the pressure being higher toward the
edge in a convex boundary layer. This gradient affects the stability of the
flow significantly. For example, a slow lump of turbulence thrown outward
from a convex surface Possesses a lower centrifugal acceleration than the
faster ambient fluid, and so is driven back by the normal pressure gradient
that balances the mean flow. Similarly, a faster lump moving toward the
surface 1s thrown out. Consequently, there is a tendency to suppression of
turbulence, very much as in an inversion. Indeed, as long ago as 1884,
Reynolds had listed “curvature with the velocity greatest on the outside” as
one of the factors “conducive to direct or steady (= laminar) motion,” and
had noted how a small curvature may have a large effect. An analogy between
buoyancy and curvature effects in the convection/cylindrical Couette flow
stability problems was demonstrated by Jeffreys (1928); Prandtl (1929) drew
a similar analogy for turbulent flows.

Although we will speak here only of convex boundary layers, the same
effects will be encountered on concave surfaces if the flow velocity decreases
away from the surface. The important thing is that the sense of flow curvature
and flow vorticity must be the same; the effects we discuss below for convex
boundary layers must be present in other instances of what we may call
“co-curving” flows.

Another way of appreciating the effect of curvature is to examine the
Reynolds stress transport equations for curved boundary layers. When (2.3)
is written in the appropriate coordinate system, the following production
terms appear in the respective transport equations (Rotta, 1967; So and
Mellor, 1972):

1 5
—ut =y ~—€;~ (rcu) — 2xudu'v’y
2 K Gy

= - 21—[ — rkudu'v'y, (6.5a)
oy
1 ~2 st -
50 2rcudu'v’y, (6.5b)
q: —<{u'v Q + xulu'v'y, (6.5¢)
oy
L2 OU A2 _ =2
—uv'y:D 6—y — ku(20* — 7). (6.5d)

[These are the leading terms in the limit of small « 6 for a two-dimensional
boundary layer, and have been extracted from the complete equations given
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by So and Mellor (1972), Appendix E.] The tendency of these terms, for
given {u'v"y <0, is to enhance @ but diminish # and the total energy ¢ in a
convex boundary layer. However (6.5d) shows that — (u't’) tends to go down
as well if 2 > £/2'/%. The experiments of So and Mellor (1973), at k6 ~ 0.074,
show in fact that all three components of the energy, %, 7%, w2, as well as
the stress —{u/'v"), are lower in a convex boundary layer than on a flat one.
Figure 28 shows some of these results; note the spectacular drop in the
correlation coefficient C, [defined in (3.3)], and the implied disappearance
of the shear stress at y/0 ~ 0.4! The curvature terms in these experiments
are comparable to the others; for example, the curvature “absorption” term
in (6.5¢) is about half the other production term.
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Bradshaw (1969b) has recently made extensive use of the analogy with
buoyancy effects to calculate curved turbulent flows: in particular he defines
a flux Richardson number for curvature,

2u
Rf = EORYE (6.6)
which is approximately equal to xu/(éu/dy) for very small curvatures, and
provides a measure of the ratio of the absorption term to the production
term in, say, (6.5¢). This Richardson number tends to be very small near the
wall, where the flow is therefore hardly ever affected.

As in buoyant flows, however, even a relatively small value of the curvature
Richardson number (6.6), 1.e., even mild surface curvature, can cause signifi-
cant changes in the turbulence structure. The experiments of Thomann (1968)
in supersonic flow, which were so arranged that the external Mach number
remained constant as the flow curved, revealed changes in wall heat flux
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that would be 10 times more than in laminar flow at the same value of k §
(Bradshaw, 1973). Furthermore, Bradshaw finds a 109} change in the mixing
length when the boundary layer thickness is still only a three-hundredth
part of the radius of curvature! Thus, even when the magnitude of the terms
explicitly involving curvature in the stress transport equations is very small,
the effects of curvature are not negligible, and clearly spread to the other
terms as well. We now examine the effects more closely.

As Fig. 28 shows, there is not only a reduction in turbulence intensity ¢
on a convex surface, but a significant decorrelation of the velocity compo-
nents contributing to {u'v’): the correlation coefficient C, drops from about
0.6 in the flat boundary layer to zero in the convex one at y/é = 0.4. Clearly,
curvature is not only affecting the amplitudes of the fluctuating motion but
their relative phases as well.

That these effects reflect basic changes in turbulence structure are shown by
the detailed measurements recently reported by Ramaprian and Shivaprasad
(1978) at k6 =~ 0.013. They find that, compared to a flat boundary layer, the
production and dissipation in a convex boundary layer are not significantly
different (the wall stress drops only slightly), but the diffusion [ represented
by the terms (va) and (vb) in Eq. (2.5)] is: There is a small gain by diffusion
over a large part of the boundary layer (y/d = 0.1), from a supply apparently
very close to the wall. (In these measurements, the diffusion term does not
show the expected change in sign across the boundary layer; there must
therefore be a peak on the loss side for the convex flow, but this apparently
occurs too close to the surface to be detected by the probe used.)

Equally interesting are the spectacular changes found in the large scale
motions even with x 0 as low as 0.01. Fig. 29 shows the integral time scale

1o U (Ut + 1))

0 i

T,= dt

El

where T is the time delay up to the first zero of the autocorrelation function
Lu'(u'(t + 7)). Figure 30 shows the spectrum E,, of the v' fluctuations,
normalized so that

Jo Easlki0)d(k, 8) = 1,

k, being the longitudinal wave number. Both diagrams show the large
changes caused by convex curvature, especially at low wave numbers (inte-
gral scale is given by this end of the spectrum). Clearly the stabilizing influence
of curvature is first destroying the organization of the motion in the large-
scale structures in the boundary layer: the effects must later spread to the
high wave number end and presumably also to the bursting process through
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the couplings that have recently been revealed by experimental studies (Rao
et al., 1971; Badri Narayanan et al., 1977; Brown and Thomas, 1977).

With the Reynolds shear stresses suppressed, and the viscous stresses
anyway negligible, it follows that the flow in the outer layer must be'effec-
tively inviscid and rotational, as in the rapidly accelerating flows of Section V.
This s indeed found to be the case; Fig. 31 shows how the measured velocity
profile in one of Ramaprian and Shivaprasad’s experiments compares very
well with an inviscid calculation, in which the vorticity was assumed con-
served along each stream line from a station about 146 upstream.
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F16. 31, Velocity profile in convex boundary layer; comparison between measurement at
station 35 (Shivaprasad, 1976) and inviscid calculations.

In the inner layer, on the other hand, the effective curvature Richardson
number usually remains small (because du/Cy is very large), and a turbulent
wall flow of the classical type remains, although even this corresponds to a
slightly reduced skin friction. In analogy again with the discussion of Sec-
tion V, we may expect to observe departures in the wall flow from the
standard law of the wall when the curvature scaled on wall variables,

K. =xv/U,,

1s sufficiently large. In So and Mellor’s experiments, with k6 ~ 0.074, k. is
only of order 5 x 10~ ®—still far too small to be significant.

To summarize, therefore, the outer flow in a convex boundary layer
reverts to a quasi-laminar state, as the turbulence energy is “absorbed”
by curvature forces, the organization of the motion is destroyed and the
Reynolds shear stresses are suppressed.
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VII. Relaminarization by Rotation

A. DYNAMICS OF MEAN AND FLUCTUATING VELOCITY

Like curvature, rotation can also produce reversion from turbulence to a
laminar state. Experiments in an effectively two-dimensional channel
rotating about a spanwise axis (Halleen and Johnston, 1967; Lezius and
Johnston, 1971; Johnston et al., 1972) have shown that reversion occurs on
what these authors call the trailing side; as this is the side on which the
imposed rotation and the basic flow vorticity have the same sense, it is
convenient to call it the corotating side. For small rotation rates, the flow
remains essentially turbulent although it is slightly modified, but for rotation
rates higher than a certain value, flow visualization studies have shown that
the following changes occur progressively on the corotating side:

(a) appearance of intermittency in the streaky wall-layer;

(b) basic laminar flow interspersed with turbulent spotlike charac-
teristics;

(¢) quiet, purely laminar layer close to the wall.

Furthermore, turbulent bursting ceases, intensities decrease, the velocity
profile departs from the standard log-law form, and the skin-friction goes
down considerably.

Rotation introduces two additional forces in the rotating frame of reference.
The centrifugal force, which is Q%% per unit mass (where Q is the angular
velocity of rotation and r is the radial distance of the field point from the
axis of rotation), can be combined with the static pressure and does not
then explicitly enter the equations of motion. The Coriolis force, on the other
hand, will have to be considered explicitly. For a rotating channel with no
flow variation in the streamwise coordinate x, we have the momentum
equations (y being parallel to the smallest dimension of the channel)

dp/dx = ot/dy (7.1)
oP A2

20 = -5 (7.2)
¢y ¢y

where P = p — 30%r%. Usual order of magnitude estimates in (7.2) show that
08%/8y = 0(2Qu)
everywhere in the flow, so that to a first approximation

2Qu = —3P/¢y. (7.3)
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Thus, an important effect of the Corolis force is to produce a normal pressure
gradient proportional to Q. As in co-curving flows (Section VI,B), this
pressure gradient has a stabilizing effect: if a fluid particle from layer (1)
moves accidentally outwards to layer (2) and preserves its momentum and
(thus) its Coriolis force, the inward-acting pressure gradient in position (2),
being larger than the Coriolis force acting on this fluid particle, will push
it back to its original position. Similarly, a fluid particle moving from position
(2) to position (1) is pushed back to position (2). The same argument shows
that on the opposite (antirotating) side, the Coriolis force is destabilizing.

Consider now the transport equation for the components of the Reynolds
stress. The relevant generation terms are:

107 200uv"y — (u'v' Y {(Eu/dy), (7.4)
167 200", (7.5)
W20, : (7.6)

q: —<u'v'y cu/dy, (1.7)
— Uy 2Q(0% — %) + 52 éu/dy, (7.8)

where the sign convention is such that on the co-rotating side Q < 0. The
tendency of these terms in co-rotating flows is to enhance #, diminish 3,
and leave W, g unaffected, for given {u'v'y, éu/dy, etc. However, as in curved
flows, — (u'v") is itself reduced, and hence also ¢u/dy, so that we may expect
all the Reynolds stress components to be altered.

B. CRITERION FOR REVERSION

The ratio of the additional “absorption’ term [in Eq. (7.4), for example]
to the conventional production again defines an appropriate Richardson
number for rotating flows,

20
Rf, = TURTTTAL (79)
Cu/Cy
which we may expect to play a role similar to that in curved flows™*: thus, the
flow should be more stable for Rf, > 0.

* From an analogy with curved and stratified flows, Bradshaw (1969b) concluded that the
appropriate Richardson number governing the stability of the flow is the parameter

)]
cy /I \Cy

but as noted by Johnston et al. this parameter is nearly equal in magnitude to (7.9) in most
boundary layer situations where Q « éu/éy.
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Johnston er al. (1972) used an inverse Rossby number Ro™ ! = 4Qaju as a
convenient measure of the rotation, and identified, in a Re~Ro plot, regions
ofthe fully turbulent, reverse-transitional and laminar states (as schematically
indicated in Fig. 32). This classification is based on the flow visualization
studies in the wall region: the laminar state is defined by the absence of
spotlike individual turbulent structures in hydrogen bubble and dye visual-
1zations, and fully developed turbulent flow by the absence of isolated
laminar-like regions. Figure 32 shows that, with increasing Reynolds number,
reversion occurs at an increasingly higher value of rotation, and that no
unique value of Ro describes the boundaries between the different flow
regimes.
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F1G. 32. Boundaries between different flow regimes in corotating channel layer; classifi-
cation based on flow visualization using hydrogen bubble and dye techniques. {Data of Johnston
et al, 1972)

However, close to the wall, an appropriate measure of ¢u/¢y in (7.9) is
not U/a but UZ/v, so that we expect the “wall flow” Richardson number
Q. = Qv/U; to be a logical parameter with which to attempt a correlation
of the onset of reversion. (Note the analogy here to the parameters A,
of Section V,A.) We have therefore plotted the data of Johnston et al. as Q
vs. Re in Fig. 33.* From our analysis of Section I11, we know that reversion
occurs even in the zero-rotation case when the Reynolds number Re < 1500.
From Fig. 33, the rotation required to cause reversion sharply increases with
Re for 1500 < Re < 3000, and thereafter attains a nearly constant value of
Q... ~25x 1073 No unique value of Q. can be identified along the
boundary between the laminar and reverse-transitional regimes; this again

* Here, we have used U,,, the friction velocity corresponding to the nonrotating case at
any given Reynolds number, because of its greater predictive convenience. Rotation modifies
the [riction velocity, as we shall discuss shortly, and so a more logical choice may appear to
be the friction velocity U, in the rotating case. However, it turns out that U,/U,, depends
chiefly on Q.. so that the critical value of Qv/U} = (U,o/UL)*Q, is proportional to
Q... [(QvU3), =43 x 1073].
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Fi1G. 33. A replot of the turbulent,/reverse transitional boundary of Fig. 32, in terms of a
wall-scaled rotation Richardson number 2, .

is consistent with the discussion in Section V of how wall-scaled parameters
do not govern the completion of reversion.

It 1s useful to ascertain independently the validity of this argument by
considering some other more easily measurable parameter. F igure 34, which
is essentially a replot of the data of Johnston et al. converted to the present
coordinate 2, using estimated values of ¢;, shows the ratio of the friction
velocity U, in the rotating flow to that in the nonrotating flow {(U.o) at the
same Reynolds number, as a function of Q. For Q, < 2.5 x 10~3, there is
only a small and gradual reduction in the wall friction as a result of rotation;
presumably, this line represents a turbulent state. Beyond Q. ~ 2.5 x 103
a sharper change in U, /U, seems to occur, thus possibly marking the onset
of reversion.

10 ; ; .
A @ experiments at
Re ~ 5000,
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0.8 fully turbulent flow
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= o6l i A . i
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FiG. 34, Friction velocity in corotating channel layer.
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VIII. Thermal Effects

A. HeaTED HORIZONTAL GaS FLOWS

There is considerable evidence that an initially turbulent internal gas flow
reverts to a laminar state when the pipe carrying the gas is heated sufficiently
(Perkins and Worsoe-Schmidt, 1965; Magee and McEligot, 1968 and espe-
cially Coon and Perkins, 1970; Bankston, 1970; Perkins er al., 1973). An
important effect of laminarization in this case is a sharp reduction in energy
transfer to the gas, with a consequent large rise in the wall temperature
(which can be high enough to be of practical concern in gas-cooled nuclear
reactors).

The most usual experimental configuration used in these studies is a tube
heated either resistively or by an external heat exchanger. The gas entering
the tube is often pre-cooled to achieve higher values of wall-to-bulk gas
temperature ratio without operating at excessively high tube temperatures;
in this manner, the experiments of Perkins and Worsoe-Schmidt achieved
a ratio as high as 7.

In principle, it appears possible that an internal gas flow at any entry
Reynolds number can be made to revert to a laminar state by heating it
enough so that, due to the increase in kinematic viscosity, the local Reynolds
number falls below the critical value (as in the flows discussed in Section ).
Flows with entry bulk Reynolds numbers of the order of 10* are known to
have reverted to an effectively laminar state on heating (the Reynolds number
being based on pipe radius a, average flow velocity U and kinematic VISCOSity
veorresponding to the average flow temperature at a given section). However,
reversion has been observed to be complete (ie., the heat transfer charac-
teristics, for example, have reached the appropriate laminar values) at bulk
Reynolds numbers of about 2500, and is possibly initiated at Reynolds
numbers of about 4000-5000 (see, for example, Coon and Perkins, 1970;
Bankston, 1970). These Reynolds numbers are substantially higher than the
critical value of 1500 determined in Section III for reversion in adiabatic
pipe or channel flows.

The reason could well be fluid acceleration: with heating, the gas density
goes down and velocity increases (to conserve mass flow) with distance
downstream. The (bulk) acceleration parameter K =V(dU/dx)/U? attains
values of the order of 2 x 107° in the experiments of Bankston (1970), Coon
and Perkins (1970), and Perkins et al. (1973). Accelerations of this magnitude
are not far from values thought sufficient to cause reversion in external
(initially turbulent) boundary layers (see Section V). Although the induced
acceleration in these internal flows is not an independent parameter, being
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controlled by the retarding effects of the wall friction, its magnitude is suffi-
cient to warrant a further investigation to demarcate the acceleration and
Reynolds number effects.

If the primary mechanism causing reversion is the viscous dissipation,
we expect a Reynolds number criterion to hold. In the heated flow we may
expect the critical Reynolds number to depend on a parameter like K
characterizing the acceleration (which itself is related to the amount of
heating). Unfortunately, obtaining such a functional relation is not easy in
the experiments cited above. The reasons are that reconstruction of various
details of the experimental data is rarely possible from the published informa-
tion, and that no consistent definition of reversion has been used in the
various experiments; also no quantitative data on turbulent fluctuations are
available. The data collected by McEligot et al. (1970) suggest that the depar-
ture of a measured-wall parameter (such as the Stanton number) from the
empirically established “wall-laws” occurs at a bulk inlet Reynolds number

Re, ~ 6.1 x 10%gH)3, (8.1)

where the surface heat flux is

¢4 = qipUC,T;

the suffix i indicates the inlet conditions, and overbars denote sectional
averages. Further, if one defines reversion to be complete when the local
Stanton number approaches the laminar value corresponding to the local
Reynolds number, the data collected by McEligot et al. show that the
corresponding bulk inlet Reynolds number is

Re, = 1.72 x 10%g¥)"2 (82)

Both (8.1) and (8.2) hold for gF > 6 x 10™*. For square ducts, Perkins et al.
(1973) propose, instead of (8.2), the relation

Re, = 2.5 x 10%(g¥)*'%,

but we shall not consider this further because of the uncertain effects of duct
geometry.
From energy balance across a short section of pipe of radius a,

na® d o
2raq,, = — —(pC, T U);

if p, C,, T and p do not vary much, and taking 1i/i; as approximately T/T,
we get K = 2¢*/Re. From (8.1) and (8.2), therefore

Re, = 1.85 x 10° K (T/T)
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for “initiation of reversion,” and
Re, = 148 x 10% R (T/T)

fo.r .“completion of reversion.” Both of these equations express the local
crm.cal Reynolds numbers in terms of the local acceleration parameter and
the inlet-to-local temperature ratio. The result is shown in Fig. 35.
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FiG. 3.5. Proposed variation of critical Reynolds number with acceleration parameter in
heated pipe flows, based on McEligot et al. (1970).

Finally, we note that the dynamic viscosity of a gas increases with tem-
perature while that of a liquid decreases. So, reversion would perhaps occur
also when liquid flows are cooled sufficiently, although the flow in this case
would not undergo an acceleration.

B. HeaTeED VERTICAL GAS FLows

Steiner (1971) has observed reversion in the airflow passing upward
through an insulated vertical pipe subjected to a constant heat ﬂux.VMeasur&
ments were made at initial Reynolds numbers Re (= Ua/v) of about 2000,
3000, 4000, and 6000. It was observed that, in the first three cases, the Nusselt
number based on the difference between wall and mean temperatures de-
creased to half the values appropriate to the turbulent flow; reversion to a
laminar state may thus be suspected. In the experiment at the highest
Reynolds number, on the other hand, no such reduction in the lesselt
number was observed; this and other corroborating mean velocity and mean
temperature data showed that reversion had not occurred here.

Steiner attributed the observed reversion to the acceleration associated
with the decrease in density due to the heating of the air. But two other
mechanisms are also possible in this flow: absorption of turbulence by
buoyancy effects, and decrease in Reynolds number below the critical value
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because of the increase in kinematic viscosity associated with the heating.
Accurate demarcation of these effects cannot be made from the data available,
but a rough estimate will be attempted below.

Consider first the acceleration effects. Steiner quotes the maximum value
K .ax Of the acceleration parameter K in the pipe to be in the range 0.3 x 1078
(Re ~ 6000) to 3 x 107° (Re ~ 2000). However the parameter K, does not
have the same significance in internal flows as K does in external flows: a
more useful indicator is perhaps the bulk acceleration parameter K, defined
using average values over a cross section (as in Section VIILA). However,
K is rather lower than K,,,; for instance, K ~ (3/5)K .. in the flow with
Re ~ 2000. Thus, in Steiner’s experiments K ~ 2 x 107° in the flow with
Re ~ 2000, and less than 107° in the other three flows. The acceleration
effects thus cannot be very important except in the flow with Re =~ 2000.

We now use the arguments of the previous section to examine whether
because of heating, the Reynolds numbers in these flows could have reached
critical values. Although the mean temperature rise in these flows is not
known directly, other data seem to suggest that it is of the order of a couple
of hundred degrees centigrade. Noting that

K(TI/T) = (3/5) Kmux (TL/T) ~03 Kmax = 10_67

we find from Fig. 35 that Re_, would not be very different in these flows from
the adiabatic value of about 1500 (see Section III). As Reynolds numbers
in all the flows are above 1500, it is unlikely that reversion occurred by
dissipation.

Consider now possible buoyancy effects. We first note that the flux
Richardson number

Rf ~ Gr/(Re? ¢ Pr),
where
Gr = glAT/(v*T)

is the Grashoff number, Pr is the fluid Prandtl number (~0.72 for air), 1 is
the vertical distance between two measuring stations along the pipe, and
AT the mean temperature difference between them. From the values of Gr
and Re quoted by Steiner, using estimated values of ¢;, it is easy to show that

Gr/(Re® ¢; Pr) ~ 0.0125

for the Re ~ 6000 experiment, whereas for the other three flows it is about
0.09 (Re >~ 4000), 0.16 (Re ~ 3000), and 0.32 (Re ~ 2000). The last three
values are comparable to the critical Richardson number-in buoyant flows
(see Section IV), thus strongly suggesting that the observed reversion is
possibly due to buoyancy effects.

of Pennell er al. (1972): Re, =
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IX. Surface Mass Transfer

A. INJECTION

defecllé;{ctdzindleodi (-1968) and Pennell er al. (1972) showed that a fully
uroulent pipe flow exhibits some laminar feat 1
. roulent pipe. ; ures when a
circumferential injection 1s applied to the flow. Their experimental cosgf;);?
gura-
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Fi6. 36.  Skin friction coefficient in pipe flow with inj
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where U(x) is the average flow velocity at the station x, and

Uo= 0 (x=0).

Several changes occur in the flow as a result of fluid injection, but a large
number of these are confined to the downstream vicinity of the beginning
of injection (i.e, x/a < 6-10), even though injection continues at the same
rate a long way downstream {0 < x < 48a). Thus, within the first two diam-
eters, the skin-friction coefficient ¢; (=t,/2pU?) drops almost to the local
laminar value (Fig. 36); these ¢; values have been estimated from the slope
of the velocity profiles measured by Pennell et al. (1972). Further down-
stream, however, ¢; quickly catches up with the preinjection level, and,
beyond x/a = 24, even exceeds the standard turbulent values.

There is also a dramatic reduction in the intensity of the streamwise
velocity fluctuation & near the wall: at Re, = 2aU,/v ~ 4250, x ~a, y ~
0.0364, &1 is less than a sixth of its initial value! This reduction increases with
the injection velocity, and, at y, = 12, for example, is approximately

A~ 375V,

for V,,/U, < 0.04. This reduction is again confined in streamwise extent to
x/a < 4, downstream of which turbulent fluctuations increase fairly rapidly.
Along the pipe centerline, there is a smaller and more gradual reduction in
the turbulent intensity, extending to x/a ~ 10. In the annular region, there
may or may not be any reduction; in fact, i may sometimes increase con-
tinuously. As a consequence of the large reduction of @i near y, ~ 12 and
little or no reduction further away from the wall, there is physically an
inward movement—toward the axis of the pipe—of the peak in &I, which
now occurs around y/a ~ 0.3 or y, ~ 25 The new peak in i in its new loca-
tion is lower by about 409 than the preinjection peak at y, =~ 12, and is
considerably more spread out.

From this brief description, it is clear that the response of the turbulent
flow to fluid injection is quite complex. The catastrophic drop in the mean-
square intensity in the wall region is probably a result of the strong inter-
ference of fluid injection with the bursting process mainly responsible for the
turbulent energy production. In a fully developed turbulent boundary layer,
the processes of low speed streak formation, lift-up, oscillatory growth, and
breakup, followed by a large scale in-rush, are all in statistical equilibrium.
One may speculate that injection upsets this equilibrium by affecting the
low-speed streak formation, and thus the complete cycle of events. Coles,
on several occasions (see, especially, Coles, 1978), and Brown and Thomas
(1977) have proposed that streak formation may be the result of an inter-
mittent Taylor-Gértler instability in the wall-layer, possibly driven by the
large eddies of the outer flow. The essential idea is that when the high speed

ment {data from Pennel] ef al., 1972)
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outer ﬂuié moves close to the wall, the sublayer will
concave (i.e., anticurving) fluid trajectories could be
the Taylor—Gértler instability. For the flow with i
the curvature is strongly convex (cocurving)
x = 0; so the instability may be suppressed Lst
will be inhibited and turbulent intensities an’d s
dow_/nstream, however, the curvature and the
begin to assume their normal form.

Close to _the pipe axis, where injection effects cannot be directly felt, th
observgd initial reduction in turbulent Intensity must be due to the ¢ - X
tant ﬁ_uld acceleration. The maximum value of the bulk acce] on param.
ete; K (see Section VIII) reached in the different experiments of Pennell et g/
(\iirles;between 4 x 10. ®and 4 x 107°; the pressure-gradient parameter A
Narasimha and Sreenivasan, 1973; see also Section V) attains values as high
as 20. Thus, acceleration effects are significant in the core especially i i}c]
region x/a < 2, where both K and A reach their maximzxm‘values} III; he
observed reduction in the turbulent intensity is solely due to the e.ffectt 0?

sudden acceleration, we should id di i
. , expect rapid distoration theor;
to predict the observed changes. s o e able

Figure 37 shows a comparison of the
several points along the axis of the flow in

be thinned, and locally
created, thus triggering
njection, it is clear that
immediately downstream of
reak formation and bursting
hear stress will drop. F urthe;
turbulence production cycle

eration param-

measured turbulent intensity at
the region x/a < 10, with results
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Fi6. 37, Turb intensity in pi ith inj
rbulence intensity in pipe flow with injection: comparison between measure-

and rapid distortion theories.
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from the rapid-distortion theories of Batchelor and Proudman (1954) for
initially isotropic turbulence, and of Sreenivasan and Narasimha (1978) for
initially axisymmetric turbulence. (The applicability of these rapid distortion
theories in the nonhomogeneous environment has already been discussed in
Section V) It is clear that the rapid-distortion calculations are reasonably
successful.

The recovery of the flow downstream may be due partly to turbulent
diffusion, and partly to the diminishing importance of fluid injection; when
the injection rate remains unaltered, and the average flow velocity increases
according to (9.1) in the streamwise direction, the ratio V, /U drops. For
example, in the experiment of Pennell et al. with the highest injection rate,
the ratio ¥,/U at x/a = 36 is nearly half of its value at x = 0. It would be
interesting to observe the flow development in a case where V,/U remains
constant.

B. SucTioN

When a uniformly distributed suction is applied to a flat plate laminar
boundary layer, it is known that the distribution of velocity in the boundary
layer, and the skin friction coefficient, become asymptotically independent
of the streamwise direction x and the fluid viscosity, being determined solely
by the suction ratio V;/U, where V; is the suction velocity (see, for example,
Rosenhead, 1963, p. 141). The boundary layer is then said to have reached
the laminar asymptotic state.

In the case of a turbulent boundary layer, on the other hand, Dutton
(1960) found an asymptotic layer whose form is independent of x only for a
certain critical value of the suction ratio. Further, this asymptotic profile
depended on such conditions as the initial boundary layer Reynolds number
and the precise manner in which suction was applied.

Of particular interest to us here is an observation of Dutton (1960) that
for suction ratios higher than a critical value, the boundary layer thins down,
the shape factor of the velocity profile increases, the turbulent energy produc-
tion decreases and, for suction ratios of about 0.01, the initially turbulent
boundary layer approaches the laminar asymptotic state appropriate to the
particular value of the suction ratio (see Fig. 38).

Details of the process of actual relaminarization in this case have not yet
been sufficiently well-documented. We can get some insight into the nature
of the process by examining energy balance in the asymptotic turbulent
boundary layer (corresponding, for one particular set of experimental condi-
tions, to a suction ratio of about 0.007). The Reynolds shear stress distribu-
tion in this layer can be evaluated easily from the mean momentum balance.
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Fic. 38.' _\’arxanon of the momentum-thickness Reynolds number Re, and the shape fz
H for’ an initially turbulent boundary layer undergoing relaminarizat(;on Suc':o:pe' ?Ctor
O.QIZD. Arrows on the right ordinate scale are values of Re, and H Corres;:)onain0 to th r'd .
priate asymptotic laminar profile having the same suction ratio, £ 10 the appro-

Dutton (1960) showed that the Reynolds stress so calculated is small all
across the boundary layer, its maximum value being only about 0202
Thesg ca}cglations further showed that 75%, of the ene}gy lost by the i“neaz;
flow is dissipated directly by viscosity acting on the mee;n velocity gradient
only the remaining 25% being converted to turbulent energy. The reduceci
turbulent energy production comes about because of the red‘uced Reynolds
shear stress, which more than offsets the increased mean velocity gradient
near the. wall. It is plausible that for higher suction ratios, essentially tie same
mechamsms operate with only quantitative differences leventualli resulting
in the relaminarization of the flow. , ’ e
Re_versmn has also been observed when there is concentrated suction
Walhs _(1950) has studied the problem with suction through a single two-.
dimensional slot. When the entire turbulent boundary lay;r is succked off,
a completgly new laminar boundary layer grows downstream of the slot at’
the rate given by the laminar theory. This useful limiting case is howe’ver
not 1nt§rest1ng in the present context, because the turbule;}t boundary layer
on which we seek to establish the effects of suction has been ¢ I yI
removed form the scene. PPy
Even in the less extreme case when a sizeable part (but not all) of the tur-

bulent boundary layer is removed by suction, all measures of the boundar
layer thickness decrease for a certain distance downstream of the slot; foi
example, when 3/8 of the mass flux of the approaching turbulent bounéar
Iayer 1s removed, this thinning occurs over a distance of about five times thz
thickness of the oncoming turbulent boundary layer (Wallis 1950). Further
downstream, however, the boundary layer grows in thicknes’s. ‘
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In the region of decreasing thickness, an essentially new laminar sub-
boundary-layer develops downstream of the slot, underneath the remnants
of the oncoming turbulent boundary layer. Low frequency «’ and v’ fluctua-
tions are both present in this inner laminar layer, although the Reynolds
shear stress is much lower than in the normal turbulent boundary layer.
Clearly, a decorrelation mechanism operates here also. (Incidentally, the
effect of suction is very much higher on the normal velocity fluctuation v’
than on the streamwise velocity fluctuation u'.) Eventually, this inner layer
undergoes transition to turbulence like a normal laminar flow.

On the other hand, the local suction thins down the outer layer, and hence
also reduces the total boundary layer thickness, even though the laminar
subboundary-layer itself grows. Both v and ¢’ are reduced in the outer layer.

Under these circumstances, the boundary layer just downstream of the
suction slot can be said to have reached a quasi-laminar state (Section V).
In fact, the similarity to rapidly accelerated boundary layers is so striking
that we suspect that a major part of the quasi-laminar theory of Narasimha
and Sreenivasan (1973) (see Section V) would in principle be applicable here,
although the extent of the relaminarization region is relatively short. Unfor-
tunately, data are not available in enough detail to test this suggestion.

X. Magnetohydrodynamic Duct Flows

A. INTRODUCTION

An electrically conducting fluid flowing in a magnetic field experiences a
magnetic body force

)X =jxB (10.1)

per unit volume, where j is the current density and B the magnetic field
(more precisely the induction); the fluid also suffers an energy loss of j?/¢
per unit volume by “ohmic” dissipation, ¢ being the electrical conductivity.
It has been known for some time that these effects can often relaminarize an
originally turbulent flow; we consider here some simple duct shear flows
in which such relaminarization has been studied.*

The precise effect of the field depends on its orientation relative to the
mean flow. In a channel, for example, the field could be either longitudinal
(i.e, aligned with the mean flow) or normal. It may appear necessary to

* There are also situations where the magnetic force alters the flow so as to make it unstable,
e.g., by creating free shear layers that quickly break down to turbulence; an example is given
by Lehnert (1955).
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consider two possible normal directions, respectively parallel to the shorter
and anger sides of the channel when its cross section is not a square: how-
ever, I‘I 1s convenient to discuss instead the equivalent problem of the’ effect
of a given nprma] field on channels of different aspect ratio.

We restrict ourselves to a consideration of low maenetic Reynolds
numbers, )

Rm = Ua/s, 4= 1/uc, (10.2)

where U agd a are characteristic velocity and length scales of the flow s
the magnetic permeability and /, the magnetic diffusivity. The value oI’" Rm
prowdes us a measure of the ratio of convective to (magnetic) diffusion
tlmes,lor of the induced to the 1mposed field (see, e.g., t};e discussion in
Shercliff, 1963, Chapter 3). For the fluids used in mos; laboratory experi-
m¢\nts v« .: thus (see, e.g.. Kirko, 1965) VA=15%x10"7 for mércur at
20°C, and 2.3 x 107° for sodium at 300 C. This means that even Whenythe
flow Reynolds number is quite high, the magnetic Reynolds number tends
to be lpw. Whereas at high Rm the field is convected with (or “frozen™ into)
the fluid, at low Rm the field varies chiefly by diffusion, and is hardly affected
by the flow. : ’
The current density is taken here to be given by a simple Ohm’s law

J=0(E +ux B), (10.3)

whc:re Eis .the electric field. The field puts energy into the fluid at the rate
E "J per unit volume and unit time: a part of this, given by j2/5. s dissipated
Irreversibility into heat. o

Taking the curl of (2.2) with X = ; / 1 ici

. o 2.2) =] x B/p we obtain the vorticit I
(with B = fBlz) Y equation

do c
- — (- Viu — F:;[—cur132u+(u-B)curlB

+ (u-B) x B + curl(E x B)]. . (10.4)

where F is a term involving the viscous and Reynolds stresses. The effect of
the field on the vorticity is thus quite complex; but if the field is normal to
_the ﬂqw and (as at low Rm) hardly affected by it, and the last term in (10.4)
involving E is negligible, it is clear that the first term on the right of(10‘4)
acts to suppress the vorticity with a characteristic decay time © - p/oB2. ‘

B. ALIGNED FIELDS

If B' 1s in the direction of the mean flow and E is negligible, the maenetic
fqrce 15 zero, and the mean momentum balance can be affected oniv n-
directly, through the action of the field on the Reynolds stresses. Many
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experiments have shown a tendency toward sup.pressior} of turbulence (e.g.,
Globe, 1961, and Fraim and Heiser, 1968, in pipes; Sajben apq Fay, 19.67,
in a jet). It may be shown by a detailed examination of the vorticity equation
(Moreau, 1969) that, as above, the field tends to suppress (turbulent) vorticity
normal to it in times of the order p/¢cB2. The turbulence sho.uld th.us tend.to
become axisymmetric about B, and eventually even two-dimensional with
vorticity only along B. .

The experiments of Fraim and Heiser (1968) suggest that reversion occurs
for sufficiently small values (£30) of the ratio of the Reynolds to the
Hartmann number

Re _ EBf <£_>”Z (10.5)
Ha vo

where the Hartmann number
Ha = Ba(s/pv)'/?,

when squared, provides a measure of the ratio of thg magnetic to the viscous
forces. Note that the parameter (10.5) does not involve any length scal.e
characteristic of the reverting flow. Earlier explanations of the role (_)f this
parameter (interpreting it as “the square root of the prod_uct of the viscous
and magnetic forces divided by the inertial forces,” as .Fralm and H.elser. do,
for example) are unnecessarily obscure and do. not give us an mmght nto
the physical phenomena involved. We offer a sm}pler. interpretation below.

A measure of the ratio of the magnetic to the inertial forges is the Sguart
number or interaction parameter, which is given by S = Ha*/Re, = ¢B*l/pu
for eddies of size | and velocity u. This parameter is lgrge fqr the larger
eddies, which therefore tend to be damped out by ohmic d1§51pgt19n (Moffatt,
1967; Moreau, 1969). The largest eddy that escapes ohmic d1$51pa.t10.n is of
size Ut ~ pU/oB?, which can be much smaller than_the c'haracteqsm’: flow
length scale when B is high. Reversion must occur if eddies of this size or
smaller are dissipated by viscosity, i.e., if the Reynolds number based on

Uz, namely,

U Up

= [Re/Hal?
v ¢B? [Re/Ha]

is sufficiently small. It is thus no surprise to find a critical value for the ratio

Re/Ha. o .
”{"his explanation suggests then that when the field is aligned with the

flow, reversion occurs by dissipation—ohmic for the large eddies, viscous
for those not so large. :
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C. NormaL FIELDS

The same two sources of dissipation must affect the turbulence even when
the field is normal to the flow, but the J x B force may now act in addition
to suppress the mean vorticity of the flow normal to B. Using the previous
estimate of the decay time, the characteristic streamwise distance should be
of order

Up/cB* ~ as,

where S is now the Stuart number based on U and a. Further downstream
the velocity therefore tends to become uniform across the duct, except in thin
“Hartmann” layers at the surface that ensure that the no-slip condition is
satisfied. At large values of the Hartmann number the thickness & of this
layer is proportional to a/Ha = (pv/B2c)"'2,

The first experiments on the effects of a magnetic field on laminar flow
were conducted in a channel by Hartmann and Lazarus {1937); since then
there have been many other studies in turbulent flow as well (an interesting
survey of earlier Western and Russian work is Branover et al., 1967). Such
experiments present many difficulties: measurement techniques are not easy
(see, e.g.,, Branover and Gershon, 1976; Branover er al., 1977), and the flow
situations are bedeviled by such effects as the absence of a fully developed
state due to insufficient length of duct or field, the fringing of the magnetic
field lines near the ends of the magnet, and the finite aspect ratio of the cross
section of the duct when it is a channel. Thus, while many interesting experi-
ments have been made {Murgatroyd, 1953; Branover et al, 1977; Gardner
and Lykoudis, 1971; Hua and Lykoudis, 1974: Reed and Lykoudis, 1978),
and much insight obtained, one can hardly say that the picture is yet
complete.

All experiments show that with a sufficiently strong field, the skin friction
changes from the initial turbulent value to one characteristic of laminar
mh.d. flow. As an example, we show in Fig. 39 the measurements of Gardner
and Lykoudis (1971) in a pipe. Note that the final m.h.d. laminar value of ¢;
is generally much higher than the non-m.h.d. turbulent value at the same
Reynolds number! At the higher Re, the skin friction shows a dip before
rising again as the field increases. At lower Re, the recent measurements of
Reed and Lykoudis (1978) show an even more involved behavior of ¢, than
the data of Fig. 39: there is a small but noticeable initial dip, then a hump
followed by another dip before ¢e rises to the laminar value. The first dip
manifests itself because of the damping of turbulence by the magnetic field
while the Hartmann flattening has not yet become dominant. The flow is
presumably still fully turbulent at this stage. With increasing field strength,
the Hartmann effect wins over, accounting for the rise in ¢;. The presence
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FiG. 39. Typical skin friction coefficient data for a pipe flow in a normal magnetic field
(Gardner and Lykoudis, 1971).

of the following hump and the (second) dip is not surprising and are eaAsﬂy
explained if we allow that during transition (og reversion) there is a regime
in which the flow alternates between the laminar and _turb.ule.:nt states. If
at the point of change in flow character the turbulent skin friction is hlgher
than the laminar, a dip must appear (as in a flat plate boundary }ayer, see
Dhawan and Narasimha, 1958); otherwise it will not. The crucial fagt is
that at low Re, the laminar ¢; is comparable to the Furbulent ¢p nEAr reversion,
but at high Re it is much lower. Of course a convincing theo_ry for the varia-
tion of turbulent ¢; with magnetic field is required before this argument can
idered complete.

be[ioi;] Zenerally thgught that relaminarization_e}s judged by the agreerrvlent
betwee; measured ¢, {(or pressure loss) and laminar theory—‘occu;s when
Ha/Re exceeds a critical value. This can by no means be considered to hlz;\I/e
been established firmly yet; indeed Fig. 39 suggests th_at the valge of Re/Ha
at which laminar skin friction is attained decreases .w1th increasing Re, and
we shall return to this point shortly. A related point is that the values quoteg
for (Re/Ha),, by different workers do not agree. Murgatroyd (1953)f5§ggest§d
(Re/Ha),, ~ 225 for a channel; the more recent measurements o 111(3 ad'

Lykoudis (1974) indicate the higher value of nearly 330. Hua and Lykou is
show that it is important to take into account the effect of .the aspect ratio
on the laminar solution in attempting to judge when reversion is compl;e.
They also observe a departure from the laminar solution at hlgh.Ha/ eE
and attribute it to magnetic entrance effects that prevent the establishmen
of the fully developed flow.
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Branover and Gershon (1976) suggest the empirical formula

(Re/Ha),, = 215 — 85 exp(—0.358),
where
__side perpendicular to field
~ side parallel to field

is the aspect ratio of the channel.

Note that all these values for {Re/Ha),, are appreciably higher than those
with aligned fields, presumably reflecting the additional effect on the mean
flow due to the magnetic force. The relatively lower value of (Re/Ha),, at
lower f is again consistent with this idea, because the Hartmann effect now
operates on the shorter sides of the channel and is therefore weaker.

To examine this effect more closely, we note that when Ha is large the
Hartmann number based on 9,

Ha; = B d(g/pv)!/2,
is O(1); it follows that

Ha B\vy Ha;

At high Ha, the velocity profile in the Hartmann layer takes the simple
form (see, e.g., Shercliff, 1965, Sect. 6.5)

-]

where y is distance measured from the surface; this velocity distribution is
the same as in the asymptotic suction profile (Rosenhead, 1963, p. 241). The
critical Reynolds number for this profile is about 45,000 (sce Rosenhead,
1963, p. 543) based on the displacement thickness; the Reynolds number at
turbulence suppression in m.h.d. channel flow, corresponding to Re; of a
few hundreds, is thus some orders of magnitude lower than this critical value.
The “Hartmann effect” of the normal field therefore produces a highly
stable mean velocity distribution. Indeed, the detailed linear stability analysis
of laminar flow by Lock (1955) finds that the chief reason for the greater
stability of channel flow subjected to high normal magnetic fields is the
significant alteration of the mean flow.

As the time required for suppression of either the mean or the fluctuating
vorticities is apparently of order p/aB?, it seems a priori possible that the
two effects reinforce each other. Interesting experiments on the turbulent
quantities in these flows have been conducted by Gardner and Lykoudis
(1971) in pipes, and by Branover et al. (1977) and Branover and Gershon
(1976) in channels. These measurements depict the decay of turbulence at a

Re U<p>”2 Re; Re
PRIl By ~ ~ Re;.



264 R. Narasimha and K. R. Sreenivasan

fixed point in the channel as the field is increased, and do not unfortgnately
trace the streamwise variation at a fixed field. Nevertheless, the experiments
do show that at a station where the surface friction has reached lz}mmar
values, turbulent fluctuations have not vanished, although they eyxdently
do not contribute to momentum transport. In fact, Reed and Lykoudis (1978)/
find that the Reynolds shear stress was completely suppresse_d even though u
and v" were not; clearly a decorrelating mechanism is again at work here.
The flow is therefore quasi-laminar, in the sense of Segtlon V. Ther_e .has
been some discussion whether these fluctuations are a remdpe of the or.lgmal
turbulent flow, or arise from the creation of unstable velocity proﬁlf?s in the
channel where the (originally turbulent) flow enters the ma_lgnetlc ﬁelq:
gradients in the field due to the “fringe effect” at the poles used in the experi-
;nent can create vorticity (see Shercliff, 1965, pp. 94f9.5), and so lead to
the so-called M-shaped profiles possessing inflexion points. Branover and
Gershon argue that the occurrence of such profiles depends on the Stuart
number, and offer evidence that in those experiments where S was lower
(and hence the M-profile effect weaker), the residual turbulence was also
We,ilt{etrhe same time, Branover and Gershon also find evidence that the
residual turbulence approaches two-dimensionglity; as may be seen from
Fig. 40, the correlation coefficient of the longitudinal velocity fluctuations at

all dimensions in mm

(50— magnet probe
B pa || & il
:D 4 &0 = 17 1
M | oYl—i75g —
0Tz Re=agUfv~ 188xI0
5 — 2.5 .o

|
o
)

critical value

op d Op d UB121}}302 UOI}DI84I0D
0 4n /{0 qusiony 1ol

103 Ha/Re

F1G. 40. Longitudinal velocity fluctuations and field-wise correlation coefﬁcrxent m' ch{annheI
flow subjected to a normal field. (Data from Fig. 3.3, B"ra'nover et al.,A1977). Note Fhat d,t 1t e
critical value of Ha/Re =~ 6.6 x 1073, when the skin friction has att'amed the faminar value,
the turbulence intensity is still appreciable but the correlation coefficient very large.

Relaminarization of Fiuid Flows 29

[}

two fixed points along the field shows, in one case, an increase from near
zero at Re/Ha ~ 10° to about 0.9 at Re/Ha ~ 102

On the other hand, Gardner and Lykoudis (1971) found that the magnetic
entrance effect extends only a few diameters in their pipe experiments.
However, in other respects the situation in a pipe is rather complex, as the
current flows in two loops in the cross-sectional plane—across the field in a
central core, then around the circumference. This introduces a dependence
on the azimuthal angle in the flow parameters; e.g., the turbulence is sup-
pressed first along the field. The Hartmann flattening of the velocity profile
s also most pronounced in the same direction. This azimuthal dependence
makes interpretation of pipe data difficult. Gardner and Lykoudis point out
that there is some evidence, nevertheless, that on the application of the
magnetic field the large eddies are damped out first, presumably by ohmic
dissipation (Fig. 41). This indicates that the changes in mean velocity profile
occur faster, and that these changes, through the creation of stabler profiles,
bring viscous dissipation into play. At a later stage of relaminarization,

there is however relarively greater energy at the lower frequencies (the roral
energy is of course much less)

FiG. 41, Spectra of axial velocity fluctuations at
center-line in mh.d. pipe flow: Re = 5150. (From
Gardner and Lykoudis, 1971.)

F(n) (s)

[t must be noted that the variation of turbulence intensity in these experi-
ments correlates better with Ha?/Re® 7> than with Ha/Re, especially at low
fields.

To summarize, a normal field should directly suppress turbulent vorticity
not aligned with it, but the associated Hartmann effect, altering the mean
velocity profile in a stabilizing way, must also play a strong role in relami-
narizing the flow, if indeed it is not the rate-controlling mechanism. An
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indication of this is the much higher value of (Re/Ha),, in normal fields as
compared to aligned fields (around 300 vs. about 30). Further support is
lent by the lower value of (Re/Ha),, when the field is along the longer side
of the channel; the Hartmann effect, confined now to the shorter sides, is
obviously weaker in this case. The presence of significant turbulence even
when the skin friction has attained laminar values bears a strong resemblance
to several other cases discussed earlier (Sections I1I and IV) and is of course
not peculiar to m.h.d. flows, in spite of the impression sometimes given in
the literature of the subject.*

If the primary (or rate-controlling) mechanism of reversion should be the
domination of the magnetic force over the Reynolds stress gradient in
the originally turbulent flow, we may expect the correlating parameter
(following the arguments on accelerating flow in Section V) to be

cUB? Ha?
TO/D CfRe’
cUB?* Ha? 0 Ha
T0/6 ¢ Re D ¢Re’

at low fields: (10.6a)

at high fields:

(10.6b)

The experiments of Hua and Lykoudis (1974) in a channel show that the
decrease in turbulence intensity with increase in field correlates with Ha?/Re
at low field strengths; Gardner and Lykoudis (1971) similarly find the cor-
relating parameter in pipes to be Ha%/Re® 73, which is the same as (10.6a) if
¢r is taken to obey the well-known Blasius law in turbulent flow, ¢, ~ Re™ /4,
The Blasius law should be a reasonable approximation at low fields and
relatively low Re, but as the field and Re increase it appears from Gardner
and Lykoudis’s experiments that the ¢ varies less with Re than the Blasius
law suggests. The correlation of (Ha/Re),, with Re provided in Fig. 27 of
their paper shows two distinct regions, which we may describe by

(Ha/Re),, ~ Re™ 903 10* <Re < 8 x 10*
~ Re™ 03, 10° < Re < 5 x 105.

The high Re correlation is rather like (10.6b).

Considering the difficulties in these experiments (e.g, the ¢; in the
relaminarized region shows a systematic departure from the laminar solution
of Shercliff (1956), which according to the authors could have been due to
roughness, insufficient entry length or the residual turbulence), all we can
say is that the criterion for reversion appears to be a parameter of the form
Ha/Re", where n is definitely less than 1, and probably around % for relatively

* Branover and Gershon (1976) say that “the problem of remaining disturbances constitutes
one of the most paradoxical phenomena of fluid mechanics.”
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low fields. Recalling that reversion in the non-m.h.d. flow in a channel occurs
atRe ~ 1500 (see Section IILB,2), we may sketch the likely boundary between
laminar and turbulent flow as in F ig. 42.

105_ experimental data, ;II -
2 R Gardner & ” I B
ST Lykoudis (1971) \ I||! )

o m
] I]l
o /!
turbulent [f 7]
4 ;ll
10— ! ]

/ -
71/ ’
i > .

Recr,no field /

—

10 : . Ll . e . ol
1 10 102 103

Hq=a§(0'/pz))”2

FIG. 42.  Sketch of proposed reversion boundaries in m.h.d. pipe flow.

XI. Other Instances of Relaminarization

It was pointed out by Landau and Lifshitz (1959, p. 137) that an axisym-
metric turbulent wake should eventually revert to a laminar state. The
wake behind any body of nonzero, finite drag is characterized by a
momentum thickness § which remains constant along the wake. Sufficiently
far downstream, the momentum deficit in the wake U?6? is proportional to
0*U AU, where AU is the maximum velocity defect, U is the free stream
velocity, and § is the wake thickness. It follows that the wake Reynolds
number Re; = SAU/v ~ (U6/v)(6/6), so that if the wake keeps growing its
Reynolds number must keep decreasing. A detailed calculation of the wake,
assuming that it is “self-preserving” (Townsend, 1956, Section 7.15), shows
that § ~ x'3 AU ~ x72/3 Re, ~ x~1/3, Sufficiently far downstream, there-
fore, the Reynolds number becomes so small that the wake must relaminarize,
by dissipation; standard turbulent behavior cannot therefore be expected.
It is probably for similar reasons that Freymuth’s (1975) search for the final
period of decay in the wake behind a sphere proved fruitless. However, the
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Reynolds number variation with x is very weak, and we have already seen
in Section 1II that dissipative reversion is very slow; it is therefore no great
surprise that explicit observations of such relaminarization have not been
made.

The argument for relaminarization is valid for the wake behind any finite
drag-producing body. However, there is no tendency to reversion in the
wake behind a two-dimensional body, as the corresponding wake Reynolds
number remains constant in this case.

The tip vortex produced behind a finite wing also appears to exhibit
reversion, presumably as a result of the curvature of the flow. Poppleton
(1971) shows very interesting photographs of flow visualization using smoke
in the wing-tip vortex generated by a Hercules aircraft in flight. There is a
delicate relationship between axial and transverse velocities in such vortices:
the axial velocity relative to the wing changes sign across the vortex, with the
result that there is co-curving flow in the core; the photographs show that
the vortex core is laminar, although the outer part is turbulent.

Laboratory experiments reported by Singh and Uberoi (1976) also suggest
a reversion in the wing-tip vortex; they find that, while at a distance of one
chord behind the tip the flow is turbulent, at 30 chords the vortex appears
laminar, with a periodic instability (see their Fig. 4). At 60 chords, however,
no periodicity was evident, but turbulent patches appeared in the velocity
signals.

We believe that the relaminarization observed in swirling flames (e.g.,
Beer et al., 1971) is a related phenomenon.

We have discussed at great length in Section V how spatially accelerated
shear flows may relaminarize. It may be expected that when the acceleration
1s temporal similar effects should be observed. Some preliminary experiments
during transient flow in a pipe by Leutheusser and Lam (1977) show that
such acceleration certainly delays transition, 1.e., the critical Reynolds number
increases. In analogy with spatial acceleration, we may also anticipate that
the relevant parameters governing departure from the law of the wall and
completion of reversion respectively would be (with superscript t standing
for the temporal problem)

AV =yU/UZ, AV = Us/UZ,
where U = dU/dt is the time derivative of a characteristic flow velocity.

When variations in ¢, may not be appreciable, we may also expect the free
stream parameter

KW =yU /U3

to play a role similar to that of K in Section V. However, there is not enough
experimental data yet to make a detailed analysis.
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When the temporal variations are not monotonic, a complex series of
transitions and reversions may be expected, depending on ratios of the time
scales characterizing the acceleration to those characterizing transition and
reversion.

We may briefly return to the reversion observed in coiled pipes, which
was mentioned in Section I. There is probably a combination of several
mechanisms at work here. There is first of all the suppression of turbulence
on a convex wall—in the present instance on the inside of the bend—that
was discussed at some length in Section VI. On the outside of the bend,
the concave flow curvature should if anything enhance the turbulence, but
this effect may be counteracted by the secondary flow that is known to be
generated. Lighthill (1970) has pointed out that one effect of the secondary
flow is to shift the velocity maximum outward, with the formation on the
outside of the bend of a thin layer with an effectively lower Reynolds number.
For example, measurements by Rowe (1970, Fig. 1) in a pipe bent to a radius
of 12 diameters show that, after a 60° bend, the maximum total pressure
has moved out from the centre by about two-thirds of the radius. Such a
reduction in the Reynolds number may well dissipate turbulence on the
outside of the bend, and allow the development of a laminar subboundary
layer there. More detailed experimental investigations are necessary to
elucidate the mechanisms operating in this flow.

There is also the possibility of reversion on swept wings in an aircraft—
the turbulent boundary layer on the fuselage is first swept down the leading
edge of the wing before rolling over to chordwise flow; in the process, it is
subjected to a large favorable pressure gradient near the leading edge.
Thompson (1973) has shown how it might be possible to exploit the possi-
bilities of reversion in such flows to save a few percent on the drag of the
wings of large transport aircraft. It remains to be seen whether, and if so
to what extent, the beneficial effect of the favorable pressure gradient is
counteracted in this case by the curvature that the boundary layer experi-
ences along the flow.

XII. Conclusion

In the preceding sections we have examined and described a variety of
flows in which relaminarization has been observed or may be expected to
occur. It is certain that many other reverting flows exist, and more will be
discovered in future.

It is instructive however to compare the different types of reversion that
we have already described. In both dissipative and absorptive types of



300 R. Narasimha and K. R. Sreenivasan

reversion, there is a net decrease in turbulence energy: in the first instance,
this energy is lost essentially by the action of a rpolecular tragsport param-
eter like the viscosity or the electrical resistivity; in .the second, it is destro'yed
by the work done against a body force like gravity. In the enlarged pipes
discussed in Section III, even when the final Reynolds number drops to as
low as half of the critical value, the distance required to.corr}plete reversion
is of the order of a hundred diameters: thus the reversion is very slow. In
contrast, in the Richardson type reversions, .tl_le destruction of turbulenge
energy appears to proceed rapidly once the»crltllcal va}ue Qf the parameter 1s
exceeded: turbulence is suppressed in a few jet widths in Fig. 2. In bc?th cases,
there is evidence that what happens goes beyond a mere decrease in turbu-
lence energy; in fact some mechanism seems to pe at work to decorrilalte
the velocity components that generate the crucial Reynolds stresses.” In
particular, the effects of even mild curvature on a turbglent shear ﬂqw seemf
astonishingly strong. Clearly one is not merely wearing the @echlnery 0
turbulence down in these cases—it is more as if one were thrgwmg a spanner
into the works! In other words, these external 1pﬁuences imposed on the
flow must be interfering with its organization—with the coherent structures
bursting cycle that sustain turbulence. .
an?ntr};eaking thiz styatement, we have come f}lll circle fr‘om th§ therm_odynaglc
objection against the possibility of reversion, mentioned in Section 1. For
reversion can also be viewed in many cases as the destruction of the largef
scale quasi-order of turbulent flows into the molecular-scgle _chsqrder 0
laminar flows! A naive order—disorder approach to relaminarization can
therefore be misleading for more reasons than one. ' ‘
The third type of reversion, viz., that which occurs during accelergtlon,
shares some characteristics with the other two typ@s, but has some 9bv1ously
distinctive features also. For example, the generatlon.of a new laminar layer
(inevitab'ly involving dissipation of turbulent ene_rgy) is common to revertllng
flows of different types; and the pressure gradient parameter A resemb es
a “bulk” Richardson number. On the other hand, the shear stresses dur}ng
acceleration are not really destroyed; rather they are frozen, ar}d everyth_mg
is over, so to speak, before the machinery of turbulence has time to adjust
itself to the external agency (i.e., the imposed pressure gradient). Ig low;
speed flows, this agency therefore continues to dominate the dynamlcf o
the flow—not because the turbulence is dissipated or destroyed in absp éltg
magnitude, but rather because the agency is so much larger. One Is remin .ek
of the story about Emperor Akbar and Birbal; one way of shoytemng a stlg
without wearing it out or breaking it is to place a bigger stick next to it.

. - . . e
* In general, all forms of reversion seem particularly sensitive to interference with th
relatively small normal velocity.
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We recall our pragmatic definition of reversion (Section I) according to
which a flow has laminarized if its development does not demand under-
standing of the dynamics of turbulence. Thus, it is not necessary for the
characteristically random velocity fluctuations of turbulence to be entirely
absent in a relaminarized flow, but only that such fluctuations, even if present,
should not lead to appreciable momentum or energy transport. We have
specifically demonstrated that this is true {although for different reasons) in
reverting pipe or channel flows (Section III) and in accelerated reverting
boundary layers (Section V), but it is likely to be true at least in a somewhat
restricted sense in all the other flows discussed here: perhaps the most
restrictive case is that with injection, where the dynamics of turbulence
becomes unimportant only fairly locally, close to the beginning of injection.
By the same token, it is not clear at present whether our definition of reversion
encompasses the technologically important case of drag reduction by dilute
polymer addition, even though a phenomenal reduction of turbulent in-
tensities and Reynolds stress has been observed here.

It is sometimes suggested that one ought to decide whether a flow has
reverted to the laminar state by examining whether it becomes turbulent
again as in direct transition. This seems an attractive idea; in some reverting
boundary layers it has been possible to recognize the generation of new
turbulent spots leading to a second transition to turbulence. However, as an
invariable criterion the idea bristles with difficulties. The chief reason is that
unlike direct transition, which is often catastrophic, reversion is often
asymptotic. Thus, the birth of a spot in a boundary layer is a dramatic event
that heralds turbulence; but during reversion, there is no such event whose
occurrence guarantees that the flow is going to become laminar downstream,
although, as we have seen in Section V, many flow parameters do vary
rapidly during reversion. A reverting flow is often in a rather noisy quasi-

laminar state, in which even the occurrence of what might otherwise have
been a dramatic event (e.g., birth of a spot indicating retransition) tends to
get masked.

In any case, it is neither practical nor fruitful to try and decide whether
a flow has reverted at any given point by having to investigate whether it
could go turbulent again in some standard way. In fact, the concept would
be meaningful only if points of reversion (as of transition) could be uniquely
determined.

In many situations where reversion does occur, a combination of the
different basic mechanisms can be at work. For example, in a highly heated
duct flow, it is still not certain how much of the resulting changes are due to:

(i) the increase in viscosity, and hence in dissipation, that follows the
higher temperatures;
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(11) the acceleration consequent on the reduction in gas density;

(ii1) the stratification introduced into the flow by heating;

(iv) the possible domination of the conduction heat flux over the other
forms of heat transfer.

It is possible that in any given situation, more than one of these mgchanlsms
contribute; thorough studies are still required to determine Wh}ch of the
different mechanisms are the more significant in any given situation.

A key to understanding these complex situations will surely be an appre-
ciation for the rate at which different mechanisms operate. We have seen
evidence for the slowness with which dissipative reversion takes plage. Qn
the other hand, an external agency can quickly alter the mean ﬂoxjv s_1gn1ﬁ—
cantly, and hence either suppress or overwhelm the turbulence; it is also
possible that the turbulent energy is either quickly absorbec}, or the phase
relations promoting momentum exchange destroyed, Wlth consequent
changes in the mean flow. The possible pathways are schematically 1}1ustrated
in Fig. 43. Further studies should perhaps concentrate on helplpg us to
decidg what the rate-controlling mechanism is in any given flow situation.
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FiG. 43.  Pathways to relaminarization. 0, the coupling between mean flow and turbulence
in fully developed turbulent flow; I, relaminarizing agency, working. on both mean flow an:i
turbulence at comparable rates; 2, mean flow affected more rapidly than turbulence; 3,
turbulence affected more rapidly than mean flow.

We may conclude by remarking on how often reversion apparently occurs,
and how easy it appears to be to suppress turbulence—it looks almost as
if whether you suck or blow, squeeze or bend, heat or cool, or do any ofa
vast number of other things to it, turbulence can be destroyed, or at le.ast
disabled; provided of course the operation is done properly. There are just
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now beginning to be a few technological examples where turbulence might
be controlled by promoting reversion. Thus, we have already noteq
Thompson’s (1973) suggestion that it mught be possible to engineer reversion
near the leading edge of swept wings on the larger transport aircraft, and so
save a few percent on the drag. In many rocket nozzles, wind tunnel con-
tractions, and other such devices, reversion has undoubtedly been occurring
without having been explicitly designed in. It would be very useful if high-
speed wind tunnel test sections, which tend to be noisy because of sound
radiated from the turbulent boundary layers on the wall, could be made
“quiet” by the device of relaminarization. Nevertheless, “turbulence control”
is still something that remains a bit of a dream. Perhaps when there is greater
understanding of the nature of coherent structures and of their role in tur-
bulence, it will be possible to aim spanners better at the fnachinery of
turbulence and so win the ability to control it when necessary.
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